

VoltDB: an SQL Developer’s Perspective

Tim Callaghan, VoltDB Field Engineer
tcallaghan@voltdb.com

March 3, 2009 |

Agenda

•  VoltDB Technical Overview
•  Comparing VoltDB to Traditional OLTP
•  Migration and Development
•  Q+A

2

March 3, 2009 |

About Me

•  VoltDB Field Engineer/Community Advocate
•  Joined VoltDB in September, 2009
•  Support commercial and community customers
•  Built many examples and POCs

•  Technical background
•  18 years of Oracle design/development/administration
•  User of many programming languages – database and

traditional

•  See last slide for full contact information

3

March 3, 2009 |

VoltDB
Technical
Overview

4

March 3, 2009 |

Before I Begin…

VoltDB is available in community and

commercial editions

Runs on Linux + Mac*

5

March 3, 2009 |

X X

X
X X

Scaling Traditional OLTP Databases

•  Sharding improves performance but
introduces…
•  Management complexity

+  disjointed backup/recovery and replication
+ manual effort to re-partition data

•  Application complexity
+  shard awareness
+  cross partition joins
+  cross partition transactions

•  And, each shard still suffers from traditional OLTP
performance limitations

•  If you can shard, your application is probably
great in VoltDB.

March 3, 2009 |

Technical Overview

•  “OLTP Through the Looking Glass”
 http://cs-www.cs.yale.edu/homes/dna/papers/oltpperf-sigmod08.pdf

•  VoltDB avoids the overhead of traditional databases
•  K-safety for fault tolerance
- no logging

•  In memory operation for maximum throughput
- no buffer management

•  Partitions operate autonomously
 and single-threaded

- no latching or locking

•  Built to horizontally scale

X
X

X

X

7

March 3, 2009 |

X X

X
X X

Technical Overview – Partitions (1/3)

•  1 partition per physical CPU core
•  Each physical server has multiple VoltDB partitions

•  Data - Two types of tables
•  Partitioned

+  Single column serves as partitioning key
+  Rows are spread across all VoltDB partitions by partition column
+  Transactional data (high frequency of modification)

•  Replicated
+  All rows exist within all VoltDB partitions
+  Relatively static data (low frequency of modification)

•  Code - Two types of work – both ACID
•  Single-Partition

+  All insert/update/delete operations within single partition
+  Majority of transactional workload

•  Multi-Partition
+  CRUD against partitioned tables across multiple partitions
+  Insert/update/delete on replicated tables

March 3, 2009 |

Technical Overview – Partitions (2/3)

•  Single-partition vs. Multi-partition

1 101 2
1 101 3
4 401 2

1 knife
2 spoon
3 fork

Partition 1

2 201 1
5 501 3
5 502 2

1 knife
2 spoon
3 fork

Partition 2

3 201 1
6 601 1
6 601 2

1 knife
2 spoon
3 fork

Partition 3

table orders : customer_id (partition key)
(partitioned) order_id

 product_id

table products : product_id
(replicated) product_name

select count(*) from orders where customer_id = 5
 single-partition

select count(*) from orders where product_id = 3
 multi-partition

insert into orders (customer_id, order_id, product_id) values (3,303,2)
 single-partition

update products set product_name = ‘spork’ where product_id = 3
 multi-partition

March 3, 2009 |

Technical Overview – Partitions (3/3)

•  Looking inside a
VoltDB partition…
•  Each partition contains

data and an execution
engine.

•  The execution engine
contains a queue for
transaction requests.

•  Requests are
executed sequentially
(single threaded).

Work
Queue

execution engine

Table Data
Index Data

- Complete copy of all replicated tables
- Portion of rows (about 1/partitions) of
all partitioned tables

March 3, 2009 |

Technical Overview – Compiling

•  The database is
constructed from
•  The schema (DDL)
•  The work load (Java

stored procedures)
•  The Project (users,

groups, partitioning)
•  VoltCompiler creates

application catalog
•  Copy to servers along

with 1 .jar and 1 .so
•  Start servers

CREATE TABLE HELLOWORLD (
 HELLO CHAR(15),
 WORLD CHAR(15),
 DIALECT CHAR(15),
 PRIMARY KEY (DIALECT)
);

Schema
import org.voltdb. * ;

@ProcInfo(
 partitionInfo = "HELLOWORLD.DIA
 singlePartition = true
)

public class Insert extends VoltPr
public final SQLStmt sql =
 new SQLStmt("INSERT INTO HELLO

public VoltTable[] run(String hel

import org.voltdb. * ;

@ProcInfo(
 partitionInfo = "HELLOWORLD.DIA
 singlePartition = true
)

public class Insert extends VoltPr
public final SQLStmt sql =
 new SQLStmt("INSERT INTO HELLO

public VoltTable[] run(String hel

import org.voltdb. * ;

@ProcInfo(
 partitionInfo = "HE
 singlePartition = t

public final SQLStmt
public VoltTable[] run

Stored Procedures

<?xml version="1.0"?>
<project>
 <database name='data
 <schema path='ddl.
 <partition table=‘
 </database>
</project>

Project.xml

March 3, 2009 |

Technical Overview - Transactions

•  All access to VoltDB is via Java
stored procedures (Java + SQL)

•  A single invocation of a stored
procedure is a transaction
(committed on success)

•  Limits round trips between DBMS
and application

•  High performance client
applications communicate
asynchronously with VoltDB

SQL

March 3, 2009 |

Technical Overview – Clusters/Durability

•  Scalability
•  Increase RAM in servers to add capacity
•  Add servers to increase performance / capacity
•  Consistently measuring 90% of single-node

performance increase per additional node
•  High availability

•  K-safety for redundancy
•  Snapshots

•  Scheduled, continuous, on demand
•  Spooling to data warehouse
•  Disaster Recovery/WAN replication (Future)

•  Asynchronous replication

March 3, 2009 |

Comparing VoltDB
to Traditional

OLTP
(in no particular order)

14

March 3, 2009 |

Asynchronous Communications

•  Client applications communicate asynchronously with
VoltDB
•  Stored procedure invocations are placed “on the wire”
•  Responses are pulled from the server
•  Allows a single client application to generate > 100K TPS
•  Our client library will simulate synchronous if needed

Traditional
salary := get_salary(employee_id);

VoltDB

callProcedure(asyncCallback, “get_salary”, employee_id);

15

March 3, 2009 |

Transaction Control

•  VoltDB does not support client-side transaction control
•  Client applications cannot:

+  insert into t_colors (color_name) values (‘purple’);
+  rollback;

•  Stored procedures commit if successful, rollback if failed
•  Client code in stored procedure can call for rollback

16

March 3, 2009 |

Interfacing with VoltDB

•  Client applications interface with VoltDB via stored
procedures
•  Java stored procedures – Java and SQL
•  No ODBC/JDBC

17

March 3, 2009 |

Lack of concurrency

•  Single-threaded execution within partitions (single-
partition) or across partitions (multi-partition)

•  No need to worry about locking/dead-locks
•  great for “inventory” type applications

+  checking inventory levels
+  creating line items for customers

•  Because of this, transactions execute in microseconds.
•  However, single-threaded comes at a price

•  Other transactions wait for running transaction to complete
•  Don’t do anything crazy in a SP (request web page, send email)
•  Useful for OLTP, not OLAP

18

March 3, 2009 |

Throughput vs. Latency

•  VoltDB is built for throughput over latency
•  Latency measured in mid single-digits in a properly sized

cluster
•  Do not estimate latency as (1 / TPS)

19

March 3, 2009 |

SQL Support

•  SELECT, INSERT (using values), UPDATE, and
DELETE

•  Aggregate SQL supports AVG, COUNT, MAX, MIN, SUM
•  Materialized views using COUNT and SUM
•  Hash and Tree Indexes
•  SQL functions and functionality will be added over time,

for now I do it in Java
•  Execution plan for all SQL is created at compile time and

available for analysis

20

March 3, 2009 |

SQL in Stored Procedures

•  SQL can be parameterized, but not dynamic

“select * from foo where bar = ?;” (YES)

“select * from ? where bar = ?;” (NO)

March 3, 2009 |

Connecting to the Cluster

•  Clients connect to one or more nodes in the
VoltDB cluster, transactions are forwarded to
the correct node
•  Clients are not aware of partitioning strategy

•  In the future we may send back data in the
response indicating if the transaction was sent to
the correct node.

March 3, 2009 |

Schema Changes

•  Traditional OLTP
•  add table…
•  alter table…

•  VoltDB
•  modify schema and stored procedures
•  build catalog
•  deploy catalog

•  V1.0: Add/drop users, stored procedures
•  V1.1: Add/drop tables
•  Future: Add/drop column, …

March 3, 2009 |

Table/Index Storage

•  VoltDB is entirely in-memory

•  Cluster must collectively have enough RAM to
hold all tables/indexes (k + 1 copies)

•  Even data distribution is important

March 3, 2009 |

Migration
and

Development

25

March 3, 2009 |

Migrating to VoltDB

1.  Grab your existing DDL, SQL, and stored
procedures.

2.  Compile your VoltDB Application.
3.  Sorry…

•  Review your application as a whole
•  Partitioning is HUGE
•  Everything inside stored procedures
•  SQL requirements

March 3, 2009 |

Client Libraries

•  We support Java and C++ natively
•  PHP is via C++/SWIG
•  SWIG can produce many others
•  Long-term roadmap is native PHP, Python, C#,

and others.
•  Community has developed Erlang (wire

protocol) and Ruby (HTTP/JSON)
•  HTTP/JSON interface also available

•  Easily used by most languages
•  Server can handle ~1,000 requests per second

March 3, 2009 |

Getting Data In and Out

•  In: Create simple client application to read flat
file and load into table(s).
•  1 SQL stored procedures can be defined in XML
•  Working on a generic utility for loading

•  Out: Snapshot to flat file
•  Snapshots can be converted to CSV/TSV data

•  Out: EL
•  Special type of tables in VoltDB

+  export (insert/update/delete) or export only (insert only)

+  client application reads from buffers and acks when done
•  currently targeting file-system, JDBC coming

March 3, 2009 |

Q & A

•  Visit http://voltdb.com to…
•  Download VoltDB
•  Get sample app code

•  Join the VoltDB community
•  VoltDB user groups: www.meetup.com/voltdb
•  Follow VoltDB on Twitter @voltdb

•  Contact me
•  tcallaghan@voltdb.com (email)
•  @tmcallaghan (Twitter)

29

