
1
A History of Interaction

It is a truism that computers are becoming faster and more powerful all

the time. They play an ever larger role in our lives, giving us access to
more and more information, being incorporated into more and more of
our devices, and creating whole new forms of interaction and activity
that we would never otherwise have imagined. From desktop computers

to laptops to personal digital assistants, not to mention bank teller

machines, microwave ovens, cellular telephones, and ticket machines, we

encounter computers in all aspects of everyday life. The ever-expandi ng
province of computation is a commonplace, the topic of a million coffee
shop conversations, television reports, and newspaper headlines. We talk

about how fast it is changing, but we talk much less about the ways in
which it is not. Many things about computers are not changing at all.
Our basic ideas about what a computer is, what it does, and how it does
it, for instance, have hardly changed for decades. Nor have the difficul

ties we encounter actually using computers.
Our experience using computers reflects a trade-off that was made

fifty years ago or more. When computers were first being developed
commercially, they were extremely expensive devices. Computer time

was much more expensive than your time or mine. In that context, effi

ciency dictated that we minimize the amount of computer time any job

or activity needed, even if that meant burdening the people who wanted
to submit the job. If a rigid, formalized input language was easier for the
system to process, for example, then the cost in people's time to format

their data in that language was more than offset by the savings in pro
cessing time that would result. Because most uses of computers were

2 Chapter 1

military and commercial rather than personal, it was hard to disagree

with this sort of economic argument. It gave rise to a model that favors
performance over convenience, and places a premium on the computer's

time rather than people's time. This model is still with us today.
However, in light of those commonly observed transformations in

computer power, we are now in a position to reconsider the trade-off.

Arguably, we must. Computers are now so much faster and more power
ful, giving us access to so much more information that we are simply no

longer able to manage and assimilate it. At the same time, those power

ful computers spend 95 percent of their time doing absolutely nothing.
Modern personal computers perform very few tasks that use their full

capacity for longer than a second or two. Outside these brief bursts of
activity, most of the time they do nothing at all, generally while we try to

figure out what to make of what just happened or what we want to do
next:

At the same time, we increasingly see computers incorporated into
devices other than the traditional PC sitting on the desk. Computation

is part of your cellular telephone, your microwave oven, your car, and a

host Qf other technologies. The rise of so-called embedded computing

reflects the fact that computation can be usefully harnessed for more
than just traditional desktop computing. It can also help us as we get up

and move about in the world, which we generally do more of than sit
ting at desks (or would, if the computers didn't shackle us to them).
However, this new form of computation exacerbates the effects of the
trade-off between the work that the user and the system do. As I sit at

my desktop computer, it occupies the whole of my attention; but that
would be a terrible idea in a computer I'm using while driving, or

crossing the street, or trying to enjoy a conversation with friends.
These two trends-the massive increase in computational power and

the expanding context in which we put that power to use-both suggest
that we need new ways of interacting with computers, ways that are bet
ter tuned to our needs and abilities. Over the last few years, research into

Human-Computer Interaction (HCI) has begun to explore ways to con

trol and interact with a new breed of computer systems. Prototype sys
tems have been developed; new forms of interaction explored; new
research groups established; new designs developed and tested.

A History of Interaction 3

This book is a contribution to the emerging literature on this new
approach to interacting with computers, one that I call "Embodied

Interaction." Embodied Interaction is interaction with computer systems
that occupy our world, a world of physical and social reality, and that
exploit this fact in how they interact with us.

There are two ways in which the material I want to present in this

book differs from other explorations in He!. The first difference con
cerns the set of entities that will appear here. In particular, although
computer interfaces are the general topic, interfaces themselves will not

appear too often. Here, I am more concerned with interaction than I am
with interfaces, and more concerned with computation than I am with

computers. When I say that I am more concerned with interaction than
with interfaces, I mean that I will be dealing with the ways in which
interactive systems are manifest in our environment and are incorpo

rated into our everyday activities, rather than with the specific design of
one user interface or another. Similarly, when I say that I am more con

cerned with computation than with computers, I mean that I want to
address the idea of computation per se-of active representations embod

ied in hardware and software systems-rather than the specific capabili
ties of systems available at the start of the new millennium. So, gigabytes
and megahertz will not be at issue, but representational power will be.

The second difference is in the way that those topics will be addressed.

In particular, as you might guess on the basis of my concern with interac
tion and computation, I want to address a set of topics that are more

foundational than technical. This is not a source book of design solu

tions, or a how-to manual for interface developers-although these prac
tical matters will certainly arise, and I hope that designers will find
something useful here. In fact, the very reason for exploring foundations

is to support the design and evaluation of new systems, tools, and inter
action modalities. The goal of this foundational exploration is to pro

"ide resources to designers and system developers, by giving them tools
they can use to understand and analyze their designs.

Traditionally, the central component of any account of computation

has been algorithms or procedures-step-by-step models that specify the

sequential behavior of a computer system. In turn, because they are
based on an analogy between mental phenomena and computation,

4 Chapter 1

cognitive science and AI have also predominantly espoused a step-by
step model of procedural execution. In the last few years, though, this
procedural approach has been challenged by a new conceptualization of

computational phenomena that places the emphasis not on procedures
but on interaction (Wegner 1997). Interactional approaches conceptual

ize computation as the interplay between different components, rather
than the fixed and prespecified paths that a single, monolithic computa
tional engine might follow. These models of computation have more in
common with ecosystems than with the vast mechanisms we used to

imagine. They emphasize diversity and specialization rather than unity
and generality. Perhaps there is, in this, something of the spirit of the
times; perhaps, too, the rise of new computational paradigms such as

parallel systems, object-oriented programming, and Internet-style soft
ware design is implicated in this change. The change, though, has occurred
across a wide range of areas of computational investigation. It has
affected how we think about computation from a mathematical perspec

tive, leading to new theoretical accounts of systems such as Hoare's CSP
(Hoare 1985) or Milner's work on CCS and the Pi Calculus (Milner

1995,2000); it has affected how we think about computational models

of mind, as reflected by Minsky's "Society of Mind" (Minsky 1988),

Agre's critique of computational reasoning (Agre 1997), or Brooks's
approach to robotics (Brooks 1999); and it has led to new accounts of
the practice of programming (Stein 1998).

You might think that studies of how people use computers must

always have been built around a model of the world that gives pride of
place to interaction, but in fact HCI has traditionally been built on a

procedural foundation. HCI, from its very beginning, took on the trap

pings of the traditional computational model and set out its account of
the world in terms of plans, procedures, tasks, and goals. In contrast, the
model of HCI I set out here is one that places interaction at the center of

the picture. By this I mean that it considers interaction not only as what

is being done, but also as how it is being done. Interaction is the means
by which work is accomplished, dynamically and in context.

Some background will help to clarify what this means and to set the
stage for the argument this book will develop. The context is the histori

cal evolution of the idea of interaction and the technology of HCL

A History of Interaction 5

A Historical Model of Interaction

Just as computers have evolved considerably in their short history, so
have styles of human-computer interaction. There are many ways to
conceptualize the history of interaction with computer systems. The

purely technological view, for example, would recount the history of the
input and output devices that have characterized different stages of inter
face development, and would describe their computational demands. A

political view would consider the movement of ideas from one labora
tory to another as researchers respond to the demands and interests of

funding agencies and so forth, while an economic view would consider
how user interface development has influenced, and been influenced by,

the growth of the high-tech industry and PC economy. Grudin (1990)
describes the history of interaction as the story of the "computer reach

ing out," in which interaction moves from being directly focused on the

physical machine to incorporating more and more of the user's world
and the social setting in which the user is embedded. Although Grudin's

analysis is now a decade old, it is interesting to see the ways in which
later trends in HCI design-including some that are of particular interest
in this book-have followed quite closely the directions that he laid out.

I want to explore a slightly different view here, in order to set some

context for the discussion that will follow. In particular, I want to

present the stages in the historical development of user interfaces in
terms of the different sets of human skills they are designed to exploit.

This is not a different history of HCI, of course, but merely a different
telling of the history, with the emphasis in a slightly different place. As is
perhaps appropriate for a discipline that concerns itself as much with
human abilities as with technological opportunities, it draws attention to

the human experience of computation. The are four separate phases of
development to discuss. I characterize them as electrical, symbolic,
textual, and graphical forms of interaction.

Electrical

Today, when we talk of "computers," we invariably mean digital

devices. The computer as we know it is inescapably bound up with the
ones and zeros of digital logic. It was not always this way. Originally, the

6 Chapter 1

word "computers" referred to human beings-people whose daily work
was the figuring of calculations, such as for producing engineering
tables. However, even when "computers" became electronic devices,
they were not necessarily digital ones. Before digital computers came
analog computers. Analog computers did not rely on the discrete logic
that characterizes modern computing devices; instead, they relied on the

use of standard components such as resistors and capacitors to create
electronic models of continuous natural phenomena (such as wave
motion, the interaction of electronic forces, or the movements of objects

under gravity). Essentially, the analog computer was the apparatus for
laboratory simulations that took place not in the physical world, but in
an analogous electronic reality. To set up a new experiment, the machine

would have to be reconfigured, possibly quite radically, through the
incorporation of new circuits. This task-specificity was shared by the

early digital computers, too. Even after we had made the move from
analog electronics to digital logic, the earliest digital computers were

special purpose devices, designed as automatic calculators to solve spe
cific problems-often, inevitably, in military domains (such as calculat

ing missile trajectories or exploring patterns in coded messages).

Although there is some debate about precisely who was the first to make

the move-perhaps Eckert and Mauchley with EDVAC in Philadelphia, or
Williams and Kilburn building the Small-Scale Experimental Machine,
known as "Baby," at Manchester, or one of the other contenders-what

is generally accepted is that the critical development in digital computing

was that of the stored program computer. In contrast to earlier designs, a

stored program computer is a machine whose operation is not directly
encoded in its circuits, but rather is determined by a sequence of instruc

tions held in its memory-instructions that can, clearly, be changed or
replaced much more easily than the electrical circuits could be reconfig
ured. Nonetheless, the first age of computing, around the time that this

transition took place, relied heavily on an understanding of the electron

ics that made up any given machine. Every machine was a prototype;
every program, uniquely designed for a specific computer (and perhaps

even a specific version or configuration of that computer). What we cur
rently refer to as "instruction sets"-the set of low-level operations that
processors such as the Pentium or PowerPC can understand-were, at

A History of Interaction 7

that stage in the history of computation, intimately tied to the individual

details of the circuitry of any particular computer. So, even as we made

the transition from hardware configuration to digitally stored programs,

the dominant paradigm for interaction with the computer was elec

tronic. Entering a new program, even if that program was to be stored

digitally in the memory of the computer, could still bear a remarkable

resemblance to electronic reconfiguration, involving plugboards and

patch cables. Indeed, such programming activity was often accompanied

with the development of new circuits that could extend the operation of

the system. The boundary that we now take for granted between hard

ware and software was much fuzzier then; interacting with the system,

and developing new programs, relied on a thorough understanding of

the electronic design.

Symbolic

The next stage of development is characterized by the emergence of sym

bolic forms of interaction. The movement from one stage to another is

not a sudden and clear transition; instead, it is a general trend that

emerges in a number of different ways. We can see it in the basic models

offered for programming systems, which was the primary form of inter

action between human and computer at a time when "users" as we now

know them did not yet exist.

As the transition from electrical to symbolic approaches gradually took

hold, programming computers came to require less understanding of the

detailed construction of each particular machine, and relied increasingly

on regularized and well-understood capacities that would be available

across a wide range of machines-register files, index registers, accumu

lators, and so forth. At the same time, the primary form of programs

moved from a numeric form (that is, the "machine language" of raw

instructions that a machine would understand) to other symbolic forms

that were more readily understandable to human beings. So-called

assembly languages are essentially symbolic forms of machine language,

using mnemonic codes that stand in one-to-one correspondence with the

machine level instructions, so that. a sequence of instruction codes such

as "a9 62 82 2c" is rendered as a symbolic expression such as "movl

(r1+), r2."1

8 Chapter 1

Since assembly languages are simply a different rendering of
machine languages-symbolic forms that describe sets of specific

instructions-they are just as tied as machine languages to particular
systems, although, by this stage, computer systems were being pro
duced industrially rather than developed as one-off prototypes in lab
oratories. But they are in no way portable between machines of

different sorts, even today-assembly programs for an Intel processor
yield machine instructions that will run only on Intel processors, and

not on other processors made by Motorola. A further progression
along the symbolic path, though, came with the development of the
early programming languages such as LISP and FORTRAN. Essentially,
these lay down two sets of rules. The first set describes what struc

tural properties a set of instructions will have to be valid programs
what rules must be followed when creating something that is a
FORTRAN program rather than simply gibberish. The second describe

how programs can be turned into a set of (machine language)
instructions for the computer to execute. The important point is that,

whereas programs would previously be specified with relation to a
specific machine language (perhaps encoded as assembly instructions,
but still tied to a particular sort of computer), the programmer's
activity was now lifted to a more abstract level that was simulta

neously a more natural form of expression and independent of the
precise details of any specific computer, its implementation and

configuration.

The introduction of programming systems such as assemblers and
programming languages moved computer interaction, then, from an
electronic level to a symbolic one. It introduced a set of symbolic repre

sentations of computer system operation as the primary modality by
which interaction was conducted. Interestingly, this was also reflected in
the physical interaction with systems. Punched cards, for example, can

be regarded as a primitive form of symbolic interaction, especially
because punched card systems quickly came to incorporate both data

cards (that is, cards that carried information for programs to process)
and control cards (instructing the system to begin and end jobs, etc.) The
control cards, then, provide a symbolic language for controlling the
behavior of the system.

A History of Interaction 9

The reason I want to cast the history of interactive computing in terms
of these different sorts of interaction modalities is that it draws our

attention to the fact that they exploit quite different sets of skills. We are

all highly skilled at various forms of symbolic interaction; language and
communication, for us, are largely symbolic in nature, whether these
symbols take the forms of icons, traffic signs, flags, maps, or marks on

paper. Symbolic interaction is a much more natural and intuitive form of
interaction for us than the electronic form that had previously been nec

essary; and it allows us to bring to bear a much more powerful set of
intuitions and abilities to the interactive task. So, finding errors in

assembly language programs is much less error-prone than trying to do
the same in machine language; and debugging programs written in

so-called high level languages is easier still (although, as any program
mer will tell you, it is still the most time-consuming and intricate part of
the process of developing software). We are generally able to exploit a

greater range of skills-visual, cognitive, and so on-as we move from
electrical to symbolic forms of interaction.

Textual

The best-developed form of symbolic interaction with which we are
familiar is, of course, written language and textual interaction. So it is

only natural that symbolic interaction with computers should gradually
extend into the textual domain.

Of course, most of the examples I provided for symbolic interaction

were textual in nature, one way or another. For my purposes, a distinc
tion can be made between symbolic and textual interaction by looking at
the actual interaction with the computer. So, although programs written

in assembly language are clearly textual, the form in which they arrive at

the computer might not be textual at all, but might be encoded on
punched cards or other symbolic media. However, the modes of interac

tion with technology are continually shifting as technology develops and
new opportunities present themselves, and before long the primary form
of direct interaction with computers was, indeed, textual interaction, at
teletype machines and video terminals.

When this transition took place, textual interaction was no longer sim
ply a means to describe computer operations, but became the primary

10 Chapter 1

form of interaction. Arguably, this is the origin of "interactive" computing,

because textual interfaces also meant the appearance of the "interactive
loop," in which interaction became an endless back-and-forth of instruc

tion and response between user and system. Even in these days of graph
ical and virtual reality interfaces, this model is still often the only recourse
for some operations.

One reason that textual interaction remains so powerful is that it
draws not only on the use of textual characters but on how those charac
ters can be combined into words and sets of words. In other words,

along with textual interaction came a "grammar" of interaction, one that
Droke input text into commands, parameters, arguments, and options.
So, just as the move from electrical to symbolic interaction meant that

interface designers could draw upon a new set of human skills and abili
ties, so too did textual interaction. Textual interaction can draw on our

linguistic skills, not by letting us simply "talk" to computers (at least,

outside of science fiction films), but rather by drawing on our abilities to
create meaningful sentences by combining elements each of which con
tributes to the sense of the whole.

The compositional character of textual interaction has proven hard to

replace as interfaces have developed. The value, as we will see, of later

interaction modalities such as graphical user interfaces is that they make
the abstract entities of computation into "real," individuable objects
supporting direct interaction. However, because our programs are still
constructed in terms of abstract entities, textual interaction still proves

its value by giving us the ability to create instructions that operate in
terms of generalities-loops, conditions, patterns, and more.

The other significant feature of the textual interface paradigm is that it

brought the idea of "interaction" to the fore. Textual interaction drew
upon language much more explicitly than before, and at the same time it
was accompanied by a transition to a new model of computing, in which

a user would actually sit in front of a computer terminal, entering com

mands and reading responses. With this combination of language use
and direct interaction, it was natural to look on the result as a "conver

sation" or "dialogue." These days, this idea of dialogue is central to our
notion of "interaction" with the computer, replacing configuration, pro
gramming, or the other ideas that had largely characterized the interplay

A History of Interaction 11

between users and systems in the past. So, although the notion of "inter
action" with computers had important predecessors before this period
such as Ivan Sutherland's hugely influential work on Sketchpad (Sutherland

1963)-it was arguably from the paradigm of text-based dialogue that

people drew the idea of "interacting with the machine." And interacting
was something that we already knew how to do.

Graphical
Probably the most significant transition, in terms of the development of the
user interface models that are familiar to us today, was the transition from

textual to graprical interaction. Graphical interaction developed from the

work of many people, including Sketchpad on the TX-2 (Sutherland 1963),
and the work of Alan Kay and his colleagues at PARe, based in turn on the

developmental psychology of Piaget, Bruner, and others (Kay 1993).
Just as the move from symbolic to textual interaction did more than

simply replace one symbolic language with another, the move from tex

tual to graphical interaction did not simply replace words with icons,
but instead opened up whole new dimensions for interaction-quite lit

erally, in fact, by turning interaction into something that happened in a
two-dimensional space rather than a one-dimensional stream of charac
ters. Traditional textual interaction took place at teletype machines or

serial terminals, where information appeared at the bottom of the screen

and scrolled up to disappear off the top. The user's input and the sys
tem's output together formed a single stream of information, arranged

linearly, character by character. In contrast, graphical interaction is char
acterized by its use of space; information is spread out over a larger
screen area, so that the locus of action and attention can move around

the screen from place to place or can even be in multiple places simulta

neously (e.g., in different windows). The task of managing information
becomes one of managing space.

Moving from one-dimensional to two-dimen~nal interaction made itpossible, again, to exploit further areas of huma~bility as part of the
interactive experience. These included:

Peripheral Attention Distributing information around a two-dimensional
space allows us to arrange it so that it can be selectively attended to.

/

12 Chapter 1

For example, many applications divide the screen (or window) into two

areas-a large area taking up most of the space in which the primary
interaction takes place, and a smaller area, at one edge or off to the side,

in which messages are displayed about the current progress of other
tasks, or other ancillary information. My word processor uses this

approach. It has a status bar at the bottom of the screen that shows

when the document is being updated, saved, printed, and so forth and
provides various pieces of information that might be helpful in manag

ing my activity but are not central to it. By placing them in the periphery,
the application exploits my ability to focus on one area while passively
attending to other activity in the edge of my visual field.

Pattern Recognition and Spatial Reasoning Laying out information in
two dimensions lets us apply the skills we use managing visual informa
tion in the everyday environment. Actions as simple as walking across

the room or picking up a cup involve spatial reasoning skills, and these
can be exploited in two-dimensional interfaces. In particular, our ability

to recognize patterns in the spatial organization of information provides

new ways to convey information, and opportunities to arrange data ele
ments so that they convey information as a whole. The same techniques
that allow graphs, charts, and other visual information designs to pro

vide insight into collections of information can also be exploited when
we move computational information and interaction into a two
dimensional space.

Information Density Pattern recognition draws upon the way in which

certain arrangements of data can draw attention to patterns and other
items of "meta-information." In turn, this raises a question of "informa
tion density." Some information can be conveyed more succinctly in
graphical form than in lists of numbers or other textual representations.

A picture really can be worth a thousand words; it can often be dis
played more compactly and apprehended more rapidly than can its
thousand-word equivalent. Of course, there are also forms of informa
tion for which a textual presentation is either desirable or required, but
graphical interaction has never been purely graphical; instead, it extends
the vocabulary of interaction to incorporate graphical as well as textual

A History of Interaction 13

presentation forms and allows textual information to be presented
within a framework that incorporates graphical elements and two
dimensional layout.

Visual Metaphors As well as glvmg new ways to depict data, the

graphical approach can also add value by providing new ways to repre
sent actions and the context in which actions take place. This leads to
the development of visual metaphors for information management. The
most widespread is the office or desktop metaphor, in which information

management tasks are based around a metaphorical model incorporat

ing filing cabinets and trashcans, graphically displayed on the screen
along with the basic data elements, and so conveying a sense of the activ

ities that can be performed over the data. In more recent systems, this
has been extended. General Magic's "Magic Cap" interface, used a met
aphorical depiction of an office featuring a desk (along with various

desktop tools), a telephone, and a door open to a world outside; note

taking applications often feature graphical depictions of notebooks or
index cards; and so on.

The development of graphical interaction techniques led to a model of
interface design known as direct manipulation, in which these elements
are combined and extended. The fundamental principle in direct manip
ulation interfaces is to represent explicitly the objects that users will deal

with and to allow users to operate on these objects directly. Uploading a
file to a server by naming it, or even by selecting it from an "open file"

dialog, is not a direct manipulation approach; direct manipulation

would advocate selecting the file icon, dragging it and dropping it onto a/
representation of the server. The direct manipulation style of interface
extends the idea of the visual metaphor to a richer model in which the

abstract objects that make up the system's conceptual model-be they
records, files, connections, servers, transactions, or whatever-are realized

in a metaphorical world that also defines how they interact with each

other. From these separate elements, the designer builds an inhabited
world in which users act. Direct manipulation interfaces exploit and
extend the benefits of graphical interaction. Because the system can be

controlled entirely through the manipulation of on-screen objects, all
opportunities for action are "out in the open." This eliminates (or, at

14 Chapter 1

least, reduces} the need for long sequences of action, paths that might be
difficult to recognize or hard to follow.

Progress

It has been a long transition from interacting with computers using a
soldering iron to interacting using a mouse. It has been neither smooth

nor planned. Instead, the evolution of interaction models has gone hand
in hand with the evolution of technologies, models of computation, and

perceptions of the roles that computers will play in our lives.

~ Despite the rather chaotic evolution of interaction, it is still possible todraw out some general trends. The trend I have emphasized here is the

gradual incorporation of a wider range of human skills and abilities.

This allows computation to be made ever more widely accessible to peo
ple without requiring extensive training, and to be more easily integrated

into our daily lives by reducing the complexity of those interactions. The
"skills and abilities" perspective also offers a model for what sorts of
opportunities new research directions might offer.

New Models for Interactive System Design

Graphical interaction remains the dominant paradigm for interaction
with computers. In 1981 Xerox's Star was the first personal computer to
ship with the features of a graphical user interface as we recognize them
today-windows, menus, and a mouse-and the Macintosh, three years

later, was the first to ship in volume at an affordable price. Perhaps more

significantly, the release of Macintosh signaled a sea change in the way

in which we interacted with computers. It simply became clear that this

new paradigm was how we would interact with computers from then
on.2 Other manufacturers started shipping their machines with mice and
with displays capable of supporting windowed interfaces, and the graph

ical user interface became the familiar face of computing.
Twenty years later, this is still true. As I write this, there are four com

puters here in my office, running three different operating systems; but

they all display similar graphical user interfaces comprising windows,
menus, and widgets such as buttons and scroll bars, controlled by a

mouse sitting next to the keyboard. Although the Macintosh is arguably

A History of Interaction 15

the only one that was designed that way from Day 1, the style that it
introduced has remained largely unchallenged. In fact, the graphical

interface predominates even in those areas where its application is more
questionable, from wall-sized electronic whiteboards to small handheld

computers.
However, recent research programs have begun to explore new para

digms for interaction and interactive system design. Some of these will
be t~e topics of the next few chapters, but a quick sketch is in order here.

Tangible and Social Approaches to Computing

This chapter opened by discussing how we are increasingly encountering

computation that moves beyond the traditional confines of the desk and

attempts to incorporate itself more richly into our daily experience of the
physical and social world. Each of these areas-physical and social-has
been a focus of research attention.

Work on physical interaction has been a particularly active topic in the

last few years. A variety of terms have been used to encompass the dif
ferent activities being carried out and concerns being addressed. I use

"tangible computing" here as an umbrella term. 3

Tangible computing encompasses a number of different activities. One
general trend is to distribute computation across a variety of devices,

which are spread throughout the physical environment and are sensitive
to their location and their proximity to other devices. In these sorts of

environments, printers and fax machines might advertise their presence

to handheld computers, which can then reconfigure themselves around
the set of services available in the local environment; or tags identifying
individuals might signal their presence to each other so that their wear---------
ers can find out which people in a meeting room share their interests, or

even just who the people are. A second trend is to augment the everyday
world with computational power, so that pieces of paper, cups, pens,
ornaments, and toys can be made active entities that respond to their
environment and people's activities. A toy might know when it has been
picked up and change the computer display to reflect the fact that its

owner is clearly feeling more playful rather than concentrating on work.
Or picking up a piece of paper might cause my computer to show me
related documents or remind me about other things I was working on

16 Chapter 1

when I last worked on it. A third topic of investigation in tangible com
puting is how these sorts of approaches can be harnessed to create envi

ronments for computational activity in which we interact directly
through physical artifacts rather than traditional graphical interfaces
and interface devices such as mice. Mice provide only simple informa
tion about movement in two dimensions, while in the everyday world we

can manipulate many objects at once, using both hands and thJ:eedimen
sions to arrange the environment for our purposes and the activities at

hand. A child playing with blocks engages with them in quite different

ways;Zhan e could provide in a screen-based virtual equivalent; so tan

gible co uting is exploring how to get the computer "out of the way"
and p vide people with a much more direct-tangible-interaction
experIence.

Although perhaps less focused as a research activity than tangible

computing, the last decade or so has also seen increasing attempts to
incorporate understandings of the social world into interactive systems.
By analogy with tangible computing, Irefer to this as "social computing."

Again, it encompasses a range of different activities that are more or

less aligned. One set of activities involves incorporating social under
standings into the design of interaction itself. That is, it attempts to

understand how the "dialogue" between users and computers can be
seen as similar and dissimilar to the way in which we interact with each
other. Social science offers models of social action and the establishment

of social meaning, which provide insight into the design of interaction

with software systems. At the same time, anthropological and sociologi

cal approaches have been applied to uncovering the mechanisms through
which people organize their activity, and the role that social and organi

zational settings play in this process. These investigations have yielded
both prototype systems and generalized understandings of the influence
that social and organizational settings can have on the organization of

activities around computer systems. Finally, here, a third set of investiga

tions has explored how what we normally consider to 'be "single-user"
interaction-one person sitting in front of one computer-can be

enhanced by incorporating information about others and the activity of
others. This information can, in turn, assist individuals in exploring the
electronic world of a computer application in the same way that the real

A History of Interaction 17

world reveals to us signs and indications of the activities of others that
can help us find our way around and carryon our actions-whether by
"following the crowd" to find an event, sizing up the clientele when

deciding on a restaurant, or knowing that a hotel is a good place to
catch a taxi.

These are brief sketches of research areas, to be explored in more detail

later on. However, even these overviews show that Human-Computer
Interaction research is responding to the challenges of computation that
inhabits our world, rather than forcing us to inhabit its own.

From Tangible and Social Computing to Embodied Interaction

My reason for viewing the history of interaction as a gradual expansion
of the range of human skills and abilities that can be incorporated into
interaction with computers is that I believe that it provides a valuable

perspective on activities such as tangible and social computing. In partic
ular, it shows that these two areas draw on the same sets of skills and

abilities. Tangible and social computing are arguably aspects of one and

the same research program.
This is the hypothesis that this book sets out to explore. The rest of the

book will discuss the hypothesis and its implications in more detail, but I

will set the argument out briefly here. It has four parts.
First, I want to argue that social and tangible interaction are based on

the same underlying principles. This is not to deny their obvious differ

ences, both in the approaches they adopt and the ways in which t ey
apply to the design of interactive systems. Nonetheless, they shar some
important elements in common. In particular, they both expl it our

familiarity and facility with the everyday world-whether it is a worlqof
social interaction or physical artifacts. This role of the everyday wdrld
here is more than simply the metaphorical approach used in traditional

graphical interface design. It's not simply a new way of using ideas like
desktops, windows, and buttons to make computation accessible.
Instead of drawing on artifacts in the everyday world, it draws on the

way the everyday world works or, perhaps more accurately, the ways we

experience the everyday world. Both approaches draw on the fact that
the ways in which we experience the world are through directly interacting

18 Chapter 1

with it, and that we act in the world by exploring the opportunities for

action that it provides to us-whether through its physical configura
tion, or through socially constructed meanings. In other words, they share
an understanding that you cannot separate the individual from the
world in which that individual lives and acts.

This comes about in contrast to a narrowly cognitive perspective that,

for some time, dominated the thinking of computer system designers and

still persists to a considerable degree. The positivist, Cartesian "naive
cognitivism" approach makes a strong separation between, on the one
hand, the mind as the ~ciousness and rational decision mak
ing, with an abstract model of the world that can be operated upon to

form plans of action; and, on the other, the objective, external world as a

largely stable collection of objects and events to be observed and manip
ulated according to the internal mental states of the individual. From

this perspective, a disembodied brain could think about the world just as
we do, although it might lack the ability to affect it by acting in it. In
contrast, the new perspective on which tangible and social computing

rest argues that a disembodied brain could not experience the world in

the same ways that we do, because our experience of the world is inti

mately tied to the ways in which we act in it. Physically, our experiences
cannot be separated from the reality of our bodily presence in the world;
and socially, too, the same relationship holds because our nature as
social beings is based on the ways in which we act and interact, in real

time, all the time. So, just as this perspective argues that we act in the

world by exploring its physical affordances, it also argues that our social

actions are ones that we jointly construct as we go along. A conversation
between two people is shaped in response to the moment rather than

abstractly planned, in much the same way as a juggler has to respond
dynamically to the way in which each ball falls.

This leads to the second part of my argument, which is that the central
element of this alternative perspective is the idea of embodiment. By

embodiment, I do not mean simply physical reality, although that is
often one way in which it appears. Embodiment, instead, denotes a form

of participative status. Embodiment is about the fact that things are
embedded in the world, and the ways in which their reality depends on
being embedded. So it applies to spoken conversations just as much as to

A History of Interaction 19

apples or bookshelves; but it's also the dividing line between an apple
and the idea of an apple.

Why is embodiment relevant to these sorts of interactions with com

puters? It is relevant in at least three ways.

First, the designers of interactive systems have increasingly come to
understand that interaction is intimately connected with the settings in

which it occurs. In adopting anthropological techniques as ways to
uncover the details of work and develop requirements for interactive sys
tems to support that work, we have begun to realize just how important
a role is played by the environment in which the work takes place.4 This

is true of both physical environments and social or organizational ones.
Physical environments are arranged so as to make certain kinds of activ
ities easier (or more difficult), and in turn, those activities are tailored to

the details of the environment in which they take place. The same thing
happens at an organizational level; the nature of the organization in

which the work takes place will affect the work itself and the ways it is

done. The increasing sensitivity to settings leads naturally to a concern
with how work and interaction are embodied within those settings,

because that embodiment determines how it is that computation and the

setting will fit together.
Second, this focus on settings reflects a more general turn to consider

work activities and artifacts in concrete terms rather than abstract ones.

Instead of developing abstract accounts of mythical users, Hel increas
ingly employs field studies and observational techniques to stage "encounters"
with real users, in real settings, doin real work. These encounters are

often very revealing, as they w that the ways the work gets done
are not the ways that are listed in procedural manuals, or even in

the accounts that the people themselves would tell you if you asked.
Attention to detail, to specifics, and to actual cases, leads in turn to

thinking about computation in similar terms. In particular, it leads to a

concern with how interaction is manifest in the interface. Tangible com
puting reflects this concern by exploring the opportunities for us to man
ifest computation and interaction in radically new forms, while social

computing seeks ways for interaction to manifest more than simply the
programmer's abstract model of the task, but also the specifics of how
the work comes to be done. In the real world, where the artifacts through

20 Chapter 1

which interaction is conducted are directly embodied in the everyday
environment, these are all manifested alongside each other, inseparably.

Tangible and social computing are trying to stitch them back together
after traditional interactive system design approaches ripped them apart.

Third, there is a recognition that, through their direct embodiment in

the world we occupy, the artifacts of daily interaction can play many dif

ferent roles. As an example, consider the revealing studies of the role of
medical record cards in hospitals (Nygren, Johnson, and Henriksson
1992). From a technical perspective, patient record cards are simply car

riers of well-defined information concerning the patient's diagnosis and
treatment, and, as embodied on paper, present ~blems: they
can be lost, they can be hard to read, and they can only be in one place

at a time. From this perspective, it seems both straightforward and bene
ficial to replace the paper records with electronic versions. However, in

practice, such straightforward replacements are rarely successful. Studies
of the failure of such systems show that the paper records are more than
simply carriers of information about patients. They carry other impor
tant information as a result of the way that they are used in the work

of the hospital. For example, handwriting on the forms reveals who

performed different parts of the treatment; wear and tear on the form
indicates heavy use; and the use of pencil marks rather than pen infor
mally indicates tentative information. To trained eyes, a card conveys
information not just about the patient, but also about the history of
activities over the card and around the patient. It can do this because it

not only represents the world of the patient, but it also participates in
that world-it is an embodied artifact, and it participates in the embod

ied activities of those administering medical care. So, one relevance of

embodiment for interaction with computational systems is that, for
many tasks, it is relevant to consider how computation participates in

the world it represents. Computation is fundamentally a representa
tional medium, but as we attempt to expand the ways in which we inter

act with computation, we need to pay attention to the duality of
representation and participation.

The third element of this book's argument is that the idea of embodi
ment as a common foundation points us to other schools of thought.
Embodiment is not a new phenomenon, or a new area for intellectual

A History of Interaction 21

endeavor. In fact, it is a common theme running through much twentieth
century thought. The notion of embodiment plays a special role in one
particular school of philosophical thought, phenomenology.

Phenomenology is primarily concerned with how we perceive, experi
ence, and act in the world around us. What differentiates it from other

approaches is its central emphasis on the actual phenomena of experi

ence, where other approaches might be concerned with abstract world
models. Traditional approaches would suggest that we each have an
understanding of the elements of which our world is constructed, and an
abstract mental model of how these concepts are related. We understand

that there are entities we can drink from, and that cups, glasses, and

mugs are examples; we understand that we can sit on things like sofas

and stools, and that people might keep cats and rabbits as house-pets,
but rarely elephants or seals. This information, abstractly encoded in our
heads, guides our actions in the world. Armed with a model of appropri

ate concepts and relations-an ontology-we can look around us and
recognize what we see. So, the traditional model supposes that when I

encounter a glass of wine, even though I have never seen this particular

one before, I can still recognize it as being a glass of wine because of the
way in which it fits into my model as an instance of the abstract class of
glasses and other drinking vessels.

In contrast, the phenomenologists argue that the separation between

mind and matter, or between what Descartes called the res cogitans and

the res extensa, has no basis in reality. Thinking does not occur sepa

rately from being and acting. Certainly, there is nothing in our experi
ence to supp~eparation. In every case, we encounter them

together, as aspects of the same existence. Consequently, phenomenology
has attempted to reconstruct the relationship between experience and

action without this separation. Rather than the Cartesians' theory- or

model-driven approach to perception, the phenomenological approach
argues for what we might call a preontological apprehension of the
world. Perception begins with what is experienced, rather than begin
ning with what is expected; the model is to "see and understand" rather
than "understand and see."

To say that phenomenology is all about perception is to limit it
unfairly. In addition to perception, it is also concerned with action, with

22 Chapter 1

understanding, and with how these are all related to each other, as part
and parcel of our daily experience as participants in the world. In the

hands of some, such as Alfred Schutz, phenomenology has also been a
tool to understand social action and practice; others such as Wittgenstein,
while not phenomenologists, have developed allied approaches to topics

such as language and meaning. As we will see, these approaches provide
an extensive set of investigations of the questions of presence, embodi
ment, and action.

In turn, the fourth element of the book's argument is that we can build
on the phenomenological understandings to create a foun~roach
to embodied interaction. Such a foundation should do two things. First,
it should account for the ways in which social and tangible computing

and, perhaps, further areas to be defined-are related to each other,
showing how they can be draw upon each other's work and provide a

unified model for Human-Computer Interaction. Second, it should
inform and support the design, analysis and evaluation of interactive
systems, providing us with ways of understanding how they work, from
the perspective of embodiment.5

This, then, is the four-part hypothesis that this book sets out to
explore: that tangible and social computing have a common basis; that

embodiment is the core element they have in common; that embodiment
is not a new idea, but has been a primary topic for phenomenology; and
that phenomenology and related investigations of embodiment can pro
vide material for developing a foundation for embodied interaction.

This has all been presented so far in very broad strokes. The chapters

to come will explore the issues in more depth and provide much more
background. The two chapters that follow describe the recent trends in

HCI research that are the starting point for this work. Chapter 2 deals
with tangible computing, while chapter 3 explores social computing.
Each presents both the research and the context in which it emerged.

However, they present tangible and social computing as self-contained;
in chapter 4, we begin to examine how they might be brought together,
and how ideas from phenomenology and other philosophies of presence

and experience can be brought to bear to understand the relationships
between them. Just as chapters 2 and 3 try to introduce the set of ideas
from tangible and social computing that will inform the later discussion,

A History of Interaction 23

so chapter 4 provides an introduction to the phenomenological work
that we will draw upon later. With this background, chapter 5 explores
the notion of embodiment in more depth, drawing out a number of con

stituent elements whose relationships can be used to analyse interaction

case studies. Chapter 6 builds on this and presents a framework that
arranges these foundational elements to be able to draw on them for

design, and chapter 7 points to some future directions.

2
Getting in Touch

For a device whose fundamental properties have changed so radically over

the past thirty years, the personal computer itself-the familiar beige
box sitting by the desk-has changed remarkably little.

The personal computer (PC) as we currently know it has its origins in
work carried out at Xerox's Palo Alto Research Center in the early 1970s.
The forerunner of the modern PC was, arguably, the Alto workstation

developed by researchers there; it pioneered such now-common features
as bitmapped displays with overlapping windows, graphical interfaces

with multiple fonts and pop-up menus, and computers linked together
over local-area networks. Although underpowered by today's standards
(it was clocked at 6 MHz rather than the many hundreds of today's PCs),
it nonetheless set the stage for what was to come, and its basic feature set,

built around "the three 'M's"-millions of pixels, a megabyte of memory,
and a million instructions per second-is still with us today.

On the other hand, an Alto in those days cost around $16,000 to

build, scarcely affordable enough to put "a computer on every desk," as
Microsoft would later set out to do. A more affordable option in 1977

(by which time the PARC researchers were working on the Dorado, a

considerably faster and more powerful machine) was the Apple II, the
device which, arguably, kick-started the personal computer industry. The

Apple II was powered by a 6502 8-bit processor running at 1.5 MHz. It
had 8 kilobytes of semiconductor memory and stored programs on cas

sette tape; optional floppy disk drives stored around 150 kilobytes each.
Compare that to the modern personal computer. The laptop computer
on which I'm writing this is certainly not top-of-the-line; it wasn't even
top-of-the-line when I bought it a year ago. It has a 166 MHz 32-bit

2-6 Chapter 2

processor, 64 megabytes of memory, and a 13-inch color display and can

store up to 6 Gb on an internal hard disk; and it cost under $4,000.1

Imagine what it would be like if any other technology had undergone

such rapid advances in price/performance. A car would cost a few dollars;

airplanes would travel at hundreds of times the speed of sound; televi

sions would weigh a few ounces. More to the point, if cars, airplanes,

and televisions had been so radically transformed, they would not be

cars, airplanes, and televisions any more. They would have transformed

themselves into something else altogether.

Computers, though, remain computers. As we enter the twenty-first

century, today's PC still looks remarkably similar to that of the late

1970s (and perhaps even more like the Alto of the earlier part of that

decade; see figure 2.1). This is not simply a matter of packaging and

Figure 2.1
Xerox's Alto (1974). This early personal computer is somewhat bulkier than
today's, but is otherwise very recognizable in form. Reprinted by permission of
Xerox Palo Alto Research Center.

Getting in Touch 27

industrial design, although it is certainly the case that with a few notable
exceptions, we seem to be firmly stuck in an age of beige boxes. My con
cern is not so much about the boxes themselves as about the relationship

of the user to the box. Despite the fact that computers are so radically

different from the computers of twenty years ago, and that their capabil
ities are so vastly different, we interact with them in just the same way;

we sit at a desk, watching the screen and typing on the keyboard. If you
were to look at a photograph of people using computers some time over
the last twenty years, their clothes and hairstyle might give you a clue to
the date when the picture was taken, but the style of interaction with the

computer certainly would not.
Similarly, the style of interaction concerns not simply the set of physi

cal devices (keyboards, screens, and mice) or the set of virtual devices
(dialog boxes, scroll bars, and menus) through which we interact, but
also the ways in which the computer fits into our environments and our
lives. Interaction with screen and keyboard, for instance, tends to
demand our direct attention; we have to look at the screen to see what

we're doing, which involves looking away from whatever other elements

are in our environment, including other people. Interaction with the key
board requires both of our hands. The computer sits by the desk and ties
us to the desk, too. So, it is not simply the form of the computer that has
changed remarkably little over the last thirty years; it is also the forms of

computer-based activity and the roles that we imagine computers play
ing in our everyday lives.

Although this model of everyday computing might be conventional, it
is not inevitable. The rise of the personal computer-and, more broadly,
of personal computing-was an attempt to break away from the then
dominant paradigm of mainframe computing. Similarly, while personal

computing may now be established as the dominant model, a variety of
alternatives have been explored in the research community; departures
from the world of the conventional PC as radical as the PC was from the

world of the mainframe. In this chapter, I will take a brief tour through
some of the research laboratories where these alternatives are being
explored. In particular, I will focus on an approach that looks at the rela

tionship between computers on the desktop and the world in which they
(and we) operate. This is a model of interaction that I refer to as "tangible

28 Chapter 2

computing." Although it is only lately that the tangible computing para
digm has become broadly established, its has emerged from a research
program that stretches back over a decade.

Ubiquitous Computing

We begin the tour, ironically enough, in the Computer Science Lab at
Xerox PARC-the same place that gave us the desktop Pc. In the 1970s,

Xerox had set up PARC to explore "the architecture of information,"

and the Computer Science Lab, under the guidance of former ARPA
manager Bob Taylor, had delivered what was to become the basic ele

ments of office information technology in the decades to follow-powerful

personal workstations, laser printers, and shared servers, linked together
on local area networks. Xerox, famously, had failed to recognize its own
future in PARe's vision, so today's office technology generally doesn't
carry a Xerox label (Smith and Alexander 1988).

By the start of the 1990s, the situation was different. PARe's vision of

the architecture of information had, largely, come to pass; and, in the

opinion of the new manager of the Computer Science Lab, Mark Weiser,
it was time for a new and equally radical vision of the future of technology.

What Weiser proposed was a research program that he dubbed "Ubiq
uitous Computing." Weiser saw that the development and diffusion of
general-purpose computers, and in particular PC's, had resulted in a
focus on the computer rather than on the tasks that the computer was

used to accomplish. He argued that ongoing technological develop
ments, particularly in mobile and low-power devices, would transform
the nature of computers and the way we interact with them. Why deal

with a single, large, expensive computer when you could harness many
tiny, low-cost devices spread throughout the environment? Instead of
always taking work to the computer, why not put computation wherever

it might be needed? Through the technical developments that supported
this new model, he saw an opportunity to turn attention away from the

dominating focus on the computer sitting on the desktop and back to the

applications, and to the artifacts around which those applications were
structured. Weiser's vision of "ubiquitous computing" was one of com
putationally enhanced walls, floors, pens, and desks, in which the power

Getting in Touch 29

of computation could be seamlessly integrated into the objects and activ
ities of everyday life.

One analogy that Weiser proposed as a way of understanding his
vision for the new role of computation was that of solenoids, the elec

tronically actuated switches that are part of the fabric of many everyday

technologies. For example, he observed, a modern car has a vast num
ber of solenoids, invisibly controlling everything from the air condition
ing to the fuel intake. Solenoids are a critical component of modern
technological design and are used in all sorts of settings. And yet, we
don't deal directly with solenoids in the way we do with computers. We

don't have to think about the design of the "human-solenoid interface";

we don't have programs on "solenoid literacy" in schools; you can't

take a degree in "solenoid science," and nobody had to upgrade to
"Solenoids 2000."

Why have computers and solenoids followed different paths? Various
possibilities present themselves. Perhaps it is because of the nature of

computers as multipurpose devices; or perhaps it is a historical accident,
a feature of how computer technology was introduced into the home
and work environments. And to be sure, there are all sorts of computer

technologies surrounding us that are far more like solenoids than they
are like PCs, such as the computer processors inside my television set,
microwave oven, and car. The difference between my PC and those other

devices is that those other devices are organized around human needs
and functions.

Weiser's model of ubiquitous computing was also, paradoxically, one
of invisible computers. He argued for a vision of computers in which the

computer had become so ubiquitous that it had, essentially, disappeared.

He proposed that the computer of the twenty-first century would have
proceeded further along the path from the mainframe to the processor in
my microwave oven, and that the intermediate step-the desktop PC

would be all but gone. However, in this world, although there might be
no more computers as we understand them today, there would certainly
be computation. In fact, there might be a great deal more computation
than there is now. Computational devices would be embedded in all

sorts of technologies, Weiser argued, creating a variety of specialized
devices augmented with computational power. Computers would

30 Chapter 2

disappear into the woodwork; computers would be nowhere to be seen,
but computation would be everywhere.

Computation by the Inch, Foot, and Yard
In the Computer Science Lab at Xerox PARC, Weiser initiated a wide

ranging research program around his vision of Ubiquitous Computing,
fostering the development of new computational technologies, the infra
structure necessary to support them, and hew application models.

PARC's ubiquitous computing strategy followed three tracks: they were
known as computation by the inch, the foot and the yard (see figure 2.2).

"Computation by the inch" focused on the development of small

devices, like electronic tags or computational "Post-It" notes. One focus

of attention was the use of devices called "Active badges," originally
developed at the Olivetti Research Centre in Cambridge, England (Want et

al. 1992). Active badges are devices measuring roughly 1.5 inches square
that are intended to be worn like normal identity badges. However, they
house some simple electronics and emit a fixed, coded infrared signal

every thirty seconds or so (or whenever a button on the badge is
pressed). These signals are detected by a network of infrared receivers

located in the environment, and which are connected to a computational
server process. Because each badge emits an individual code, and

because its signal will generally only be received by the closest detector,
the server can maintain a map of the location of each badge within the

sensor network, which in turn can locate the badge's wearer within the
environment.

When people wear active badges, then applications can help make the
environment responsive to their movements. The system can route tele

phone calls to the current location of the person being called, display rel
evant information on nearby monitors as they pass by, or customize the
behavior of a computer system to the needs of the person sitting at it. In

Weiser's model, badges or similar tags could also be attached to books

and other artifacts, so that their location and mutual proximity could
become a resource to computer-based applications.

If computation "by the inch" sought a model of computationally
enhanced Post-It Notes, the computation "by the foot" was concerned
with computationally enhanced pads of paper. The primary focus of this

Getting in Touch 31

(a)

(d)

(c)

Figure 2.2
Computing by the inch, the foot, and the yard: (a) an active badge, (b) the PARC
Tab, (c) the PARC Pad, and (d) a meeting at the Liveboard. Reprinted by
permission of Xerox Palo Alto Research Center.

32 Chapter 2

area of work was the development and use of computational devices of

about the size and power of recent laptop computers. Laptop computers
were, of course, already widely available at this point, but they tended
(as they still do) to function simply as scaled-down versions of their
desktop cousins. In contrast, the goal of ubiquitous computing research

was not simply on the size and packaging of the devices, but of how they
would fit into a world of everyday activities and interaction. As a result,

research concentrated on other concerns. Examples included stylus
based interaction, which could eliminate keyboards as the primary
source of interaction, and which could support note-taking and sketch
ing, and mobile operation, so that devices could be moved from place to

place without interfering with their operation.

Finally, investigations into computation "by the yard" introduced the
opportunity to consider much larger devices. In particular, attention
focussed on wall-sized devices such as the LiveBoard. LiveBoard was a

large-scale display (approximately five feet by three feet) supporting
multiple pens, a sort of computationally enhanced whiteboard. Research

ers observed how the very physical form of this device was an important
component in structuring interactions with it. On the one hand, the use

of pen input meant that collaborative activities (such as brainstorming in

a meeting) would be implicitly structured by the fact that the board was

large enough for everyone to see at once, but that two people could not
stand in front of the same part of the board or write in the same area at

the same time. On the other hand, the board's large size also meant that

new interaction techniques would have to be developed; using a scroll
bar or pull-down menu on a board a board five feet wide could be, quite
literally, a pain in the neck.

Discussing each of these components of PARe's ubiquitous computing
strategy independently can mask the critical integration of the various
facets of the program. None of these devices was intended to operate on

its own. The focus, after all, was on a form of computation more deeply
integrated with the everyday environment, and the everyday environ
ment is filled with a variety of objects and devices. So it was with the

ubiquitous computing vision. A single user might have, at his or her dis
posal, tens or more of the inch-sized devices, just as we might have many
Post-It notes dotted around, stuck to computer screens, walls, books,

Getting in Touch 33

and sheets of paper; at the same time, they might also have three or four
foot-sized devices, just as I might have a number of notebooks for differ

ent topics or projects; but just as I probably only have one or maybe two
whiteboards in my office, there will be fewer of the devices at the larger

scale. What is more, information is expected to be able to move around
between the different devices. Notes that I have prepared on an elec

tronic pad might be beamed onto the board for group consideration in a
meeting; while action items might be migrated off into a hand-held
device that stores my calendar and to-do list. In the everyday environ

ment, information continually undergoes transformations and transla
tions, and we should expect the same in a computationally enhanced
version of that environment such as might be delivered to us by ubiqui

tous computing.

The Digital Desk

At much the same time as Weiser and his PARC colleagues were develop

ing the ubiquitous computing program, related activity was going on in

another Xerox lab, in Cambridge, England. EuroPARC had been set up
as a European satellite laboratory of PARe. It was a much smaller lab
(with a research complement of around twenty) with a focus on interdis

ciplinary research into Human-Computer Interaction and Computer
Supported Cooperative Work.

EuroPARC was home to a variety of technological developments, but

the particular technology that concerns us here is the Digital Desk,
designed and developed by Pierre Wellner (Wellner 1991; Newman and
Wellner 1992). In common with many people, Wellner had observed

that the "paperless office" envisioned by many in the 1970s and early

1980s had manifestly failed to develop. However, that was not to say
that the development of personal computers, and increasingly net
worked personal computers, had not caused an massive increase in the

number of digital or online documents that we all have to deal with
everyday. Wellner was concerned with how we could work with both

paper and electronic documents in a much more fluid and seamless way

than is normally the case. The traditional approach to these problems
was either to scan in the paper documents to bring them into the

34 Chapter 2

electronic realm, or to print out the electronic documents to bring them
into the physical realm. By moving across the boundary from online doc

uments to paper documents and back again, users could take exploit the
advantages of each; the digital malleability and computational power of
electronic documents with the portability, readability, and informal

interaction of paper ones. As many studies have attested, paper has
many properties that are hard to reproduce in the electronic world

(Sellen and Harper 1997; Henderson 1998), while, at the same time,
electronic documents increasingly exploit features (such as animation,

hyperlinks, or interactive elements) that paper documents cannot cap
ture. So, the move back and forth between electronic and paper forms is

not only inconvenient but also impoverished, since some features always

remain behind. Taking his cue from Weiser's ubiquitous computing
work, Wellner wondered if there wasn't a way to combine the two

worlds more effectively by augmenting the physical world with compu
tational properties.

Wellner's Digital Desk (figure 2.3) combines elements of each. The

Digital Desk was a physical desktop, much like any other, holding

papers, pens, coffee cups, and other traditional office accoutrements.
However, it was also augmented with some distinctly nontraditional

components. Above the desk were placed a video projector and a video
camera. Both of these were pointed down toward the desktop; the pro
jector would project images onto the desk, over whatever objects were

lying there, and the camera could watch what happened on the desktop.
These devices were connected to a nearby computer. Image processing

software running on the computer could analyze the signal from the
video camera to read documents on the desk and watch the user's activ

ity. At the same time, the computer could also make images appear on
the desk by displaying them via the video projector.

The result was a computationally enhanced desktop supporting inter

action with both paper and electronic documents (Wellner 1993). Elec
tronic documents could be projected onto the desktop by the video

projector, but then could be moved around the (physical) desktop by
hand (using the video camera to track the user's hand movements and
then "moving" the displayed document in coordination). Similarly,
physical documents could be given computational abilities on the same

Getting in Touch 35

Figure 2.3
Wellner's Digital Desk allowed interaction with paper and electronic documents
on the same desktop. Reprinted by permission of Xerox Research Centre
Europe.

36 Chapter 2

desktop. For example, a paper document containing a list of numbers
could be used as input to a virtual calculator; the computer could use the

camera to "read" the numbers off the printed page, and then project the
result of a calculation over those figures.

Two features of the Digital Desk were critical to its design. The first
was its support for manipulation. In Wellner's first prototype, one

moved objects around on the desk with one's fingers; in contrast with
the prevailing approach to interface design, this was really direct manip

ulation. What's more, of course, while our computer systems typically
have only one mouse, we have two hands and ten fingers. By tracking
the position and movements of both hands or of multiple fingers, the
Digital Desk could naturally support other behaviors that were more

complicated in traditional systems, such as using both hands at once to

express scaling or rotation of objects. The second critical design feature

was the way in which electronic and physical worlds were integrated. A
document on the digital desk could consist of both physical content
(printed on a page) and electronic content (projected onto it), and print
ers and cameras allowed material to move from one domain to the other

fluidly so that objects created on paper could be manipulated electroni

cally. The Digital Desk offered developers and researchers an opportu

nity to think about the boundary between the physical and virtual
worlds as a permeable one.

While the work-on ubiquitous computing had shown how computa
tion could be brought out of the "box on the desk" and into the every

day world, Wellner's work on the digital desk expanded on this by
considering how, once the real world was a site of computational activ

ity, the real and electronic worlds could actually work together.

Virtual Reality and Augmented Reality

Weiser and Wellner shared the goal of creating computation ally aug

mented reality. They both attempted to take computation and embed it
in the everyday world. This follows in the trend, outlined earlier, to
expand the range of human skills and abilities on which interaction can
draw. In this case, the abilities to be exploited are those familiar ways in
which we interact with the everyday world; drawing on whiteboards,

Getting in Touch 37

moving around our environments, shuffling pieces of paper, and so on.
One of the interesting feature of these approaches, at the time, was the
way in which they developed in opposition to another major trend
immersive virtual reality.

Virtual reality (VR) is, at least in the popular consciousness, a technol

ogy of recent times; it became particularly prominent in the 1990s.

Immersive VR as we know it today came about through the increase in
computer power, and particularly graphics processing, that became
available in the late 1980s, as well as some radical sensor developments

that gave us data gloves and body suits. The technical developments sup

porting immersive VR became widespread at around the same time as
William Gibson's notion of "cyberspace"-a technically mediated con

sensual hallucination in which people and technology interacted-also
entered the popular consciousness. Virtual reality has been around a
good deal longer than that, however. Ivan Sutherland, the father of inter

active computer graphics, went on to investigate what we now recognize

as virtual reality technology back in the 1960s, and the use of digital

technology to create environments such as flight training simulators is
well-known. Howard Rheingold's book Virtual Reality (1992) docu

ments some of the early history of this seemingly recent technology.
Virtual reality immerses the user in a computationally generated real

ity. Users don head-mounted displays, which present slightly different

computer-generated images to each eye, giving the illusion of a three
dimensional space. By monitoring the user's head movements and

adjusting the image appropriately, this three-dimensional space can be
extended beyond the immediate field of view; the user can move his head

around, and the image moves to match. With appropriating sensing

technologies, the user can enter the virtual space and act within it. A
"dataglove" is a glove augmented with sensors that report the position
and orientation of the hand and fingers to a computer; the hand of the

user wearing the glove is projected as a virtual hand into the same com
puter-generated three dimensional space that the virtual reality system
generates, so that the user can pick up virtual objects, examine them,
move them around, and act in the space.

The ubiquitous computing program was getting under way at about
the point when virtual reality technology began to make its way out of

38 Chapter 2

research laboratories and into newspaper articles. Both approaches to
the future of computing are based on similarly science-fiction notions;

immersion in a computer-generated reality, on the one hand, and com
puters in doorknobs and pens on the other. They embody, however, fun
damentally different approaches to the relationship between computers,
people and the world. In the virtual reality approach, interaction takes
place in a fictional, computer-generated world; the user moves into

that world, either through immersion or, more commonly these days,

through a window onto the world on a computer screen. The world of
interaction is the world of the computer. The ubiquitous computing
approach to interaction-what Weiser dubbed "physical virtuality" and
would become known as augmented reality-does just the opposite. It

moves the computer into the real world. The site of interaction is the
world of the user, not that of the system. That world, in the augmented

reality vision, may be imbued with computation, but the computer itself
takes a back seat.

The Reactive Room

The ubiquitous computing model distributes computation throughout

the environment. All sorts of objects, from walls to pens, might have
computational power embedded in them. For someone concerned with

interaction, this raises one enormous question-how can all this compu
tation be controlled?

At the University of Toronto, Jeremy Cooperstock and colleagues
explored this question in an environment they called the Reactive Room

(Cooperstock et al. 1995). The Reactive Room was a meeting room sup
porting a variety of physical and virtual encounters. It grew out of both
the ubiquitous computing perspective and the "media space" tradition,

an approach to supporting collaboration and interaction through a com

bination of audio, video, and computational technology (Bly, Harrison,

and Irwin 1993). The room was designed to support not only normal,
face-to-face meetings, but also meetings distributed in space (where

some participants are in remote locations) and time (recording meeting
activity to be viewed later by someone else). To that end, it also featured

a shared computer display, for electronic presentations and application-

Getting in Touch 39

based work; a variety of video and audio recorders; and audio and video
units connected to a distributed analog AfV network that could be con

nected to similar "nodes" in people's offices, so they could remotely
"attend" meetings.

However, such a complex and highly configurable environment pre

sented considerable challenges for control and management. To config
ure the room for any given situation (such as a presentation to be
attended by remote participants), each device in the room would have to
be configured independently, and adjusting the configuration to support

the dynamics of the meeting was even more challenging. The design of
the Reactive Room sought to use ubiquitous computing technology as a

means to manage this problem. The critical move here was to see ubiqui

tous computing as a technology of context; where traditional interactive
systems focus on what the user does, ubiquitous computing technologies
allow the system to explore who the user is, when and where they are

acting, and so on.
In the case of the reactive room, contextual information could be used

to disambiguate the potential forms of action in which a user might

engage. For example, by using an active badge or similar system, the
room's control software can be informed of who is in the room and can

configure itself appropriately to them. Similarly, if the room "knows"
that there is a meeting in progress, then it can take that information into

account to generate an appropriate configuration. If a user presses the
"meeting record" button on a VCR, to record a meeting in progress, the

Reactive Room can determine whether or not there are any remote par
ticipants connected to the audio/video nodes and, if so, ensure that it
adds those signals to the recording. When someone in the room makes

use of the document camera or the projected computer display, the room
software can detect these activities and automatically make the docu

ment camera view or the computer display available to those people
attending the presentation, either locally or remotely.

In other words, the design of the Reactive Room attempts to exploit
the fact that the people's activities happen in a context, which can be
made available to the software in order to disambiguate action. Clearly,

of course, the sort of context that can be gathered with current tech
nology is limited; the Reactive Room would make use of motion in

40 Chapter 2

particular parts of the room, presence and actiVIty as detected using

active badges or pressure sensors, and so on. The other, perhaps most
important, piece of context it made use of was the fact that it was the

Reactive Room. That is, the room was designed for meetings and pre
sentations, and so much activity in the room could be interpreted as
being appropriate to meetings and presentations. The same sorts of

inferences would probably be inappropriate in other settings, such as a
private office, or a home. The "meeting" context, then, also serves to

disambiguate the user's goals.

The Reactive Room demonstrated the way that ubiquitous computing
did not simply move out of the box on the desk and into the environ

ment but, at the same tiIl1e,also got involved in the relationship between
the environment and the activities that took place there. The topic of
"setting-ed" behavior will come back into focus in the next chapter; for

the moment, however, we will continue to explore the development of
tangible computing.

Design Trends

The systems that have been described-the vision of Ubiquitous Com

puting, and the Digital Desk and Reactive Room prototypes-have been
firmly located in the domain of Computer Science research. However,
"academic science" has by no means been the only contributor to the

development of Tangible Computing. In fact, one striking aspect of the
development of this line of investigation has been the contributions from

the perspectives of art and design. Two pieces that have proved to be

particularly inspirational to a number of researchers in this area were
Durrell Bishop's Marble Answering Machine, and Natalie Jeremijenko's
Live Wire.

The Marble Answering Machine was a design exercise undertaken by

Bishop in the Computer-Related Design department at the Royal College
of Art in London (Crampton-Smith 1995). It explored possible approaches

to physical interaction for a telephone answering machine. Rather than
the traditional array of lights and buttons, Bishop's answering machine
has a stock of marbles. Whenever a caller leaves a message on the

answering machine, it associates that message with a marble from the

Getting in Touch 41

stock, and the marble rolls down a track to the bottom, where it sits

along with the marbles representing previous messages. When the owner
of the machine comes home, a glance at the track shows, easily and dis

tinctly, how many messages are waiting-the number of marbles arrayed
at the bottom of the track. To playa message, the owner picks up one of
the marbles and drops it in a depression at the top of the answering

machine; because each marble is associated with a particular message, it
knows which message to play. Once the message has been played, the
owner can decide what to do; either return the marble to the common

stock for reuse (so deleting the message), or returning it to the track (sav

ing it to play again later).
The Marble Answering Machine uses physical reality to model the vir

tual or electronic world. In Bishop's design, marbles act as physical

proxies for digital audio messages. By introducing this equivalence, it
also enriches the opportunities for interacting with the device. The prob

lem of interacting with the virtual has been translated into interacting
with the physical, and so we can rely on the natural structure of the

everyday world and our casual familiarity with it. So, counting the num
ber of messages is easy, because we can rapidly assess the visual scene;

and operations such as playing messages out of order, deleting messages
selectively, or storing them in a different sequence, all of which would
require any number of buttons, dials, and controls on a normal digital

answering machine, all become simple and straightforward because we
can rely on the affordances of the everyday world.

Natalie Jeremijenko's piece "Live Wire," also sometimes known as

"the Dangling String" and described by Weiser and Brown (1996), was
developed and installed at Xerox PARe in 1994 and explored similar
questions of the boundary between the virtual and physical worlds.

Physically, Live Wire was a length of plastic "string" around eight feet
long, hanging from the ceiling at the end of a corridor. Above the ceiling
tiles, the wire was connected to a small stepper motor, which in turn was

connected to a device on the local ethernet. Every time a data "packet"
passed by on the ethernet, the stepper motor would move, and its move
ments would be passed on to the string. Ethernet, in its classic form, is a
"shared medium" technology-all the traffic, no matter which machine
sends it or which machine is to receive it, travels along the same cable.

42 Chapter 2

The busier the network, the more data packets would pass by, and the

more the stepper motor would move. The ethernet can carry thousands
of packets per second, and so when the network was busy the motor
would whir and the string would spin around at high speed, its loose end
whipping against the wall nearby.

Others have followed in the footsteps of Bishop and Jeremijenko and

continued to explore the design "space" around these issues of the bor
ders between physical and virtual worlds. Feather, Scent, and Shaker
(Strong and Gaver 1996) are devices for "simple intimacy." "Feather"

features a feather that is gently lifted on a column of air, to indicate to its
owner that, perhaps, a photograph of them has been picked up some
where else; it is designed to convey a sense of fondness across distance.

Scent, similarly, releases a pleasant, sweet smell in similar circumstances
providing an awareness of distant action.

The topic of "awareness" is one that has concerned the developers of

technologies for group working, who want their systems to be able to
support the casual and passive awareness of group activity that cowork
ers achieve in a shared physical space. Strong and Gaver turn this

around, though, and give us technologies for supporting shared intimacy
rather than shared work. Their pieces are designed to be evocative and

emotive rather than "efficient." What is particularly interesting about

this group of devices is that they originate not from a technical or scien
tific perspective, but from a design perspective. The result of this shift in

perspective is that they a reflect a very different set of concerns. It is not

simply that they reflect an aesthetic component where the scientific
developments are marked more by engineering concerns. That is cer

tainly one part of it, of course; the design examples certainly do reflect a

different set of principles at work. However, there is more than this.
First, the design examples discussed here reflect a concern with com

munication. What is important is not simply what they do, but what
they convey, and how they convey it; and the communicative function

that they carry is very much on the surface. There is an "at-a-glance
readability" to these artifacts that stands in marked contrast to the

"invisibility" of ubiquitous computing. Second, they reflect a holistic
approach that takes full account of their physicality. The physical nature
of these pieces is not simply a consequence of their design; it is funda-

Getting in Touch 43

mental to it. While it was a tenet of ubiquitous computing, for example,
that the technology would move out into the world, the design pieces
reflect a recognition that the technology is the world, and so its physical

ity and its presence is a deeply important part of its nature. Third, they
reflect a different perspective on the role of computation, in which com

putation is integrated much more directly with the artifacts themselves.

In the other examples, while they have aimed to distribute computation
throughout the environment, there has always been a distinct "seam"
between the computational and the physical worlds at the points where

they meet. In these examples, however, the computational and physical
worlds are much more directly connected.

The result is an approach to tangible computing that sees computation

within a wider context. Ubiquitous Computing pioneers saw that, in
order to support human activity, computation needs to move into the
environment in which that activity unfolds. These design explorations
take the next step of considering how computation is to be manifest

when it moves into the physical environment, and recognizing that this
move makes the physicality of computation central.

Tangible Bits

Most recently, perhaps the most prominent site for development of these

ideas has been the Tangible Media group at the MIT Media Lab. A

group of researchers led by Hiroshi Ishii has been exploring what they

call "Tangible Bits," a program of research that incorporates aspects of
both the Ubiquitous Computing program and the design perspective
explored by people like Jeremijenko.

The term "Tangible Bits" reveals a direct focus on the interface

between the physical and virtual worlds. The rhetoric of the computer

revolution has, pretty consistently, focused on a transition froin physical
(the world of atoms) to the virtual (the world of bits). We talk of the

future in terms of "electronic cash" to replace the paper bills and coins
we carry about with us, or we speak of the "paperless office" in which
paper documents have disappeared in favor of electronic documents

stored on servers and displayed on screens. We envision a world in
which we communicate by electronic mail and video conferencing, in

44 Chapter 2

which we read from "e-books," telecommute over great distances via
digital communication lines, and play in virtual worlds. What these

visions have in common is the triumph of the virtual over the physical.
They suggest that we will overcome the inherent limitations of the every
day world (such as the need to be in the same place to see each other, or

that a thousand books actually take up real shelf space) by separating

the "information content" from the physical form, distilling the digital
essence and decanting it into a virtual world.

The MIT Media Lab, where Ishii and his colleagues are based, is one
of the most prominent proponents of this vision, especially, perhaps, in
the writings of its founding director, Nicholas Negroponte. His collec
tion of essays Being Digital (Negroponte 1995), explores the relation

ship between atoms and bits and how the development and deployment

of Internet technologies is changing that relationship.
The work on Tangible Bits provides some balance to the idea that a

transition from atoms to bits is inevitable and uniformally positive. It is
certainly not defined in opposition to the gradual and ongoing move

ment of traditionally physical forms into digital media. However, it

observes that while digital and physical media might be informationally

equivalent, they are not interactionally equivalent. By building informa

tion artifacts based on physical manipulation, the Tangible Bits pro
gramme attempts to reinvest these distilled digital essences with some of
the physical features that support natural interaction in the real world.

metaDESK, Phicons, and Tangible Geospace

Let's take an example from the work of the Tangible Bits group. The

metaDESK (Ullmer and Ishii 1997) is a platform for tangible interaction.
It consists of a horizontal back-projected surface that serves as the top of
the physical desk itself; an "active lens," which is a small flat-panel dis

play mounted on an arm; a "passive lens," which is transparent, also

digitally instrumented; and a variety of physical objects called phicons

(for "physical icons"). The metaDESK is shown in figure 2.4.
The functions of the various components of the metaDESK platform

are best seen in terms of an application running on the desk. Tangible
Geospace is a geographical information system augmented with tangible
UI features and running on the metaDESK. It allows users to explore a

Getting in Touch 45

Figure 2.4
Interactions with geographical information on the metaDESK, using phicons, the
passive lens, and the active lens. Reprinted by permission of The MIT Media
Lab.

visualization of a geographical space, such as the area of Cambridge,

Massachusetts, around MIT.

The geographical information, in the form of a two-dimensional map,

is back-projected onto the desk, so that the user seated at the desk can

see it. The user can move and orient the map using phicons. One of the

phicons represents MIT's Great Dome, and when it is placed on the

desk, the map is adjusted so that the position of the Great Dome corre

sponds to that of the phicon. As the user moves the phicon, the system

adjusts the map to ensure that the phicon is always aligned with the

point on the map that it represents. By moving the phicon around on the

desk, the user can cause the map to move too, "scrolling" around in the

geographical space. By rotating the phicon on the desk, the user can

cause the map to rotate.

If a second phicon is added to the desk, say one representing the

Media Lab building itself, then another degree of freedom can be con

strained. The two icons, together, can be used to control the scale of the

46 Chapter 2

map display. If the metaDESK always ensures that the virtual Great

Dome always co-occurs with the Great Dome phicon, and the virtual
Media Lab always co-occurs with the Media Lab phicon, then the user
can control the scale of the map by moving these two phicons closer
together or further apart.

The active and passive lenses can be used to provide access to other
sorts of information. In the Tangible Geospace example, the active lens is

used to view a three dimensional model of the MIT Campus. The active
lens is a computer display mounted on an arm over the desk. It is instru

mented so that the metaDESK computer system can determine the posi
tion and orientation of the display. When this information is coordinated

with the current position, scaling, and orientation of the map being dis
played on the desk, the result is that the active lens can be used to control

a "virtual camera" moving through the geographical space being dis
played on the metaDESK. When this is combined with a three dimen

sional model of the campus, then the active lens can be used to give a
three-dimensional viewport onto the two-dimensional map. The illusion

is of "looking through" the lens and seeing a transformed view of the
map underneath.

The passive lens works in a similar way, although it rests on the desk

surface. The passive lens is simply a piece of transparent plastic. As it is
moved around the desk, the computer system can track its current loca
tion. On the desk area directly underneath the lens, the metaDESK
replaces the map with a view onto a photographic aerial record of the

campus. As before, this is correlated with the current position, scaling,

and orientation of the basic map, as well as the position of the lens. The

effect is that it seems to the user that the lens reveals the photographic
model underneath as it moves across the desk. This is similar to a user

interface technique known as "magic lenses" (Bier et al. 1993), user
interface components that selectively transform the content of interfaces

as they are moved across the screen, although, of course, in the case of
the metaDESK the lens has a physical manifestation.

The Ambient Room

Tangible interfaces such as the metaDESK explore interaction that is sit
uated in the environment, rather than on a screen. This is even more

Getting in Touch 47

clearly demonstrated by another of the MIT prototypes, called the
Ambient Room (Wisneski et al. 1998).

The Ambient Room is a small office cubicle that has been augmented

with a variety of "ambient displays," designed to provide peripheral,

background information to the occupant of the room without being

overwhelming or distracting. Examples of ambient displays include pro

jected light patterns, non-speech sounds, and objects that respond to
changes in air flow.

The information that the Ambient Room conveys is typically informa

tion about activities in either physical or virtual space, such as the pres

ence or activity of others, e-mail arriving, people logging in and out, and
so forth. These can be mapped onto the displays available in the room.

For instance, light patterns projected on the wall can respond to the
activities of a networked computer system, conveying information about
network traffic and hence activity in the virtual space; or movements in

a shared project room can be mapped onto subtle sounds in the Ambient
Room so that the occupant can be aware of comings and goings in the

project space. Reminiscent of the Feather, Scent, and Shaker work of

Strong and Gaver, these ambient displays can be used to project the
actions in one space (either physical or virtual) into another; like the
technologies of the Reactive Room, they can also respond to the activity

of the room's occupant, providing a display that is appropriate to the
context in which they are working.

It is tempting to think of the metaDESK as exploring the potential

for tangible media as input technologies, and the Ambient Room as
exploring their potential for output. To do so, though, would be to
miss an important point, which is that, in the everyday environment,

"input" and "output" are fundamentally interconnected. This is a
critical feature of the tangible media explorations. They should be

characterized not in terms of "input" and "output," but in terms of
the coordination between phenomena; between activity in a space

and the pattern of light on a wall, or between the movement of
objects on the desk and the information presented there. This sort of
coordination, or coupling, is fundamental to the explorations pre

sented here; they depend upon it for the causal illusion they want to
maintain.

48 Chapter 2

Illuminating Light and Urp

Two other applications developed in the MIT group echo the Digital

Desk in their creation of mixed physical/virtual environments for task

focused work. These are Illuminating Light and Urp, both developed

principally by John Underkoffler (and illustrated in figure 2.5).

Illuminating Light (Underkoffler and Ishii 1998) is a simulation of an

optics workbench, aimed particularly at students of laser holography.

The interface is based on a combination of phicons and a camera/projector

arrangement (which Underkoffler dubs the "I/O Bulb") similar to that of

the Digital Desk. The application allows users to experiment with and

explore configurations of equipment for laser holography. Real laser

holography is a complex business, conducted using delicate and expen

sive instruments. Setting up and fine-tuning an experimental configura

tion can be extremely time-consuming, especially for novices. Illuminating

Light allows holographers to simulate the effects of particular configura

tions and to explore them so as to develop a better intuitive sense for the

interaction of their elements. Phicons represent physical elements such as

lasers, lenses, mirrors, and beam-splitters, while the system provides a

simulation of light paths through the experimental equipment, showing

light emitted by the laser, redirected by mirrors, and so on. As the phi

cons are moved around a physical surface, the system continually

updates its projection of the simulated light paths to reflect the moment

by-moment physical configuration. In addition to the simulated light

beams, the system can also provide numerical descriptions of the config

uration; incidence angles, distances, and so forth. In this way, users can

rapidly explore a variety of configurations and develop an understand

ing of the consequences of different changes on the set-up.

Urp (Underkoffler and Ishii 1999) is an urban planning workbench in

which physical models of buildings are combined with electronic simula

tions of features such as air flow, cast shadows, reflectance, and so forth.

The underlying technology is similar to that of Illuminating Light but

applied to a different domain. There are two sorts of phicons used in

Urp. The first represent building structures. By placing these on the

surface, the user can obtain a visualization of the shadows that the

buildings will cast, or the wind patterns around them. Combining

multiple structures allows urban planners and architects to explore the

Getting in Touch 49

(a)

(b)

Figure 2.5
Illuminating Light (a) and Drp (b) apply tangible interaction techniques to the
domains of optics and urban planning. Reprinted by permission of The MIT
Media Lab.

50 Chapter 2

interactions of wind, reflection, and shadow effects in an urban land

scape. As with Illuminating Light, real-time tracking of the position and

orientation of these phicons allows the system to update the display con

tinuously, so that users can move the buildings around or rotate them

until they find a satisfactory arrangement. The second set of phicons act

as controls for the simulation. For example, a "wand" can be used to

change the material of the buildings, so that the computed reflectance

patterns will simulate buildings clad in brick or glass, another controls

the direction of the simulated wind, while a "clock" has hands that can

be moved to specify the time of day and hence the position of the sun for

the shadow simulation. In this way, the simulator's controls are intro

duced into the same space that is the focus of the system's primary input

and output.

Interacting with Tangible Computing

Tangible computing takes a wide range of forms. It might be used to

address problems in highly focused and task-specific work, or in more

passive awareness of activities in the real world or the electronic. It

might attempt to take familiar objects and invest them with computa

tion, or it might present us with entirely new artifacts that disclose some

thing of the hidden world inside the software system. The bulk of this

chapter has explored a range of tangible computing systems, but the sur

vey has been far from comprehensive; indeed, I have said nothing about

whole areas, such as wearable computing and context-based computing,

that are clearly strongly related. My goal, however, was not to provide a

catalogue of tangible computing technologies, but rather to introduce a

sample of the systems that have been developed, and to begin to look for

some common features of their design.

The first of these general issues that we see across a range of cases is

that, in tangible computing, there is no single point of control or interac

tion. Traditional interactive systems have a single center of interaction,

or at least a small number. Only one window has the "focus" at any

given moment; the cursor is always in exactly one place, and that place

defines where my actions will be carried out. Cursors and window focus

insure that the system always maintains a distinguished component

Getting in Touch 51

within the interface, which is the current locus of interaction. To do

something else, one must move the focus elsewhere. When computation
moves out into the environment, as in the tangible computing approach,

this is lost. Not only is there not a single point of interaction, there is not
even a single device that is the object of interaction. The same action

might be distributed across multiple devices, or, more accurately,

achieved through the coordinated use of those artifacts. Imagine sitting
at your desk to write a note. The writing comes about through the coor
dinated use of pen, paper, and ink, not to mention the desk itself and the

chair you sit in; you might write on the page with your dominant hand

while your nondominant hand is used to orient the page appropriately.
These are all brought together to achieve a task; you act at multiple

points at once. In the same way, ubiquitous computing distributes com
putation through the environment, and, at one and the same time, dis
tributes activity across many different computational devices, which
have to be coordinated in order to achieve a unified effect.

A related issue is how tangible interaction transforms the sequential
nature of interaction at the interface. The single point of control that tra

ditional interfaces adopt leads naturally to a sequential organization for

interaction-one thing at a time, with each step leading inevitably to the
next. This ordering is used both to manage the interface and to simplify
system development. For instance, "modal" dialog boxes-ones that

will stubbornly refuse to let you do anything else until you click "okay,"
"cancel," or whatever they need-both structure your interaction with

the computer, and save the programmer from the need to handle the
complexity of worrying about other actions that might transform the
system's state while the dialog box is displayed. When we move from
traditional models to tangible computing, sequential ordering does not

hold. It is not simply that interaction with the physical world is "parallel"
(a poor mapping of a computational metaphor onto real life), but that

there is no way to tell quite what I might do next, because there are
many different ways in which I might map my task onto the features of
the environment.

These two issues are particularly challenging from a technical per
spective, because they address the programming models we use to
develop systems, embedded in software toolkits and applications. The

52 Chapter 2

third feature of tangible interaction may, however, provide some relief.

This is the fact that, in tangible design, we use the physical properties
of the interface to suggest its use. This is nothing new; arguably, it is
what product design or other forms of physical design are all about.
Kettles are designed so that we can tell how to safely pick them up;
remote controls are designed to sit comfortably in the hand when ori
ented for correct use (at least when we're lucky). What is more, this

sort of design that recognizes the interaction between the physical con

figuration of the environment and the activities that take place within it
can also be a way to manage the sequential issues raised earlier. For
instance, Gaver (1991), in his discussion of "sequential affordances"

(which will be presented in more detail in chapter 4), gives the example

of a door handle, which, in its normal position, lends itself naturally to
turning and then, in its turned position, lends itself naturally to pulling;

the whole arrangement helps "guide" one through the sequential pro
cess of opening the door through careful management of the physical
configuration of the artifact. Taking this approach, designers can create
artifacts that lead users through the process of using them, with each

stage leading naturally to the next through the ways in which the phys

ical configuration at each moment suggests the appropriate action to
take. The relationship between physical form and possible action can

give designers some purchase on the problems of unbounded parallel
action.

Interacting with tangible computing opens up a new set of challenges

and a new set of design problems. Our understanding of the nature of
these problems is, so far, quite limited, certainly in comparison to the
more traditional interactional style that characterizes most interactive

systems today. The theories that govern traditional interaction have only
limited applicability to this new domain. At the same time, tangible com
puting has been explored, largely, as a practical exercise. Most proto

types have been developed opportunistically, driven as much by the
availability of sensor technology and the emergence of new control

devices as by a reasoned understanding of the role of physicality in inter
action. We have various clues and pointers, but there is no theory of tan
gible interaction. Why does tangible interaction work? Which features

are important, which are merely convenient and which are simply

Getting in Touch 53

wrong? How does tangible computing mediate between the environment
and the activity that unfolds in it?

This book is about developing answers to these questions. The inter

pretation that it will offer is one that is concerned not just with what
kind of technology we use, or with what sorts of interactions we can

engage in with that technology, but about what makes those interactions

meaningful to us. From this perspective, the essence of tangible comput
ing lies in the way in which it allows computation to be manifest for us
in the everyday world; a world that is available for our interpretation,
and one which is meaningful for us in the ways in which we can under

stand and act in it. That might seem to be quite far removed from look

ing at application prototypes, reactive rooms, and digital desks. The

path from practice to theory will be easier to see after looking at the sec
ond aspect of embodied interaction-social computing.

