CHAPTER

Multiple Regression

General Considerations

Multiple regression is a very useful extension of simple linear regression in
that we use several variables rather than just one to predict a value on a
quantitatively measured criterion variable. It has become a very popular
technique to employ in behavioral research. Many researchers believe that
using more than one predictor can paint a more complete picture of how
the world works than is permitted by simple linear regression because con-
structs in the behavioral sciences are believed to be multiply determined.
Using only a single variable as a predictor will at best capture only one of
those sources. In the words of one author (Thompson, 1991), multivariate
methods such as multiple regression have accrued greater support in part
because they “best honor the reality to which the researcher is purportedly
trying to generalize” (p. 80).

Based on what we have already discussed regarding simple linear
regression, it may be clear that multiple regression can be used for pre-
dictive purposes, such as estimating from a series of entrance tests how
successful various job applicants might be. But the regression technique can
also guide researchers toward explicating or explaining the dynamics under-
lying a particular construct by indicating which variables in combination
might be more strongly associated with it. In this sense, the model that
emerges from the analysis can serve an explanatory purpose as well as a
predictive purpose.

As was true for simple linear regression, multiple regression generates
two variations of the prediction equation, one in raw score form and the
other in standardized form. These equations are extensions of the simple
linear regression models and thus still represent linear regression. We will
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contrast some differences between linear and nonlinear regression later in

the chapter.

The Variables in a Multiple Regression Analysis

The variables in a multiple regression analysis fall into one of twc;) C3IE80bﬂe§:
One of them is the variable being predicted; the others are used as the basis

of prediction. We discuss each in turn.

The Variable Being Predicted

The variable that is the focus of a multiple regression design is the one
being predicted. In the regression equation, as we have alreadyt SGCI:I for
simple linear regression, it is designated as an upper case Y .. This variable
is known as the criterion variable but is often referred to as the dependent
variable in the analysis. It needs to have been assessed on one of the quan-

titative scales of measurement.

The Variables Used as Predictors

The variables used as predictors comprise a set of measures designated
with upper case Xs and are known as the predictor variables or the inde-
pendent variables in the analysis.

You are probably aware that in many research design courses, the
term independent variable is reserved for a variable in the context of an
experimental study. Some of the differences in the typical nature of inde-
pendent variables in experimental and regression studies are listed in
Table 5a.1.

Multiple Regression Research

If the research problem is expressed in a form that either specifies or implies
prediction, multiple regression becomes 2 viable candidate for the design.
Here are some examples of research objectives that im ply a regression design:

> Wanting to predict one variable fro
several others

> Want'mg to determine which variables of a larger set are better
predictors of some criterion variable than others

> Wanting to know how much bett

hy . €r we can predict a variable if we
aad one or more predictor variables to the mix

m a combined knowledge of
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Table 52.1  Some Differences in How Ind
and Regression Studies
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ependent Variables are Treated in Experimental

Independent Variables

Ind ;
in Experimental Study ependent Variables

in Regression Study

Often actively manipulated but can also be
an enduring (e.g., personality)
characteristic of research participants.

Uncorrelated so long as cells in the design

Usually an enduring (e.g., personality)
characteristic of research participants.

All else equal, we would like them to be

have equal sample sizes; as cells contain uncorrelated, but they should be
increasingly unequal sample sizes, the correlated to some extent if that more
independent variables become more appropriately reflects the relationships in
correlated. the population.

Usually nominal (qualitatively measured) Usually quantitatively measured variables.
variables.

Usually coded into a relatively few levels or Usually fully continuous if possible.
categories.

» Wanting to examine the relationship of one variable with a set of
other variables
» Wanting to statistically explain or account for the variance of one

variable using a set of other variables

“The goal of multiple regression is to produce a model in the form of 2
linear equation that identifies the best weighted combination of indepen-
dent variables in the study to optimally predict the criterion varxable._ Its
onforms to the ordinary least squares solution;
bes a line for which the sum of the squared dif-
ed and actual values of the criterion variable is
between the predictions we make with the
model and the actual observed values are the Pff?diCtion RO Thehmodel
thus can be thought of as representing the function d_mtfm";lm 1zehs tdetsuin
of the squared errors. When we 52y that the model is lﬁte e t'ethatathz
“best” predict the dependent variable, what we technically mean is tha

s has been minimized. N
Such:ech?ngriﬁeerrI:;del configures tlhe predict_ors ltogethel.' :1?3 dmta;nggﬁ
prediction accuracy, the specific weight l(conm;)ungln)r ?j;leg ed (© each
independent variable in the model is relative to the 0 'de it tﬁis dent
ables in the analysis. Thus, we can say only that considering

computational procedure ¢
the solution or model descri
ferences between the predict
minimal. These differences
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set of variables, this one variable is able to predict the criterion to such and
such an extent. In conjunction with a different set of independent variables,
the predictive prowess of that variable may turn out to be quite different.
It is possible that variables not included in the research design could
have made a substantial difference in the results. Some variables that could
potentially be good predictors may have been overlooked in the literature
review, measuring others may have demanded too many resources, and still
others may not have been amenable to the measurement instrumentation
available to researchers at the time of the study. To the extent that poten-
tially important variables were omitted from the research, the model is said
to be incompletely specified and may therefore have less external validity

than is desirable.

Because of these concerns, we want to select the variables for inclusion
in the analysis based on as much theoretical and empirical rationale as we
can bring to bear on the task. It is often a waste of research effort to realize
after the fact that a couple of very important candidate predictors were
omitted from the study. Their inclusion would have produced a very differ-
ent dynamic and likely would have resulted in a very different model than

we have just obtained.

The Regression Equations

Just as was the case for simple linear regression, the multiple regression
equation is produced in both raw score and standardized score form. We
discuss each in turn.

The Raw Score Equation

The multiple regression raw score equation is an expansion of the raw
score equation for simple linear regression. It is as follows:
Viea=8+b, X, +b,X, 4+ - +b X,
In this equation, Y, is the predicted score on the criterion variable, the
Xs are the predictor variables in the equation, and the bs are the weights or
coefficients associated with the predictors. These b weights are also referred
to as partial regression coefficients (Kachigan, 1986) because each reflects
the relative contribution of its independent variable when we are statisti-
cally controlling for the effects of all the other predictors. Because this is 2
raw score equation, it also contains a constant, shown as a in the equation
(representing the Y intercept).
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: ould vary widely. If we were predicting
early success in a graduate program, for example, one predictor may very
well be average GRE performance (the mean of the verbal and quantitative
subscores), and the scores on this variable are probably going to be in the
500 to 700 range. Another variable may be grade point average, and this vari-
able will have values someplace in the middie to high 3s on a 4jp0ir1t grading
scale. We will say that success is evaluated at the end of the first year of the
program and is measured on a scale ranging from the low 50s to the middle
70s (just to give us three rather different metrics for our illustration here).

The b weights computed for the regression equation are going to reflect
the raw score values we have for each variable (the criterion and the pre-
dictor variables). Assume that the results of this hypothetical study show the
b weight for grade point average to be about 5 and for GRE to be about .01
with a Y intercept value of 46.50. Putting these values into the equation
would give us the following prediction model:

}/pt'cd = 4650 + (S) (gpﬂ) + (01) (GRE)

Suppose that we wished to predict the success score of one participant,
Erin, based on her grade point average of 3.80 and her GRE score of 650. To
arrive at her predicted score, we place her values into the variable slots in
the equation. Here is the prediction:

Yoed = 46.50 + (5)(gpa) + (.01)(GRE)
Y g = 46.50 + (5)(8Pag,,) + (01)(GREg,,)
Y redErin = 46.50 + (5)(3.80) + (.01)(650)
Y edpnn = 46.50 + (19) + (6.50)
Y redEan = 72

This computation allows you to see, to some extent, how the b weights
and the constant came to achieve their respective magnitudes. Although they
are all interdependent, we will arbitrarily start with the constant of 46.50 as a
given. Analogous to simple linear regression, this value would be Erin’s pre-
dicted success score if her GRE and grade point average were both zero, a sit-
uation, obviously, that would not exist empirically. This value of 46.50 is in the
regression equation simply to make the predicted value work out properly.

Now, recall that success, the Y variable, ranges between the low 50s and
middle 70s. So how do you obtain Erin’s predicted score in the low 70s
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given a constant of 46.5? Well, grade point average must be in the high 35
so the b weight for it will have to be high enough for the result of the
multiplication to add a decent number to 46.50. On the other hand, Erin’s
GRE score is mid-600. To predict a 72 in combination with grade point
average, the GRE value has to be substantially stepped down, and you need
a multiplier considerably less than 1 to make that happen.

Because the variables are assessed on different metrics, it follows that
you cannot see from the b weights which independent variable is the
stronger predictor in this model. Some of the ways by which you can evalu-
ate the relative contribution of the predictors to the model will be discussed
shortly.

The Standardized Equation

The multiple regression standardized score equation is an expansion of
the standardized score equation for simple linear regression. It is as follows:

Yz pred = Blel + BEXzZ +ooF [3”)(2”

Everything in this equation is in standardized score form. Unlike the
situation for the raw score equation, all the variables are now measured on
the same metric—the mean and standard deviation for all the variables (the
criterion and the predictor variables) are 0 and 1, respectively.

In the standardized equation, Y, ., is the predicted z score of the crite-
rion variable. Each predictor variable (each X in the equation) is associated
with its own weighting coefficient symbolized by B and called a beta weight,
standardized regression coefficient, or beta coefficient, and just as was true
for the b weights in the raw score €quation, they are also referred to as par-
tial regression coefficients. These coefficients usually compute to a decimal
value, but they can exceed the range of +1 if the predictors are correlated
enough between themselves.

Fg:;h BX COH;binatiEn represents the 2 score of a predictor and its asso-
ciated beta weight. With the equation i i '
e ferefore ' Shgwn. in standardized form, the Y intercept

We can now revisit the example used above where we predicted success

in gr aduat‘? school based on grade point average and GRE score. Here is that
final equation but this time in standard score form:

Yz pred = BIXZ] + BZXzZ L EEE Ban?l

b A— (.48)(gpaz) + (22)(GRE))
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We can also apply this standardized regression equation to individuals
in the sample—?_for example, Erin. Within the sample used for this study,
assume that Erin’s grade point average of 3.80 represents a z score of 1.80

and that her GRE score of 650 represents a z score of 1.70. We can thus solve
the equation as follows:

szpred = BIXZI + BZXZZ +oot Bann
Yz pred = (48) (gpaz) + (‘22) (GREZ)
z pred Erin = (48) (gpaz Erin) + (‘22) (GREZ‘ Erin)

h<

Y, searm = (:48) (1.80) + (.22) (1.70)
Yz pred Erin = (864) + (574)
szred Erin 1.24
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The Variate in Multiple Regression

As was discussed in the overview at the very start of the book, multi-
variate procedures typically involve building, developing, or solving for a
weighted combination of variabies. This combination is called a variate.
In the case of multiple regression, we are dealing with a variate made up
of a weighted combination of the predictors or independent variables in
the analysis. The variate in this instance is the entity on the right side of
the multiple regression equation.

Although the variate may not be a measured variable, it is still important
in the context of multiple regression. It is often possible to view this variate as
representing some underlying dimension or construct (i.e., a latent variable).
In the preceding example where we were predicting success in graduate
school, the variate might be interpreted as “academic aptitude” indexed by
the linear combination of grade point average and GRE score. From this per-
spective, indicators of academic aptitude were selected by the researchers to
be used in the study. They then used the regression technique to shape the
most effective academic aptitude variate to predict success in graduate school.

Based on the previous example, the academic aptitude variate is built to
do the best job possible to predict a value on a variable. That variable is the
predicted success score. Note that the result of applying the multiple regres-
sion equation—the result of invoking the linear composite of the predictor
variables, the variate—is the predicted success sCore and not the actual
success score. For most of the cases in the data file, the predicted and the
actual success scores of the students will be different. The model minimizes
these differences; it does not eliminate them. Thus, the variable “predicted
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success score” and the variable “actual success score” are different variables,
although we certainly hope that they are reasonably related to each other,
The variate that we have called academic aptitude generates the predicted
rather than the actual value of the success score.

A Range of Regression Methods

The main work done in multiple regression is to build the prediction equa-
tion. This involves generating the weighting coefficients—the b weights
for the raw score equation and the beta coefficients for the standardized
equation—as well as the Y intercept for the raw score equation.

Several different methods are available to researchers to build the variate
or linear function; these can be organized into two groups or classes. One sub-
set of methods relies exclusively on statistical decision-making criteria built
into the computer programs to decide at which point in the process which
predictors are to be entered into the equation. These are ordinarily called, as
a class, statistical methods. The most popular of these statistical methods
include the standard, forward, backward, and stepwise methods, although
others (not covered here), such as max R-squared and min R-squared, have
been developed as well. In using these methods, researchers permit the
computer program to autonomously carry out the analyses.

The other subset of methods calls for the researchers to determine
which predictors are to be entered into the regression equation at each
stage of the analysis. Thus, the researcher rather than the computer pro-
gram assumes control of the regression procedure. These researcher-based
decisions regarding order of entry are typically derived from the theoretical
model with which the researchers are working.

The Standard (Simultaneous) Regression Method

The standard regression method, also called the simultaneous or the
direct method, is what most authors refer to if they leave the method
unspecified. It is the most widely used statistical method. Under this
method, all the predictors are entered into the equation in a single “step”
(stage in the analysis). The standard method provides a full model solution
in that all the predictors are part of it.

The idea that these variables are entered into the equation simultane-
ously is true only in the sense that the variables are entered in a single
step. But that single step is not at all simple and unitary; when we look
inside this step, we will find that the process of determining the weights
for independent variables is governed by a complex strategy.
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The Example to Be Used

Rather thz?n referring to abstract predictors and some amorphous
dependent Vaflabl? to broach this topic, we will present the standard regres-
sion method by using an example with variables that have names and mean-
ing. To keep our drawings and explication manageable, we will work with a
smaller set of variables than would ordinarily be used in a study conceived
from the beginning as a regression design. Whereas an actual regression
design might typically have from half a dozen to as many as two dozen or
more variables as potential predictors, we will use a simplified example of
just three predictors for our presentation purposes.

We have taken our variables from a larger study in which we collected
data from 420 college students. The dependent variable we use for this
illustration is self-esteem as assessed by Coopersmith’s (1981) Self-Esteem
Inventory. Two of the predictors we use for this illustration are Tellegen’s
(1982) measures of the number of positive and negative affective behaviors
a person ordinarily exhibits. The third independent variable represents
scores on the Openness scale of the NEO Five-Factor Personality Inventory
(Costa & McCrae, 1992). Openness generally assesses the degree to which
respondents appear to have greater aesthetic sensitivity, seek out new expe-
riences, and are aware of their internal states.

It is always desirable to initially examine the correlation matrix of the
variables participating in a regression analysis. This gives researchers an
opportunity to examine the interrelationships of the variables, not only
between the dependent variable and the independent variables but also
between the independent variables themselves.

Table 5a.2 displays the correlation matrix of the variables in our
example. We have presented it in “square” form where the diagonal from
upper left to lower right (containing the value 1.000 for each entry) separates
the matrix into two redundant halves. As can be seen, the dependent vari-
able of self-esteem is moderately correlated with both positive and negative
affect but is only modestly correlated with openness. It can also be seen that

Table 5a.2 Correlation Matrix of the variables in the Regression Analysis

Esteem PosAfect NegAfect NeoOpen
Esteem 1.000 555 -572 221
PosAfect 555 1.000 -.324 .221
NegAfect -.572 324 1.000 -.168
NeoOpen 221 221 —-.168 1.000

—
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positive and negative affect correlate more strongly with each other thap,
either does with openness.

Building the Regression Equation

The goal of any regression procedure is to predict or account for
the variance of the criterion variable. In this example, that variable js
self-esteem. At the beginning of the process, before the predictors
are entered into the equation, 100% of the variance of self-esteem is
unaccounted for. This is shown in Figure 5a.1. The dependent variable of
self-esteem is in place, and the predictors are ready to be evaluated by
the regression procedure.

On the first and only step of the standard regression procedure, all the
predictors are entered as a set into the equation. But to compute the weight-
ing coefficients (b weights for the raw score equation and beta weights for
the standardized equation), the predictors must be individually evaluated.
To accomplish this, and this is the essence of standard regression, each
predictor’s weight is computed as though it had entered the equation last.

The idea of treating each predictor as if it was the last to enter the model
is to determine what predictive work it can do over and above the predic-
tion attributable to the rest of the predictors. In this manner, standard
regression focuses on the unique contribution that each independent vari-
able makes to the prediction when combined with all the other predictors.

Positive Affect

Negative Affect

Openness

_‘_._'_'__—_—F_.__’.-—'
Figure 5a.1 Self-Esteem Dependent Variable Prior to Regression Analysis
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<€«——— Negative Affect

Self-Esteem

<—— Openness

Figure 5a.2 Self-Esteem Variance Accounted for by Simultaneous Entering of
Negative Affect and Openness Predictors

The way in which standard regression assesses the unique contribution of
each independent variable is the key to understanding the standard method,
and we will go through the process here.

The Squared Multiple Correlation

We can demonstrate the dynamics of assessing the unique contribution
of each independent variable by focusing on how one of these predictors—
say, positive affect—is evaluated. In determining the weight that positive
affect will receive in the regression equation, the program momentarily
places the other predictors (negative affect and openness) in the equation.
This is illustrated by the diagram in Figure 5a.2.

Negative affect and openness are both entered into the equation simul-
taneously. Their relationship to the dependent variable, self-esteem, is shown
in the Venn diagram in Figure 5a.2. TwO features of this depiction are impor-
tant to note at this point.

First, this diagram still represents a correlation. If the criterion variable
was shown with just a single predictor, you would immediately recognize a
representation of the Pearson (or any bivariate) corr elation. The shaded
area would show the strength of the correlation, and its magnitude would
be indexed by 7.

The relationship shown in Figure 5a.2 is more compl'ex than that. Three
variables, not two, are involved in the relationship. Specifically, we are look-
ing at the relationship of the criterion (self-esteem) to two p{'edlct(?l's (neg-
ative affect and openness). When we have three or more varxgbles mvol.ved
in the relationship, we can no longer use the Pearson correlation CF)efﬁc1ent
to quantify the magnitude of that relationship—the Pearson » can index the
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degree of relationship only when two variables arf: being considered. The
correlation coefficient we need to call on to quantify the degr.ee of a more
complex relationship is known as the multiple correlation. It is symbolized
as an uppercase italic R o '

A multiple correlation coefficient indexes the assoc'latlon of ane variable
with a set of other variables, and the squared multiple correlation (R?),
sometimes called the coefficient of multiple determination, tells us the
strength of this complex relationship. .

In Figure 5a.2, the shaded area—the overlap of negative affect and
openness with self-esteem—represents the R? for that relationship. This R?
value can be thought of in a way analogous to 7% that is, it can be thought
of in terms of explained or accounted-for variance. In this case, we are
explaining the variance of self-esteem.

The R? value represents one way to evaluate the model. Larger values
mean that the model has accounted for greater amounts of the variance
of the dependent variable. How large an R’ it takes to say that you have
accounted for a “large” percentage of the variance depends on the theoreti-
cal context within which the research has been done as well as prior research
in the topic area.

The second feature important to note in Figure 5a.2 is that negative
affect and openness overlap with each other. In Venn diagram format, an
overlap of the variables indicates a correlation between them. Here, the

two predictors do overlap but not by all that much (they correlate —.17).
The degree to which they correlate affects the beta weights these variables
are assigned in the regression equation, so the correlations of the predic-

tors become a matter of some interest to researchers using a regression
design.

The Partial Correlation and Covariance

With these two other variables in the €quation for the moment, we
are ready to evaluate the contribution of positive affect. The criterion vari-
able or dependent variable is the focus of the multiple regression design.
It is therefore the variance of the dependent variable that we want to
account for or predict, and our goal is to account for as much of it S
possible with our set of independent variables. We face an interesting but
subtle feature of multiple regression in its efforts to maximize the amount
of dependent variable variance that we can account for. In the context of
edictors my ions—
rather than the same portion—of the desgeﬁeo:? \tafr(i);bslzzaizfag::?;ss is
€ regression process.

|
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< Negative Affect

<—— Openness

Unexplained variance

Figure 5a.3 Outlined Area of Unexplained Residual Variance for Self-Esteem
Known as (1 - R?)

With negative affect and openness already in the model, and thus already
accounting for variance the amount of which is indexed by R, positive affect,
as the last variable to enter, must target the variance that remains—the resid-
ual variance—in self-esteem. This is shown in Figure 5a.3, which is the same
diagram that was shown in Figure 5a.2 except that we have added a couple of
features to it. The shaded area in Figure 5a.3 is the variance of the dependent
variable (self-esteem) explained by the two independent variables. It is
indexed by K% The remaining portion of the dependent variable variance is,
by definition, not accounted for by these two predictors. It is shown in the dia-
gram as the blank space in the circle representing self-esteem, and its value
must be 1 — R%. That is, it is the residual variance of self-esteem after negative
affect and openness have performed their predictive (correlational) work.

We have outlined that scallop-like shape showing the unexplained vari-
ance of self-esteem with negative affect and openness in the equation by
using a heavy line to make it easier to se¢ and have labeled it as “unexplained
variance” in Figure 5a.3. In evaluating the contribution of positive affect, the
predictor currently under consideration, it is this residual variance of self-
esteem that positive affect must target. The question becomes how much of
this residual variance can positive affect correlate with on its own.

However strange this sounds, we ar¢ talking about the correlation
between positive affect and the residual variance of .self-esteem when the
effects of negative affect and openness have been Statlsticall}{ removed, con-
trolled, or “partialled out.” Such 2 correlation is called a partial correlation.
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A partial correlation addresses the relationship between two variables when
the effects of other variables have been statistically removed from one of
them. In this sense, the variables already in the model are conceived of as
covariates in that their effects are statistically accounted for prior to evalu-
ating the relationship of positive affect and self-esteem.

Once the regression procedure has determined how much positive
affect can contribute to the set of predictors already in the model (how
much of the residual variance of self-esteem it can explain), the computer
starts the process of computing the weight that positive affect will receive in
the model. We will not get into that computational process here. Instead, we
have presented the situation depicting the results of those computations in
Figure 5a.4. In this figure, we have added the positive affect variable into the
predictor set. The “prediction work” that it does is shown in a lighter screen.
Note that some of the prediction supplied by positive affect is not accom-
plished by any other variable and that “other” of what positive affect predicts
for self-esteem is also predicted by negative affect.

Repeating the Process for the Other Predictors

After the computation of the b and beta weights for positive affect have
been made, it is necessary to evaluate another one of the predictors. Thus,
positive affect and another predictor are entered into the equation, and the
strategy we have just outlined is repeated for the remaining predictor. Each

/ Positive Affect

<———— Negative Affect

<—— Openness

Figure 5a.4 Additional Self-Esteem Variance Accounted for After Entering
Positive Affect
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independent variable i§ put through this same process until the weights for
all have been determined. At the end of this complex process, the final

weights are locked in and the results of the analysis are printed.

We also know the value of R with all the variables in the equation. This

final R* tells us how much variance of the dependent variable is accounted
for by the full regression model. By subtracting that value from 1 (1 - K?), we
can also ascertain how much of the dependent variable’s variance remains
unexplained; this is the residual variance of the dependent variable after the
regression model has accomplished its predictive work. Obviously, adding
the value of the coefficient of multiple determination (8?) to the residual

variance (1 — R% results in a value of 1.00; this subsumes 100% of the
variance of the dependent variable.

The Squared Semipartial Correlation

A Venn diagram suggesting the final solution is shown in Figure 5a.5. We
say “suggesting” because even with as small a set as three independent vari-
ables, it is difficult to draw all the relationships between them in only two
dimensions (we have not captured the correlation between positive affect
and openness). As 2 result, such a pictorial representation is at best an
approximation to the full mathematical solution, which we will present in
the next section of this chapter.

Despite the shortcoming of using the Venn diagram here, we can still
point out an important element of the solution. Note that we have used two
different types of shading in the figure. The total filled-in area, combining
across all fill portions, represents the total amount of self-esteem variance
explained by the regression model, a quantity indexed by R?.

In Figure 5a.5, the darker cross-hatched areas are associated with
explained variance resulting from the overlapping of predict(?rs. Positive
and negative affect, for example, explain a common portion of self-
esteem variance, which is shown by the dark cross-hatched area between
them.

The slanted-line areas are€ components of explained variance unique
s. there is no overlap with the other predictors

lained variance is indexed by another
correlation statistic known as the squared semipartial correlation. It
represents the extent to which variables do independent predictive vs:fork
when combined with the other predictors in the mod.el. Such correlations
are, therefore, strongly tied to the specific r.egressmn modc?l and may
not necessarily generalize if any of these predictors are combined with a
different set of predictors in a subsequent study.

to a single predictor; that i
in those regions. This uniquely €xp
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/ Positive Affect

[ Common explained variance Uniquely explained variance

Figure 5a.5 Depiction of Both Common and Uniquely Explained Variance

We can also evaluate how well the model works by examining the
squared semipartial correlations (Tabachnick & Fidell, 2001b). With the
squared semipartial correlations, you are looking directly at the unique
contribution of each predictor within the context of the model, and clearly,
independent variables with larger squared semipartial correlations are
making a larger unique contribution.

There are some limitations in using this statistic to compare the
contributions of the predictors. The unique contribution of each variable
in multiple regression is very much a function of the correlations of the
variables used in the analysis. It is quite likely, as we stated earlier, that within
the context of a different set of predictors, the unique contributions of these
variables would change, perhaps substantially. Of course, this argument
is true for the beta coefficients as well.

Based on this line of reasoning, one could put forward the argument
that it would therefore be extremely desirable to select predictors in a mul-
tiple regression design that are not at all correlated between themselves but
are highly correlated with the criterion variable. In such a fantasy scenario,
the predictors would account for different portions of the dependent vari-
able’s variance, the squared semipartial correlations would be substantial,
and the overlap of the predictors in Venn diagram format would be minimal.

This argument may have a certain appeal at first glance, but it is not a
viable strategy for both practical and theoretical reasons. On the practical
side, it would be difficult or perhaps even impossible to find predictors in
many research arenas that are related to the criterion variable but at the
same time are not themselves at least moderately correlated. On the theo-
retical side, it is desirable that the correlations between the predictors in a

A
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research study are representative of those relationships in the population.
All else equal, to the extent that variables are related in the study as they are
in the outside world, the research results may be said to have a certain
degree of external validity.

The consequence of moderate or greater correlation between the pre-
dictors is that the unique contribution of each independent variable may be
relatively small in comparison with the total amount of explained variance of
the prediction model, because the predictors in such cases may overlap con-
siderably with each other. Comparing one very small semipartial value with
another even smaller semipartial value is often not a productive use of your
time and runs the risk of yielding distorted or inaccurate conclusions.

Structure Coefficients

In our discussion of the variate, we emphasized that there was a differ-
ence between the predicted value and the actual score that individuals
obtained on the dependent variable. Our focus here is on the predicted
score, which is the value of the variate for the particular values of the inde-
pendent variables substituted in the model. The structure coefficient is
the bivariate correlation between a particular independent variable and the
predicted (not the actual) score (Dunlap & Landis, 1998). Each predictor is
associated with its own structure coefficient.

The numerical value of the structure coefficient is not contained in
the output of SPSS but is easy to compute with a hand calculator using the
following information available in the printout:

rIVxDV

Structure Coefficient =

where 7, ., is the Pearson correlation between the given predictor and the
actual (measured) dependent variable and R is the multiple correlation. The
structure coefficient indexes the correlation between the predictor and the
variate; stronger correlations indicate that the predictor is a stronger reflec-
tion of the construct underlying the variate.
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Summary of the Solution for
the Standard Regression Method Example

The results of the regression procedure for our simplified example are
displayed in Table 5a.3. For each predictor, we have shown its Pt?arson cor-
relation (7) with the dependent variable, its raw (b) and standarqlzed (peta)
regression weighting coefficients, the amount of self-esteem variance it has
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Table 5a.3 Summary of the Example for Multiple Regression

Squared
Semipartial Structure
Variable r b beta Correlation  Coefficients t
Positive affect 55 2.89 40 14 .80 10.61*
Negative affect -.57 -242 —43 .16 -.82 ~11.50*
Openness 22 11 .06 .00 32 1.64
Constant 56.66

(Y intercept)

*p < .01.

uniquely explained (squared semipartial correlation), its structure coef-
ficient, and the ¢ value associated with each regression weight. We will
discuss each in turn. The constant (the Y intercept) is shown in the last

line of the table.

The Regression Equations

Using the raw and standardized regression weights and the Y intercept
shown in Table 5a.3, we have the elements of the two regression equations.

We produce them below.
The raw score equation is as follows:

Self-esteem, ., = 56.66 + (2.89)(pos affect) - (2.42)(neg affect)

+ (.11)(open)

The standardized equation is as follows:

Self-esteemz,., = (.40)(pos affect,) — (.43) (neg affect ) + (.06)(open,)

Variables in the Equation

The predictor variables are shown in the first column of the table.
This represents a complete solution in the sense that all the independent
variables are included in the final equation regardless of how much they
contribute to the prediction model. Such a solution is considered atheoret-
ical because all the variables that were originally assessed are included in

the final solution.

\\
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R? and Adjusted R?

The shaded areas in Figure 5a.5 represent the total amount of variance
accounted for by the prediction model. The computer printout shows the
actual value for R, In the present case, this turned out to be .48 rounded
to two decimal places. Thus, the three predictors in this particular
weighted linear combination were able to explain about 48% of the variance
of self-esteem.

SPSS also prints an adjusted R? value, which essentially tries to take into
account a bit of error inflation in the regular R? value. Because it is 2 human
endeavor, there is always some error of measurement associated with any-
thing we assess. If this error is random, as we assume it to be, then some of
that measurement error will actually be in the direction of enhanced pre-
diction. Multiple regression, however, is unable to distinguish between this
chance enhancement (i.e., blind luck from the standpoint of trying to
achieve the best possible R?) and the real predictive power of the variables.
So it uses everything it can to maximize prediction—it generates the b and
beta weights from both true and error sources combined.

The problem for us is that in another sample the random dictates of
error will operate differently, and if the old weighting coefficients are
applied to the new sample, they will be less effective than they were in the
original sample. This overprediction is more of a problem when we have
relatively small sample sizes and relatively more variables in the analysis.
As sample size reaches more acceptable proportions (20 or more cases
per predictor), the inflation of R* becomes that much less of an issue.
Nonetheless, virtually every statistical program computes an adjusted value
for R% These programs attempt to extract from the computed R* value
some portion of it to which we can ascribe error and then subtract that out.
We recommend that you report the adjusted R?value in addition to the
uncorrected value.

The adjusted R? is a statistical estimate of the shrinkage we would
observe if we were to apply the model to another sample. We can instead
approach the issue from an empirical perspective through the processes of
either cross-validation or double cross-validation. To perform a cross-
validation, we ordinarily divide a large sample in half (into two subsamples)
by randomly selecting the cases to be assigned to each. We then compute
Our regression analysis on one subsample and use those regression weights
to predict the criterion variable of the second “hold-back” sample. The R
difference tells us the degree of predictive loss we have observed. We can
also correlate the predicted scores of the hold-back sample with their actual
Scores; this can be thought of as the cross-validation coefficient.
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Double cross-validation can be done by performing the (':ross-validgtion
process in both directions—that is, performing the regression analysis on
each subsample and applying the results to the other. In a sejnse, you obt'am
two estimates of shrinkage rather than one. If the shrinkage is not excessive,
and there are few guidelines as to how to judge this, you can then perform
an analysis on the combined sample and report the double cross-validation
results to let readers know how generalizable your model is.

In the present example, the adjusted R?value for this analysis is rounded
to .48, giving us virtually the same value as the unadjusted R? (the actual R
was .48257 and the adjusted R? was .47883). That such little adjustment was
made is probably a function of the sample size to number of variables ratio
we used and the fact that we used a very small predictor set.

By virtue of our sample size (N = 420), the R* of .48 obtained here is clearly
statistically significant. However, SPSS tests the efficacy of the model by an
analysis of variance. In this case, we can say that these three independent vari-
ables in combination significantly predicted self-esteem, F(3, 416) =129.32,
p < .05, R* = .48, adjusted R* = .48. This information is part of the printout, as
we will see in Chapter 5B.

We should also consider the magnitude of the R* obtained here. One
would ordinarily think of .48 as reasonably substantial, and you should not
be terribly disappointed with R*s considerably less than this in your own
study. In the early stages of a research project or when studying a variable

that may be complexly determined (e.g., rate of spread of an epidemic,
recovery from a certain disease), very small but statistically significant
R*s may be cause for celebration by a research team.

Pearson Correlations With the Criterion Variable

The second numerical column in Table 5a.3 shows the simple Pearson
correlations between self-esteem and each of the predictors. We have briefly
described the correlations earlier. For present purposes, you can see that
the correlations between self-esteem and positive affect and openness are
positive. This was the case because each of these variables is scored in the
positive direction—higher scores mean that respondents exhibit more pos-
itive affective behaviors and that they are more open to new or interesting
experiences, respectively. Because higher scores on the self-esteem scale
indicate greater positive feelings about oneself, it is not surprising' that these
two predictors are positively correlated with it. On the other hand, negative
affect is negatively correlated with self-esteem. This is also not surprising in
that individuals who exhibit more negative affective behaviors are typically
those who have lower levels of self-esteem.
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p and Beta Coefficients

The b and beta coefficients in Table 5a.3 show us the weights that the
variables have been assigned at the end of the equation-building process.
The b weights are tied to the metrics on which the variables are measured
and are therefore difficult to compare with one another. But with respect to
their own metric, they are quite interpretable. The b weight for positive
affect, for example, is 2.89. We may take it to mean that when the other vari-
ables are controlled for, an increase of 2.89 points on the positive affect
measure is, on average, associated with a 1-point gain in self-esteem.

Table 5a.3 also shows the Y intercept for the linear function. This value
of 56.66 would need to be added to the weighted combination of variables
in the raw score equation to obtain the predicted value of self-esteem for
any given research participant.

The beta weights for the independent variables are also shown in Table
5a.3. Here, all the variables are in z-score form and thus their beta weights,
within limits, can be compared with each other. We can see from Table 5a.3
that positive and negative affect have beta weights of similar magnitudes and
that openness has a very low beta value. Thus, in achieving the goal of pre-
dicting self-esteem to the greatest possible extent (to minimize the sum of
the squared prediction errors), positive and negative affect are given much
more weight than openness.

The Case for Using Beta Coefficients to Evaluate Predictors

Some authors (e.g., Cohen et al., 2003; Pedhazur, 1982, 1997; Pedhazur &
Schmelkin, 1991) have cautiously argued that at least under some circum-
stances, we may be able to compare the beta coefficients with each other.
That is, on the basis of visual examination of the equation, it may be possible
to say that predictors with larger beta weights contribute more to the predic-
tion of the dependent variable than those with smaller weights.

It is possible to quantify the relative contribution of predictors using
beta weights as the basis of the comparison. Although Kachigan (1986) has
proposed examining the ratio of the squared beta weights to make this com-
parison, that procedure may be acceptable only in the rare situation when
those predictors whose beta weights are being compared are uncorrelated
(Pedhazur & Schmelkin, 1991). In the everyday research context, where the
independent variables are almost always significantly correlated, we may
simply compute the ratio of the actual beta weights (Pedhazur, 1982, 1997;
Pedhazur & Schmelkin, 1991), placing the larger beta weight in the numer-
ator of the ratio. This ratio reveals how much more one independent vari-
able contributes to prediction than another within the context of the model.
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This comparison could work as follows. If we wanted to compare the
efficacy of negative affect (the most strongly weighted variable in the model)
with the other (less strongly weighted) predictors, we would ordinarily limit
our comparison to only the statistically significant ones. In this case, we would
compare negative affect only with positive affect. We would therefore com-
pute the ratio of the beta weights (negative affect / positive affect) without
carrying the sign of the beta through the computation. This is shown below:

negative affect

positive affect

-.43
—=1.075
40

Based on this ratio (although we could certainly see this just by looking
at the beta weights themselves), we would say that negative and positive
affect make approximately the same degree of contribution to the predic-
tion of self-esteem in the context of this research study with the present set
of variables.

Concerns With Using the Beta
Coefficients to Evaluate Predictors

We indicated above that even when authors such as Pedhazur (1982,
1997; Pedhazur & Schmelkin, 1991) endorse the use of beta coefficient
ratios to evaluate the relative contribution of the independent variables
within the model, they usually do so with certain caveats. Take Pedhazur
(1997) as a good illustration:

Broadly speaking, such an interpretation [stating that the effect of
one predictor is twice as great as the effect of a second predictor] is
legitimate, but it is not free of problems because the Beta[s] are
affected, among other things, by the variability of the variable with
which they are associated. (p. 110)

Thus, beta weights may not be generalizable across different samples.
Another concern regarding using beta coefficients to evaluate predictors
is that beta weight values are partly a function of the correlations between
the predictors themselves. That is, a certain independent variable may pre-
dict the dependent variable to a great extent in isolation, and one would
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therefore €Xpect to see a relatively high beta coefficient associated with that
predictor. Now place another predictor that is highly correlated with the
first predictor into the analysis and all of a sudden the beta coefficients of
both predictors can plummet. The first predictor’s relationship with the
dependent variable has not changed in this scenario, but the presence of
the second correlated predictor could seriously affect the magnitude of the
beta weight of the first. This “sensitivity” of the beta weights to the correla-
tions between the predictors, reflected in the beta values, places additional
limitations on the generality of the betas and thus their use in evaluating or
comparing predictive effectiveness of the independent variables.

Recommendations for Using Betas

We do not want to leave you completely hanging at this point in our treat-
ment, so we will answer some obvious questions. Should you use the beta
weights to assess the relative strengths of the predictors in your own research?
Yes. Should that be the only index you check out? No. The structure coeffi-
cients and the squared semipartial correlations should be examined as well.

Positive Versus Negative Weights

The positive and negative regression weights of the predictors reflect
the nature of their respective correlations with the dependent variable. This
makes sense when you recall that we are predicting self-esteem. The regres-
sion model tells us that greater levels of self-esteem will be predicted by the
combination of more positive affect and openness and less negative affect.
Thus, we should be adding the contribution of positive affect and openness
but subtracting the contribution of negative affect in predicting self-esteem.

Squared Semipartial Correlations

The fourth column of Table 5a.3 displays the squared semipartial
correlations for each predictor. These correlations are shown in the SPSS
printout as “part correlations” and appear in the printout in their non-
squared form. This statistic indexes the variance accounted for uniquely by
each predictor in the full model. What is interesting here, and this is pretty
typical of multiple regression research, is that the sum of these squared
semipartial correlations is Jess than the R?. That is, .14, .16, and .00 add up
to .30 and not to the R? of .48. .

The reason these squared semipartial correlations do not add to the
value of R? is that the independent variables overlap (are correlated) with
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each other. Here, 30% of the variance is accounted for uniquely by the
predictors, whereas (by subtraction) 18% of the accounted-for variance is
handled by more than one of them. We therefore have some but not a huge

amount of redundancy built into our set of predictors.

Using the squared semipartial correlations as a gauge of the relative
strength of the predictors results in an evaluation similar to the one we
made based on comparing the beta weights. From this perspective, positive
and negative affect are approximately tied in their unique contribution to

the prediction model under the present research circumstances.

The Structure Coefficients

The next-to-last column in Table 5a.3 shows the structure coefficients.
These needed to be hand calculated because SPSS does not provide them.
For each independent variable in the table, we divided the Pearson » repre-
senting the correlation of the independent variable and the dependent
variable (shown in the second numerical column) by the multiple correlation.
To illustrate, the square root of .48 (the R*) is approximately .69. For positive
affect’s structure coefficient. we divided .55 by .69 to obtain approximately .80.

The structure coefficients indicate that positive and negative affect
are reasonably highly correlated with predicted self-esteem and so are very
reasonable instances of (they correlate reasonably highly with) the variate.
In this example, using the structure coefficients as a basis to compare the
contribution of the predictors presents the same picture as those painted by
the beta weights and the squared semipartial correlations. Such consistency,
however, is not always obtained.

Beta coefficients and structure coefficients differ in at least two impor-
tant ways.

1. A beta coefficient associated with its predictor reflects the correla-
tions of that predictor with the other predictors in the analysis. A

structure coefficient does not take into account the degree to which
that predictor correlates with the other predictors.

2. Beta weights can exceed the range of +1 when the predictors are
correlated with each other. Many researchers have a problem inter-
preting beta weights greater than unity. Structure coefficients are
bounded by the range £1 because they are correlation coefficients,
thus making them pretty clearly interpretable.

Our recommendations are consistent with what we offered above
for beta weights. We concur with Thompson and Borrello (1985) that the

\
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structure coefficients are a useful companion index of relative predictor
contribution. Pedhazur (1982) notes that structure coefficients will show
the same pattern of relationships as the preregression correlations of the
predictors and the criterion. Because of this, Pedhazur is not convinced of
the utility of structure coefficients. In our view, by focusing on the correla-
tion between the predictor and the variate, we believe that structure coeffi-

cients may add a nuance to the interpretation of the regression analysis that
we think is worthwhile.

t Tests

SPSS tests the significance of each predictor in the equation using
t tests. The null hypothesis is that a predictor’s weight is effectively equal to
zero when the effects of the other predictors are taken into account. This
means that when the other predictors act as covariates and this predictor is
targeting the residual variance, according to the null hypothesis the predic-
tor is unable to account for a statistically significant portion of it; that is, the
partial correlation between the predictor and the criterion variable is not
significantly different from zero. And it is a rare occurrence when every
single independent variable turns out to be a significant predictor. The
t tests shown in the last column of Table 5a.3 inform us that only positive and
negative affect are statistically significant predictors in the model; even with
our large sample size, openness does not receive a strong enough weight to
reach that touchstone.
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Step Methods of Building the Model

Step methods of building the regression equation that we briefly cover here
are the forward method, the backward method, and the stepwise method.
These methods construct the model one variable at a time rather than all at
once as the standard method does. The primary goal of these step methods
is to build 2 model with only the “important” predictors in it. The methods
differ primarily in how they determine the importance of the predictors.

The Forward Method

In the forward method, rather than placing all the variables in the
equation at once, we add independent variables to the equation one vari-
able or step at a time. At each step, we enter the particular variable that adds
the most predictive power at that time. If we were working with the set of
Variables we used to illustrate the standard regression method, negative
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affect would be entered first. We know this because, with no variables in the
model at the start and building the model one variable at a time, the variable
correlating most strongly with self-esteem would be entered first.

In the forward method, once a variable is entered into the model, it
remains in the model. For the next step, the variable with the highest partial
correlation (the correlation between the residual variance of self-esteem
and each remaining predictor with negative affect as a covariate) is entered
if that partial correlation is statistically significant. In this case, we will
assume that positive affect would be entered.

This process is repeated for each remaining predictor with the variables
in the model all acting as covariates. We would find, with negative and
positive affect in the model, that openness would not be entered; that is, it
would not account for a significant amount of the residual variance. Because
that is the entire set of predictors, the forward procedure would stop at the
end of the second step.

The Backward Method

The backward method works, not by adding significant variables to the
equation but, rather, by removing nonsignificant predictors from it one step
at a time. The very first action performed by the backward method is the
same one used by the standard method,; it enters all the predictors into the
equation regardless of their worth. But whereas the standard method stops
here, the backward method is just getting started.

The model with all the variables in it is now examined, and the signifi-
cant predictors are marked for retention. Nonsignificant predictors are then
evaluated and the most expendable of them—the one whose loss would
least significantly decrease the R*—is removed from the equation. A new
model is built in the absence of that one independent variable and the eval-
uation process is repeated. Once again, the most expendable independent
variable is removed. This removal process and equation-reconstruction
process continues until there are only significant predictors remaining in
the equation. In our example, openness would have been removed at the
first opportunity. It is probable that the method would have stopped at that
point because both remaining predictors would almost certainly have been
significant predictors.

Backward Versus Forward Solutions

Backward regression does not always produce the same model as
forward regression even though it probably would have in our simplified
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example. Here is why: Getting into the equation in the forward method
requires predictors to meet a more stringent criterion than variables being
retained in the equation in the backward method. This creates a situation in
which it is more difficult to get into the equation than to remain in it.
stringency or difficulty is defined statistically by the alpha or probability level
associated with entry and removal.

Predictors earn their way into the equation in the forward method by
significantly predicting variance of the dependent variable. The alpha level
governing this entry decision is usually the traditional .05 level. By most
standards, this is a fairly stringent criterion. When we look for predictors to
remove under the backward method, the alpha level usually drops to .10 as
the default in most programs. This means that a predictor needs to be
significant at only .10 (not at .05) to retain its place in the equation. Thus, an
independent variable is eligible to be removed from the equation at a par-
ticular step in the backward method if its probability level is greater than .10
(e.g., p = .11) but it will be retained in the equation if its probability level is
equal to or less than .10 (e.g., p =.09).

The consequences of using these different criteria for entry and removal
affects only those variables whose probabilities are between the entry and
removal criteria. To see why this is true, first consider variables that are not
within this zone.

» If a variable does not meet the standard of p = .10, it is removed from
the equation. This variable would also by definition not meet the .05
alpha level criterion for entry either, so there is no difference in the
outcome for this predictor under either criterion—it is not going to
wind up in the equation in either the forward or backward methods.

» Ifavariable does meet the .05 criterion, it will always be allowed entry
to the equation and will certainly not be removed by the backward
method; again, there is no difference in outcome for such a predictor
under either method.

Variables with probability levels between these two criteria are in a
more interesting position. Assume that we are well into the backward
process and at this juncture the weakest predictor is one whose proba-
bility is .08. This variable would not have been allowed into the equation
by the forward method if it were considered for entry at this point
because to get in, it would have to meet a .05 alpha level to achieve
Statistical significance.

However, under the backward method, this variable was freely added to
the €quation at the beginning, and the only issue here is whether it is to be
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removed. When we examine its current probability level and find it to be .08,
we determine that this predictor is “significant” at the .10 alpha level. 1t
therefore remains in the equation. In this case, the model built under the
backward model would incorporate this predictor but the model built under
the forward method would have excluded it.

The Stepwise Method

The stepwise method of building the multiple regression equation is
essentially a composite of the forward and backward methods. The step-
wise and forward methods act in the same fashion until we reach the point
where a third predictor is added to the equation. The stepwise method
therefore begins with an empty equation and builds it one step at a time.
Once a third independent variable is in the equation, the stepwise method
invokes the right to remove an independent variable if that predictor is not
earning its keep.

Predictors are allowed to be included in the equation if they signifi-
cantly (p = .05) add to the predicted variance of the dependent variable.
With correlated independent variabies, as we have seen, the predictors in
the equation admitted under a probability level of .05 can still overlap with
each other. This is shown in Figure 5a.6.

In Figure Sa.0, predictor J was entered first, K was entered second,
and L was entered third. We are poised at the moment when L joined the
equation. Note that between predictors J and I, there is very little work
that can be attributed uniquely to K. At this moment, the squared semipar-
tial correlation associated with K (showing its unique contribution to the
prediction model) is quite small. .

In the forward method, the fact that K’s unique contribution has been
substantially reduced by L’s presence would leave the procedure unfazed
because it does not have a removal option available to it. But this is the
stepwise method, and it is prepared to remove a predictor if necessary.
When the amount of residual variance that K now accounts for is examined,
let’s presume that it is not significant at the removal criterion of .10 (say its
p value is .126). K is thus judged to no longer be contributing effectively to
the prediction model, and it is removed from the equation. Of course,
as more predictors are entered into the equation, the gestalt could change
dramatically, and K might very well be called on to perform predictive duties
later in the analysis.

We have just described the reason that the entry criterion is more severe
than the removal criterion. It can be summarized as follows. If getting into
the equation was easier than getting out, then variables removed at one step
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Figure 5a.6 Unique Contribution of Variable K Is Reduced by Variable J and
Variable L

might get entered again at the next step because they might still be able to
achieve that less stringent level of probability needed for entrv. There is then
a chance that the stepwise procedure could be caught in an endless loop
where the same variable kept being removed on one step and entered again
on the next. By making entry more exacting than removal, this conundrum
is avoided.
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Evaluation of the Statistical Methods

Benefits of the Statistical Methods

The primary advantage of using the standard model is that it presents a
complete picture of the regression outcome to researchers. If the variables
were important enough to earn a place in the design of the study, then they
are given room in the model even if they are not adding very much to the
R?. That is, on the assumption that the variables were selected on the basis
of their relevance to theory or at least on the basis of hyPOt?‘eSES based on
a comprehensive review of the existing literature on the topic, lthe star}dz'lrd
model provides an opportunity to S€€ how they fare as a set in predicting
the firiie;cgli?; gz??srleusing the stepwise method is tl'lat we e_“d up with a
model that is “lean and mean.” Each independent variable m.xt’ has earned
the right to remain in the equation through a hard, competitive struggle.
The argument for using the forward and backward methods is similar to one
used by those advocating the stepwise method. The forward and ba(fkward
methods give what their users consider t?’le essence of .the solution by
excluding variables that add nothing of merit to the prediction.
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Criticisms of the Statistical Methods

One criticism of all the statistical methods is that independent variables
with good predictive qualities on their own may be awarded very low weight
in the model. This can happen because their contribution is being evaluated
when the contributions of the other predictors have been partialled out.
Such “masking” of potentially good predictors can lead researchers to draw
incomplete or improper conclusions from the results of the analysis. One
way around this problem is for the researcher to exercise some judgment
in which variables are entered at certain points in the analysis, and this is
discussed in the section titled “Researcher-Controlled Methods of Building
the Model.” This issue is also related to multicollinearity, a topic that we
discuss later in the chapter.

The step methods have become increasingly less popular over the years
as their weaknesses have become better understood and as researcher-
controlled methods have gained in popularity. Tabachnick and Fidell
(2001b), for example, have expressed serious concerns about this group of
methods, especially the stepwise method, and they are not alone. Here is a
brief summary of the interrelated drawbacks of using this set of methods.

» These methods, particularly the stepwise method, may need better
than the 20 to 1 ratio of cases to independent variables because there
are serious threats to external validity (Tabachnick & Fidell, 2001b).
That is, the model that is built may overfit the sample because a
different sample may yield somewhat different relationships (cor-
relations) between the variables in the analysis, and that could
completely change which variables were entered into the equation.

P The statistical criteria for building the equation identify variables for

inclusion if they are better predictors than the other candidates. But

“better” could mean “just a tiny bit better” or “a whole lot better.”

One variable may win the nomination to enter the equation, but the

magnitude by which the variable achieved that victory may be too

small to matter to researchers.

If the victory of getting into the €quation by one variable is within the

margin of error in the measurement of another variable, identifying

the one variable as a predictor at the expense of the other may
obscure viable alternative prediction models.

Variables that can substantially predict the dependent variable may

be excluded from the equations built by the step methods because

SQme other variable or combination of variables does the job a little

bit better. It is conceivable that severa] independent variables taken

together may predict the criterion variable fairly well, but step proce- }
dures consider only one variable at a time.
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Balancing the Value of All the
statistical Methods of Building the Model

The standard method works well if you have selected the independent
variables based on theory or empirical research findings and wish to exam-
ine the combined predictive power of that set of predictors. But because
they are functioning in combination, the weights of the predictors in the
model are a function of their interrelationships; thus, you are not evaluating
them in isolation or in subsets. The standard method will allow you to test
hypotheses about the model as a whole; if that is your goal, then that’s what
you should use.

The stepwise methods are intended to identify which variables should
be in the model on purely statistical grounds. Such an atheoretical approach
is discouraged by many researchers. On the other hand, there may be
certain applications where all you want is to obtain the largest R* with
the fewest number of predictors, recognizing that the resulting model may
have less external validity than desired. Under these conditions, some
researchers may consider using a step method.

Before one decides that one of the statistical procedures is to be used,
it is very important to consider a researcher-controlled method of per-
forming the regression analysis. Although it does require more thoughtful
decision making rather than just entering the variables and selecting a
statistical method, the flexibility it affords and the control it offers more
than compensate for the effort it takes to run such analyses.
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Researcher-Controlled Methods of Building the Model

Researcher-controlled regression methods are really variations on a theme.
In all cases, it is the researchers who specify the order of entry of predictors
into the equation. The main issue that researchers face is to determine how
many variables are instructed to enter the equation at any one time. Several
labels are applied to variations of researcher control: Sequential analysis,
covariance analysis, hierarchical analysis, and block-entry analysis are
among the most common.

What makes this approach different from the statistical methods
described above is that instead of the computer program using statistical
Criteria to make such entry decisions, the researchers determine which
Variables they would like to propose as covariates. Selection of covariates
Should have a solid rational basis in that the decision should be based on
4 particular theory, or covariate selection should rest on a solid empirical

asis in which the research literature has shown the need to take into
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account the relationship(s) between the criterion variable and one or more

of the predictors.

For example, suppose we are interested in predicting per formance on
the nursing multiple-choice licensing examination. Specifically, suppose that
we want to determine the extent to which the time spent in various activi-
ties during their internships combines together to predict candidates’ exam
scores. Further suppose that we believe there is enough variation in the
reading skill of licensing candidates to want to statistically control for the
effects of reading skill on license exam performance in evaluating those
internship experiences.

If we have a measure of reading skill in addition to the time-spent survey
results for each individual, we will conduct the regression analysis so that the

reading variable is the first to enter the equation and thus we will use this
variable as a covariate. That forces the analysis to assign whatever variance in
test scores that it can to reading skill. We then enter the internship variables
simultaneously to account for whatever variance remains after reading skill
does its predictive (covariance) work. Causal hypotheses and mediating vari-
ables, which this example is on the borderline of addressing, can be directly
examined through the technique of path analysis, described in Chapter 14A.

Other possibilities for order of entry exist because we have now taken
control of the process. We can, for example, enter the predictors of our
choice into the equation one at a time. Once again, researchers should
determine the order of entry on the basis of some theory or at least on some
empirical basis, but as long as not too many orders are chosen, it may be
possible to test some interesting hypotheses. The main advantage of enter-
ing one variable at a time is to give precedence to predictors entered earlier
over predictors entered later. As you can imagine, doing such a sequential
analysis is a delicate matter. Several independent variables may actually
account for the same component of the dependent variable’s variance, but
only the earlier entered ones will actually get the credit for doing so. This
sort of hierarchical analysis works well with more developed theories.

Block-entry analysis, entering subsets of variables in a sequential man-
ner, is a variant of this general researcher-controjleqd methodology in that
one enters a set of variables rather than a single variable at a particular stage
of the analysis. For example, if we have variables K L, M, N, O, P Q, and R as
predictors of some criterion variable, we might wish to enter variables L, B
and R together on a single step in the analysis, These variables are therefore
entered simultaneously (as described under the standard regression model)
where the effects of the other variables (and any variables already in the
equation) have been partialled out before the contribution of that variable

is computed. One can also enter blocks of variabjes and single variables at
various stages throughout the entire process.
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Block-entry analysis can serve gt least two research functions. First, as
mentioned earlier in a criticism of the step procedures, several variables in
combination may predict better than any one of them taken in isolation.
Entering variables as a set (block) allows researchers an opportunity to
explore that possibility. Second, some variables in a study may either natu'ralh'
relate to each other or may all pertain to a general area c;f the' content domaiﬁ
and so may lend themselves to be entered as a block. For example, in pre-
dicting the strength of certain Symptom patterns, one may want to enter
physical or medical variables before the more purely psychological variables.

In addition to exploring the theoretical consequences of varying the
order of entry of the predictors and in addition to determining the result of
using certain variables as covariates, several other issues can be broached by
using a sequential form of regression analyses. Here are two examples:

1. Avery “expensive” variable achieved substantial weight in the model.
To collect data on this predictor might take a great deal of time, trou-
ble, funding, or some combination of these. It may be worthwhile to
ask if any variable on the sidelines could do almost as good a job but
work for cheaper research wages.

2. A set of variables received negligible weights in the model, but these
are easy to measure (e.g., they may be subscales of a single inven-
tory). Similar measures might have been weighted substantially but
could be more difficult to work with. It may make sense to investigate
the R? consequences of replacing the latter with the former.
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Outliers

As discussed in Chapter 3A and 3B, outliers are extreme scores on either the
criterion or the predictor variables. They are typically thought of as being
anomalous values, often three or more standard deviation units from their
respective means, that suggest possible problems with the measurement
instrument, the way the responses were recorded or transcribed, or the par-
ticipants’ membership in the population that was presumably sampled.
The presence of outliers can adversely affect (distort) the results of the
analysis. This distortion takes several different forms (Darlington, 1990). As
one example, consider the use of the least squares rgle. Because this line-
fitting procedure calls for minimizing the squared distance between each
data point and the regression line, data points that are extremely far
removed from the mainstream have a rather disproportionate influence in
determining where the regression line is best placed. Thz.lt is, .because the
Square of a large distance is extremely large, the regression line is drawn
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closer to the outlier to keep that squared distance as small as possible. This
is done, of course, at a sacrifice—the regression line no longer coincides
with the best-fitting location for all the other data points (excluding the
outlier). For this reason, most statisticians suggest that outliers should be
deleted prior to data analysis.

Researchers should also consider the possibility that the participants
whose scores are defined as outliers might actually have something in
common. For example, if most of the outliers represent older participants
in a sample that contained a good mix of ages, then age may suddenly
become an important variable to study.

Collinearity and Multicollinearity

Collinearity is a condition that exists when two predictors correlate very
strongly; multicollinearity is a condition that exists when more than two
predictors correlate very strongly. Note that we are talking about the rela-
tionships between the predictor variables only and not about correlations
between each of the predictors and the dependent variable.

Regardless of whether we are talking about two predictors or a set of
three or more predictors, multicollinearity can distort the interpretation of
multiple regression results. For example, if two variables are highly corre-
lated, then they are largely confounded with one another; that is, they are
essentially measuring the same characteristic, and it would be impossible to
say which of the two was the more relevant. Statistically, because the standard
regression procedure controls for all the other predictors when it is evaluat-
ing a given independent variable, it is likely that neither predictor variable
would receive any substantial weight in the model. This is true because at
the time the procedure evaluates one of these two predictors, the other is
(momentarily) already in the equation accounting for almost all the variance
that would be explained by the first. The irony is that each on its own might
very well be a good predictor of the criterion variable. With both variables in
the model, the R value will be appropriately high; if the goal of the research
is to maximize K?, then multicollinearity might not be an immediate problem.

When the research goal is to understand the interplay of the predictors
and not simply to maximize R?, multicollinearity can cause several problems
in the analysis. One problem caused by the presence of multicollinearity is
that the values of the regression coefficients of the highly correlated inde-
pendent variables are distorted. Often, they are quite low and may even fail
to achieve statistical significance. A second problem is that the standard
errors of the regression weights of those multicollinear predictors can be
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inflated, thereby enlarging their confidence intervals, sometimes to the
point where they contain the zero value. If that is the case, you could not
reliably determine if increases in the predictor are associated with increases
or decreases in the criterion variable. A third problem is that if multi-
collinearity is sufficiently great, certain internal mathematical operations
(e.g., matrix inversion) are disrupted and the statistical program comes to 2
screeching halt.

Identifying collinearity or multicollinearity requires researchers to
examine the data in certain ways. A high correlation is easy to spot when
considering only two variables. Just examine the Pearson correlations
between the variables in the analysis as a prelude to multiple regression.
Two variables that are very strongly related should raise a “red flag.” As a
general rule of thumb, we recommend that two variables correlated in the
middle .7s or higher should probably not be used together in a regression
or any other multivariate analysis. Allison (1999b) suggests that you “almost
certainly have a problem if the correlation is above .8, but there may be
difficulties that appear well before that value” (p. 64).

One common cause of multicollinearity is researchers using subscales of
an inventory as well as the full inventory score as predictors. Depending on
how the subscales have been computed, it is possible for them in combina-
tion to correlate almost perfectly with the full inventory score. You should
use either the subscales or the full inventory score, but not all of them in the
analysis. Another common cause of multicollinearity is including in the
analysis variables that assess the same construct. You should either drop all
but one of them from the analysis or consider the possibility of combining
them in some fashion if it makes sense. For example, you might combine
height and weight to form a measure of body mass. As another example, you
might average three highly correlated survey items; exploratory factor analy-
sis, discussed in Chapter 12A, can be used to help determine which variables
you might productively average together without losing too much informa-
tion. A less common cause of an analysis failing because of multicollinearity
is placing into the analysis twO Measures that are mathematical transforma-
tions of each other (e.g., number of correct and incorrect responses; time
and speed of response); researchers should use only one of these measures.

Multicollinearity is much more difficult to detect when it is some
(linear) combination of variables that produces a high multiple correlation
in some subset of the predictor variables. We would worry if that correla-
tion reached the mid .8s but Allison (1999b, p. 141) gets concerned if those
multiple correlations reached into the high .7s (R* of about .60). Many
Statistical programs will allow you to compute multiple correlations for dif-
ferent combinations of variables so that you can examine them. Thus, you
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can scan these correlations for such high values and take the necessary steps
to attempt to fix the problem.

Most regression programs have what is called a tolemncle p?lrameter - that
tries to protect the procedure from multicollinearity by rejecting Pf’?dlCEOF
variables that are too highly correlated with other independent variables.
Conceptually, tolerance is the amount of a predictor’s variance not accounted
for by the other predictors (1 — R? between predictors). Lower tolerance
values indicate that there are stronger relationships (increasing the chances of
obtaining multicollinearity) between the predictor variables. Allison (1999b)
cautions that tolerances in the range of .40 are worthy of concern; tolerance
values in the range of .1 are problematic (Myers, 1990; Stevens, 2002).

A related statistic is the variance inflation factor (VIF), which is
computed as 1 divided by tolerance. A VIF value of 2.50 is associated with a
tolerance of .40 and is considered problematic by Allison (1999b); a VIF
value of 10 is associated with a tolerance of .1 and is considered problematic
by Myers (1990) and Stevens (2002).



