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Lecture Outline

« Review
— OLAP with SQL

» Big Data (introduction) - Continued
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Visualization — Star Schema

Dimension Table (Bars) Dimension Table (Drinkers)

\Dimension Attrs. / Dependent Attrs.

~ /
_— \\
/T:act Table - Sales\

Dimension Table (Beers) Dimension Table (etc.)

From anonymous “olap.ppt” found on Google
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Typical OLAP Queries

« Often, OLAP queries begin with a “star join™: the
natural join of the fact table with all or most of
the dimension tables.

« Example:

SELECT *

FROM Sales, Bars, Beers, Drinkers

WHERE Sales.bar = Bars.bar AND
Sales.beer = Beers.beer AND
Sales.drinker = Drinkers.drinker;

From anonymous “olap.ppt” found on Google
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Example: OLAP Query

* For each bar in Palo Alto, find the total
sale of each beer manufactured by
Anheuser-Busch.

e Filter: addr = “Palo Alto” and manf =
“Anheuser-Busch”.

« Grouping: by bar and beer.
« Aggregation: Sum of price.
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Example: In SQL

SELECT bar, beer, SUM(price)

FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers

WHERE addr = "Palo Alto AND
manf = Anheuser-Busch’

GROUP BY bar, beer;

From anonymous “olap.ppt” found on Google
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Using Materialized Views

A direct execution of this query from Sales
and the dimension tables could take too
long.

* |f we create a materialized view that
contains enough information, we may be
able to answer our query much faster.
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Example: Materialized View

* Which views could help with our query?
 Key issues:
1. It must join Sales, Bars, and Beers, at least.
2. It must group by at least bar and beer.

3. It must not select out Palo-Alto bars or
Anheuser-Busch beers.

4. It must not project out addr or mant.

From anonymous “olap.ppt” found on Google
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Example --- Continued

* Here is a materialized view that could help:

CREATE VIEW BABMS (bar, addr,
beer, manf, sales) AS

SELECT bar, addr, beer, manft,
SUM (price) sales

FROM Sales NATURAL JOIN Bars
NATURAL JOIN Beers

GROUP BY bar, |addr,| beer, | mant;

Since bar -> addr and beer -> manf, there is no real
grouping. We need addr and manf in the SELECT.

From anonymous “olap.ppt” found on Google
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Example --- Concluded

« Here’ s our query using the materialized

view BABMS:
SELECT bar, beer, sales
FROM BABMS
WHERE addr = "Palo Alto AND
manf = ~Anheuser-Rusch’ ;

From anonymous “olap.ppt” found on Google
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Marginals

* The data cube also includes aggregation
(typically SUM) along the margins of the
cube.

 The marginals include aggregations over
one dimension, two dimensions,...
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Structure of the Cube

* Think of each dimension as having an
additional value *.

« A point with one or more *’ s in its
coordinates aggregates over the
dimensions with the *’s.

« Example: Sales(“Joe’ s Bar”, “Bud”, *, *)
holds the sum over all drinkers and all time
of the Bud consumed at Joe’ s.

L)
IS 257 — Fall 2015 1 UC Berkeley School of Information 2015.11.17- SLIDE 14



Roll Up and Drill Down

$ of Anheuser-Busch by drinker/bar

Jim Bob Mary
Joe’s 45 33 30
Bar
Nut- 50 36 42
House
Blue 38 31 40
Chalk

$ of A-B / drinker

Jm |Bob [|Mary

- 133 100 |112

Roll up

by Bar Drill down
by Beer

$ of A-B Beers / drinker
Jim |Bob Mary

Bud |40 |29 40
M'lob |45 |31 37

Bud |48 |40 35
Light
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Materialized Data-Cube Views

« Data cubes invite materialized views that
are aggregations in one or more
dimensions.

* Dimensions may not be completely
aggregated --- an option is to group by an
attribute of the dimension table.
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Data Mining

« Data mining is a popular term for
queries that summarize big data sets in
useful ways.

 Examples:
1. Clustering all Web pages by topic.

2. Finding characteristics of fraudulent credit-
card use.

)
IS 257 — Fall 2015 1 UC Berkeley School of Information 2015.11.17- SLIDE 17



Market-Basket Data

* An important form of mining from relational
data involves market baskets = sets of
“items” that are purchased together as a
customer leaves a store.

 Summary of basket data is frequent
itemselts = sets of items that often appear

together in baskets.
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Finding Frequent Pairs

* The simplest case is when we only want to
find “frequent pairs” of items.

 Assume data is in a relation
Baskets(basket, item).

* The support threshold s is the minimum
number of baskets in which a pair appears
before we are interested.

From anonymous “olap.ppt” found on Google
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Frequent Pairs in SQL

Look for two

SELECT bl.item, b2.item _— Dokerfuples

FROM Baskets bl, Baskets b2 basketand
different items.
WHERE bl.basket = bZ2.basket First item must

AND bl.item < b2.item precede second,

so we don’t
GROUP BY bl.item, b2.item count the same
'\ pair twice.
HAVING COUNT (*) >= s;
f | | Create a group for
Throw away pairs of items each pair of items
that do not appear at least that appears in at
S times. least one basket.

From anonymous “olap.ppt” found on Google
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Lecture Outline

e Review
— OLAP with SQL

» Big Data (introduction) - Continued
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Big Data and Databases

* “640K ought to be enough for anybody.”
— Attributed to Bill Gates, 1981
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Big Data and Databases

* We have already mentioned some Big
Data

— The Walmart Data Warehouse

— Information collected by Amazon on users
and sales and used to make
recommendations

 Most modern web-based companies
capture EVERY THING that their
customers do

— Does that go into a Warehouse or someplace
else?
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Other Examples

« NASA EOSDIS
— Estimated 1078 Bytes (Exabyte)

« Computer-Aided design
 The Human Genome

« Department Store tracking

— Mining non-transactional data (e.g. Scientific
data, text data?)

* Insurance Company
— Multimedia DBMS support
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Kilobyte (KB)

1,000 bytes OR 105bytes
2 Kilobytes: A Typewritten page.
100 Kilobytes: A low-resolution photograph.

Megabyte (MB)

1,000,000 bytes OR 108 bytes

1 Megabyte: A small novel OR a 3.5 inch floppy disk.
2 Megabytes: A high-resolution photograph.

5 Megabytes: The complete works of Shakespeare.
10 Megabytes: A minute of high-fidelity sound.

100 Megabytes: 1 meter of shelved books.

500 Megabytes: A CD-ROM.

Gigabyte (GB)

1,000,000,000 bytes OR 10° bytes

1 Gigabyte: a pickup truck filled with books.

20 Gigabytes: A good collection of the works of Beethoven.
100 Gigabytes: A library floor of academic journals.

Terabyte (TB)

1,000,000,000,000 bytes OR 1072 bytes

1 Terabyte: 50000 trees made into paper and printed.

2 Terabytes: An academic research library.

10 Terabytes: The print collections of the U.S. Library of Congress.
400 Terabytes: National Climactic Data Center (NOAA) database.

Petabyte (PB)

1,000,000,000,000,000 bytes OR 107° bytes

1 Petabyte: 3 years of EOS data (2001).

2 Petabytes: All U.S. academic research libraries.
20 Petabytes: Production of hard-disk drives in 1995.
200 Petabytes: All printed material.

Exabyte (EB)

1,000,000,000,000,000,000 bytes OR 1018 bytes
2 Exabytes: Total volume of information generated in 1999.
5 Exabytes: All words ever spoken by human beings.

Source: Many of these examples were taken from Roy Williams “Data Powers of Ten” web

age at Caltech.




Digitization of Everything: the Zettabytes are

coming

« Soon most
everything will be
recorded and
indexed

*  Much will remain
local

 Most bytes will never
be seen by humans.

« Search, data

. . ®
summarization, trend o . . G;g
. cave paintings .
detection, 5 Glgabytes B
information and ' 200368 g
paper 105 1))
knowledge 1450 2002 3B
. printing
z_xlt ra Ctlo nan dk electricity, telep:\gzg
ISCOovery are Key transistor 1947
. ing 1950
teC h no I ogies Source: UC Berkeley, School of Information Management and Systems. SO
Late 1960s
. Internet (DARPA) 1993
* SO will be The web
infrastructure to

February 2006 2

manage this.
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Before the Cloud there was the Grid

« So what' s this Grid thing anyhow?
» Data Grids and Distributed Storage
« Grid vs “Cloud”

The following borrows heavily from presentations by lan Foster (Argonne
National Laboratory & University of Chicago), Reagan Moore and others
from San Diego Supercomputer Center
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The Grid: On-Demand Access to Electricity

>

Quality, economies of scale
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By Analogy, A Computing Grid

* Decouples production and consumption
— Enable on-demand access
— Achieve economies of scale
— Enhance consumer flexibility
— Enable new devices

* On a variety of scales
— Department
— Campus
— Enterprise
— Internet Sou

) = -
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What is the Grid?

“The short answer is that, whereas the Web
IS a service for sharing information over
the Internet, the Grid is a service for
sharing computer power and data storage
capacity over the Internet. The Grid goes
well beyond simple communication
between computers, and aims ultimately to
turn the global network of computers into
one vast computational resource.”

Source: The Global Grid Forum
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Not Exactly a New |ldea ...

« “The time-sharing computer system can
unite a group of investigators .... one can
conceive of such a facility as an ...
intellectual public utility.”

— Fernando Corbato and Robert Fano , 1966

« “We will perhaps see the spread of
‘computer utilities’ , which, like present
electric and telephone utilities, will service
iIndividual homes and offices across the
country.” Len Kleinrock, 1967

. Sougce:
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But, Things are Different Now

* Networks are far faster (and cheaper)
— Faster than computer backplanes

« “Computing” is very different than pre-Net
— Our “computers” have already disintegrated
— E-commerce increases size of demand peaks
— Entirely new applications & social structures

« We’ ve learned a few things about
software

» But, the needs are changing too...

. Sougce:
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Progress of Science

« Thousand years ago:

science was empirical
describing natural phenomena

« Last few hundred years:
theoretical branch
using models, generalizations
« Last few decades: [

a computational branch
simulating complex phenomena

« Today: (big data/information)

data and information exploration (eScience)
unify theory, experiment, and simulation - information driven
— Data captured by sensors, instruments
or generated by simulator
— Processed/searched by software
— Information/Knowledge stored in computer
— Scientist analyzes database / files
using data management and statistics
— Network Science
— Cyberinfrastructure Source: Jim Gray

. "\:”we’
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Why the Grid?

1) Revolution in Science

* Pre-Internet
— Theorize &/or experiment, alone
or in small teams; publish paper
 Post-Internet

— Construct and mine large databases of
observational or simulation data

— Develop simulations & analyses -
— Access specialized devices remotel

— Exchange information within
distributed multidisciplinary teams
Sou
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Computational Science

* Traditional Empirical Science
— Scientist gathers data by direct observation
— Scientist analyzes data

« Computational Science

— Data captured by instruments
Or data generated by simulator

— Processed by software
— Placed in a database
— Scientist analyzes database
— tcl scripts
* or C programs
—on ASCII files
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* Pre-Internet
— Central data processing facility

* Post-Internet Y B
— Enterprise computing is highly dlstrlbuted
heterogeneous, inter-enterprise (B2B)
— Business processes increasingly
computing- & data-rich

— Qutsourcing becomes feasible =>
service providers of various sorts

Sou
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The Information Grid

Imagine a web of data

« Machine Readable
— Search, Aggregate, Transform, Report On, Mine Data
— using more computers, and less humans
e Scalable

— Machines are cheap — can buy 50 machines with
100Gb or memory and 100 TB disk for under $100K,
and dropping

— Network is now faster than disk

* Flexible

— Move data around without breaking the apps
Source: S. Banerjee, O. Alonso, M. Drake - ORACLE
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The Foundations are

Being Laid

b S Building the National Virtual Collaboratory
3 for Earthquake Engineering Research

.
‘e

36 Tier0/1 facility
@ Tier2 facility
W Tier3 facility

Lyon
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€110 e.

e HEP sites
o ESA sites
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Current Environment

« “Big Data” is becoming ubiquitous in
many fields
— enterprise applications
— Web tasks
— E-Science
— Digital entertainment

— Natural Language Processing (esp. for
Humanities applications)

— Social Network analysis
— Etc.

» Berkeley Institute for Data Science (BIDS)



Current Environment

« Data Analysis as a profit center

— No longer just a cost — may be the entire
business as in Business Intelligence

)
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Current Environment

 Ubiquity of Structured and Unstructured
data

— Text

— XML

— Web Data

— Crawling the Deep Web

* How to extract useful information from
“noisy” text and structured corpora?
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Current Environment

* Expanded developer demands

— Wider use means broader requirements, and
less interest from developers in the details of
traditional DBMS interactions

 Architectural Shifts in Computing

— The move to parallel architectures both
internally (on individual chips)

— And externally — Cloud Computing

L)
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The 3V's of Big Data

Volume — how much(?)
Velocity — how fast(?)
Variety — how diverse(?)
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High Velocity Data

 Examples:

— Harvesting hot topics from the Twitter
“firehose”

— Collecting “clickstream” data from websites
— System logs and Web logs

— High frequency stock trading (HFT)

— Real-time credit card fraud detection

— Text-in voting for TV competitions

— Sensor data

— Adwords auctions for ad pricing
* http://www.youtube.com/watch?v=a8qQXLby4PY
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High Velocity Requirements

e |Ingest at very high speeds and rates
— E.g. Millions of read/write operations per second

e Scale easily to meet growth and demand
peaks

e Support integrated fault tolerance

e Support a wide range of real-time (or “near-
time”) analytics

e Integrate easily with high volume analytic
datastores (Data Warehouses)
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Put Differently

You need to ingest a firehose in real
time

You need to process, validate, enrich
and respond in real-time (i.e. update)

You often need real-time analytics
(i.e. query)

)
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High Volume Data

« “Big Data” in the sense of large volume is
becoming ubiquitous in many fields

— enterprise applications
— Web tasks

— E-Science

— Digital entertainment

— Natural Language Processing (esp. for
Humanities applications — e.g. Hathi Trust)

— Social Network analysis
— Etc.
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« The Walmart Data Warehouse

— Often cited as one of, if not the largest data warehouse

 The Google Web database

— Current web

* The Internet Archive
— Historic web

* Flickr and YouTube
« Social Networks (E.g.: Facebook)

« NASA EOSDIS
— Estimated 1076 Bytes (Exabyte)

 Other E-Science databases

— E.g. Large Hadron Collider, Sloan Digital Sky Survey, Large
Synoptic Survey Telescope (2016)
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How Big is Big Data

* How big is big?

1 Kilobyte 1,000 bits/byte

1 megabyte 1,000,000

1 gigabyte 1,000,000,000

1 terabyte 1,000,000,000,000

1 petabyte 1,000,000,000,000,000

1 exabyte 1,000,000,000,000,000,000

1 zettabyte 1,000,000,000,000,000,000,000



What is Big Data?

* Ran across some interesting slides from a
decade ago that already frame the
problem and did a fair job of predicting
where we are today

— Slides by Jim Gray and Tony Hey : “In Search
of Petabyte Databases” ca. 2001
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Summary from Gray & Hey

 DBs own the sweet-spot:
—1GB to 100TB

* Big data is not in databases

« HPTS (high performance transaction
systems) crowd is not really high
performance storage (BIG DATA)

» Cost of storage is people:

— Performance goal:
1 Admin per PB

From Jim Gray and Tony Hey : “In Search of Petabyte Databases™ ca. 2001
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Why People?
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One row of one of Google’s data centers

Also — the plumbing need for cooling, and the many rows of the data center
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Difficulties with High Volume Data

* Browsibility

* Very long running analyses

» Steering Long processes

* Federated/Distributed Databases

* IR and item search capabilities

» Updating and normalizing data

* Changing requirements and structure
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IS 257 — Fall 2015 1 UC Berkeley School of Information 2015.11.17- SLIDE 53



High Variety

* Big data can come from a variety of
sources, for example:

— Equipment sensors: Medical, manufacturing,
transportation, and other machine sensor
transmissions

— Machine generated: Call detail records, web
logs, smart meter readings, Global Positioning
System (GPS) transmissions, and trading
systems records

— Social media: Data streams from social media
sites like Facebook and miniblog sites like
Twitter
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High Variety

* The problem of high variety comes when
these different sources must be combined
and integrated to provide the information
of interest

 Problems of:
— Different structures

— Different identifiers
— Different scales for variables

 Often need to combine unstructured or
semi-structured text (XML/JSON) with
structured data
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Various data sources

sources VWhat Does Machine Data Look Like?

ORDER,2012-05-21T14:04:12.484,10098213,569281734,67.17.10.12,43CD1A7B8322,5A-2100

Order Processing  May 21 14:04:12.996 wl-01.acme.com Order 569281734 failed for customer 10098213.
M Exception follows: weblogic.jdbc.extensions.ConnectionDeadSQLException:
Q weblogic.common.resourcepool.ResourceDeadException: Could not create pool connection. The
DBMS driver exception was: [BEA][Oracle JDBC Driver]Error establishing socket to host and port:

Mid:,'f;’;’a’e ACMEDB-01:1521. Reason: Connection refused

05/21 16:33:11.238 [CONNEVENT] Ext 1207130 (0192033): Event 20111, CTI Num:ServID:Type
0:19:9, App 0, ANI T7998#1, DNIS 5555685981, SerID 40489a07-7f6e-4251-801a-
13ae51a6d092, Trunk T451.16

05/21 16:33:11.242 [SCREENPOPEVENT] SerID 40489a07-7f6e-4251-801a-13ae51a6d092
CUSTID 10098213

05/21 16:37:49.732 [DISCEVENT] SerID 40489a07-7f6e-4251-801a-13ae51a6d092

L

——ph

Care IVR

{actor:{displayName:"Go Boys!!" followersCount: 1366, friendsCount:789,link:
™ "http://dallascowboys.com/",location:{displayName:"Dallas, TX",objectType:"place"},
U objectType:"person”,preferredUsername:"BOysF@n80",statusesCount:6072},body: "Just bought
this POS device from @ACME. Doesn't work! Called, gave up on waiting for them to answer! RT if
Twitter

C

you hate @ACME!!" objectType:"activity” postedTime:"2012-05-21T16:39:40.647-0600"}
From Stephen Sorkin of Splunk
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Integration of Variety

sourcedVlachine Data Contains Critical Insights

Customer ID Order ID Product ID

SA-2100
Order Processing 569281734 10098213
G Customer ID
Middleware

Error

' Time Waiting On Hold

16:33:

Care IVR CUSTID 10098213

16:37:

{actor:{displayName:"Go Boys!!" followe:sCount-1366 friendsCount:789, link:
"http://dallascowboys.com/",location: {dis TWitter ID [Dallas, TX" objectType Customer's Tweet

objectType:"person”,preferredUsername: "BOysF@n80" statusesCount:6072},body: "Just bought
this POS device from @ACME. Doesn't work! Called, gave up on waiting for them to answer! RT if
Twitter you hate @ACME!!",objectType:"activity”,postedTime:"2012-05-21T16:39:40.647-0600"}

Company’s Twitter ID From Stephen Sorkin of Splunk
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Current Environment

« Data Analysis as a profit center

— No longer just a cost — may be the entire
business as in Business Intelligence

)
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Current Environment

* Expanded developer demands

— Wider use means broader requirements, and
less interest from developers in the details of
traditional DBMS interactions

 Architectural Shifts in Computing

— The move to parallel architectures both
internally (on individual chips)

— And externally — Cloud Computing/Grid
Computing
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The Database Universe 201x
/ Relational

Non-relational Analytic  Mapr [Infobright  Netezza ParAccel SAP Sybase IQ
Piccolo  Hadoop Teradata gMC Calpont IBM InfoSphere
Dryad  Brisk  Hadapt Aster Data Greenplum VectorWise HP Vertica
Operational L. Orade IMBDB2 SQLServer JustOne™\
InterSystems Progress ‘
Objectivity Document MarkLogic MySQL Ingres PostgreSQL
Versant Lotus Notes McObject SAP Sybase ASE EnterpriseD8
NoSQL| coucrn O\ ||/ NewsQL rHandersocket

MongoD8
RavenDB

‘as-a-Service'||| Amazon RDS MySQL Cluster

Cloudant  App Engine - ATl e Gl
Datast Database.com GenieDB
Xeround FathomDB ScalAre

Schooner MySQL CodeFutures

Tokutek ScaleBase NimbusD8
Continuent VoltD8

Hypertable
HBase

Voldemort

BerkeleyDB GraphDB

k Data SPRAIN

Cache
Data Grid/Cache Terracotta  GigaSpaces Oracle Coherence
IBM eXtreme Scale GridGain  ScaleOut Vmware GemFire InfiniSpan CloudTran
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The Semantic Web

 The basic structure of the Semantic Web is based on
RDF triples (as XML or some other form)

« Conventional DBMS are very bad at doing some of the

things that the Semantic Web is supposed to do... (.e.g.,
spreading activation searching)

« “Triple Stores” are being developed that are intended to
optimize for the types of search and access needed for
the Semantic Web

« What if it really takes off?

L)



Preview: Massively Parallel

Proce

 MPP used to mean that you had to write a
lot of code to partition tasks and data, run
them on different machines, and combine

the results back together

* That has now largely been replaced due to
the MapReduce paradigm
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MapReduce and Hadoop

 MapReduce developed at Google
— To run the web crawlers and search engine

 MapReduce implemented in Nutch
— Doug Cutting at Yahoo!

— Became Hadoop (named for Doug'’s child’s
stuffed elephant toy)

L)



Motivation

» Large-Scale Data Processing
— Want to use 1000s of CPUs

« But don’ t want hassle of managing things

 MapReduce provides
— Automatic parallelization & distribution
— Fault tolerance
— 1/0O scheduling
— Monitoring & status updates

From “MapReduce...” by Dan Weld
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