
 
2015.10.22 SLIDE 1

 
IS 257 – Fall 2015 

Object-Relational Databases and  
OR Extensions 

University of California, Berkeley 
School of Information 

IS 257: Database Management 



 
2015.10.22 SLIDE 2

 
IS 257 – Fall 2015 

Lecture Outline 

•  Object-Relational DBMS 
– OR features in Oracle and MySQL 

•  Functions and Triggers 

– OR features in PostgreSQL 
•  Extending OR databases (examples from 

PostgreSQL) 



 
2015.10.22 SLIDE 3

 
IS 257 – Fall 2015 

Lecture Outline 

•  Object-Relational DBMS 
– OR features in Oracle and MySQL 

•  Functions and Triggers 

– OR features in PostgreSQL 
•  Extending OR databases (examples from 

PostgreSQL) 



 
2015.10.22 SLIDE 4

 
IS 257 – Fall 2015 

Object Relational Databases 

•  Background 
•  Object Definitions 

–  inheritance 
•  User-defined datatypes 
•  User-defined functions 



 
2015.10.22 SLIDE 5

 
IS 257 – Fall 2015 

Object Relational Databases 

•  Began with UniSQL/X unified object-oriented 
and relational system 

•  Some systems (like OpenODB from HP) were 
Object systems built on top of Relational 
databases 

•  Postgres project at Berkeley 
•  Miro/Montage/Illustra built on Postgres. 
•  Informix Buys Illustra. (DataBlades) 
•  Oracle Hires away Informix Programmers. 

(Cartridges) 
•  Informix bought by IBM (you can still get it) 



 
2015.10.22 SLIDE 6

 
IS 257 – Fall 2015 

Object Relational Data Model 

•  Class, instance, attribute, method, and 
integrity constraints 
– Class ≈ Relation, instance ≈ tuple, attribute… 

•  OID per instance 
•  Encapsulation 
•  Multiple inheritance hierarchy of classes 
•  Class references via OID object 

references 
•  Set-Valued attributes 
•  Abstract Data Types 



 
2015.10.22 SLIDE 7

 
IS 257 – Fall 2015 

Object Relational Extended SQL (Illustra) 

•  CREATE TABLE tablename {OF TYPE 
Typename}|{OF NEW TYPE typename} 
(attr1 type1, attr2 type2,…,attrn typen) 
{UNDER parent_table_name}; 

•  CREATE TYPE typename (attribute_name 
type_desc, attribute2 type2, …, attrn 
typen); 

•  CREATE FUNCTION functionname 
(type_name, type_name) RETURNS 
type_name AS sql_statement 



 
2015.10.22 SLIDE 8

 
IS 257 – Fall 2015 

Object-Relational SQL in ORACLE 

•  CREATE (OR REPLACE) TYPE 
typename AS OBJECT (attr_name, 
attr_type, …); 

•  CREATE TABLE OF typename; 



 
2015.10.22 SLIDE 9

 
IS 257 – Fall 2015 

Example 

•  CREATE TYPE ANIMAL_TY AS OBJECT  
(Breed VARCHAR2(25), Name 
VARCHAR2(25), Birthdate DATE); 
– Creates a new type 

•  CREATE TABLE Animal of Animal_ty; 
– Creates “Object Table” 



 
2015.10.22 SLIDE 10

 
IS 257 – Fall 2015 

Constructor Functions 

•  INSERT INTO Animal values 
(ANIMAL_TY(‘Mule’, ‘Frances’, 
TO_DATE(‘01-APR-1997’, ‘DD-MM-
YYYY’))); 
–  Insert a new ANIMAL_TY object into the table, 

i.e., the type name is a “constructor” 



 
2015.10.22 SLIDE 11

 
IS 257 – Fall 2015 

Selecting from an Object Table 

•  Just use the columns in the object… 

•  SELECT  Name from Animal; 



 
2015.10.22 SLIDE 12

 
IS 257 – Fall 2015 

More Complex Objects 

•  CREATE TYPE Address_TY as object 
(Street VARCHAR2(50), City 
VARCHAR2(25), State CHAR(2), zip 
NUMBER); 

•  CREATE TYPE Person_TY as object 
(Name VARCHAR2(25), Address 
ADDRESS_TY); 

•  CREATE TABLE CUSTOMER 
(Customer_ID NUMBER, Person 
PERSON_TY); 



 
2015.10.22 SLIDE 13

 
IS 257 – Fall 2015 

What Does the Table Look like? 

•  DESCRIBE CUSTOMER; 
•  NAME                           TYPE 
•  ----------------------------------------------------- 
•  CUSTOMER_ID           NUMBER 
•  PERSON                        NAMED TYPE 



 
2015.10.22 SLIDE 14

 
IS 257 – Fall 2015 

Inserting 

•  INSERT INTO CUSTOMER VALUES (1, 
PERSON_TY(‘John Smith’, 
ADDRESS_TY(‘57 Mt Pleasant St.’, 
‘Finn’, ‘NH’, 111111))); 



 
2015.10.22 SLIDE 15

 
IS 257 – Fall 2015 

Selecting from Abstract Datatypes 

•  SELECT Customer_ID from CUSTOMER; 
•  SELECT * from CUSTOMER; 

CUSTOMER_ID   PERSON(NAME, ADDRESS(STREET, CITY, STATE ZIP)) 
--------------------------------------------------------------------------------------------------- 
1                            PERSON_TY(‘JOHN SMITH’, ADDRESS_TY(‘57... 



 
2015.10.22 SLIDE 16

 
IS 257 – Fall 2015 

Selecting from Abstract Datatypes 

•  SELECT Customer_id, person.name from 
Customer; 

•  SELECT Customer_id, 
person.address.street from Customer; 



 
2015.10.22 SLIDE 17

 
IS 257 – Fall 2015 

Updating 

•  UPDATE Customer SET 
person.address.city = ‘HART’ where 
person.address.city = ‘Briant’; 



 
2015.10.22 SLIDE 18

 
IS 257 – Fall 2015 

MySQL 

•  So far, no data type definitions in 
MySQL 
– But would not be surprised to see them 

before too long 
– There are already spatial extensions 

and types 
– User-defined data types are in the 

current SQL standard, so they will 
probably make it into MySQL eventually  

– But user-defined functions and triggers 
are in MySQL 

 



 
2015.10.22 SLIDE 19

 
IS 257 – Fall 2015 

User-Defined Functions (Oracle) 

•  CREATE [OR REPLACE] FUNCTION 
funcname (argname [IN | OUT | IN OUT] 
datatype …) RETURN datatype (IS | AS) 
{block | external body} 



 
2015.10.22 SLIDE 20

 
IS 257 – Fall 2015 

Example 

Create Function BALANCE_CHECK 
(Person_name IN Varchar2) RETURN NUMBER 
is BALANCE NUMBER(10,2)  

BEGIN 
   SELECT sum(decode(Action, ‘BOUGHT’,  

Amount, 0)) - sum(decode(Action, ‘SOLD’, 
amount, 0)) INTO BALANCE FROM LEDGER 
where Person = PERSON_NAME; 

    RETURN BALANCE; 
END; 



 
2015.10.22 SLIDE 21

 
IS 257 – Fall 2015 

Example 

Select NAME, BALANCE_CHECK(NAME) 
from Worker; 
•  Would return the name and balance for 

each worker 



 
2015.10.22 SLIDE 22

 
IS 257 – Fall 2015 

Functions and Procedures - MySQL 

•  CREATE [DEFINER = { user | CURRENT_USER }] 
PROCEDURE sp_name ([proc_parameter[,...]]) 
[characteristic ...] routine_body  

•  CREATE [DEFINER = { user | CURRENT_USER }] 
FUNCTION sp_name ([func_parameter[,...]]) RETURNS 
type [characteristic ...] routine_body  

•  proc_parameter: [ IN | OUT | INOUT ] param_name 
type 

•  func_parameter: param_name type  
•  type: Any valid MySQL data type  
•  characteristic: LANGUAGE SQL | [NOT] 

DETERMINISTIC | { CONTAINS SQL | NO SQL | 
READS SQL DATA | MODIFIES SQL DATA } | SQL 
SECURITY { DEFINER | INVOKER } | COMMENT 
'string'  

•  routine_body: Valid SQL procedure statement  



 
2015.10.22 SLIDE 23

 
IS 257 – Fall 2015 

Defining a MySQL procedure 

mysql> delimiter //  
mysql> CREATE PROCEDURE simpleproc (OUT param1 INT) 
 -> BEGIN 
 -> SELECT COUNT(*) INTO param1 FROM t; 
 -> END//  
Query OK, 0 rows affected (0.00 sec)  
mysql> delimiter ;  
mysql> CALL simpleproc(@a);  
Query OK, 0 rows affected (0.00 sec)  
mysql> SELECT @a;  
+------+  
|  @a   |  
+------+  
|    3    |  
+------+  
1 row in set (0.00 sec)  



 
2015.10.22 SLIDE 24

 
IS 257 – Fall 2015 

Defining a MySQL Function 
mysql> CREATE FUNCTION hello (s CHAR(20))  
       RETURNS CHAR(50) DETERMINISTIC  
->    RETURN CONCAT('Hello, ',s,'!'); 
 Query OK, 0 rows affected (0.00 sec)  
mysql> SELECT hello('world');  
+----------------+  
| hello('world') |  
+----------------+  
| Hello, world! |  
+----------------+  
1 row in set (0.00 sec)  
 

DETERMINISTIC means the function always produces  
the same result for the same input parameters 



 
2015.10.22 SLIDE 25

 
IS 257 – Fall 2015 

TRIGGERS (Oracle) 

•  Create TRIGGER UPDATE_LODGING 
INSTEAD OF UPDATE on 
WORKER_LODGING for each row BEGIN  

   if :old.name <> :new.name then update 
worker set name = :new.name where 
name = :old.name; 

 end if; 
if :old.lodging <> … etc... 



 
2015.10.22 SLIDE 26

 
IS 257 – Fall 2015 

Triggers in MySQL 

•  CREATE 
    [DEFINER = { user | CURRENT_USER }] 
    TRIGGER trigger_name trigger_time 

trigger_event 
    ON tbl_name FOR EACH ROW 

trigger_stmt 
•  trigger_event can be INSERT, UPDATE, 

or DELETE 
•  trigger_time can be BEFORE or AFTER. 



 
2015.10.22 SLIDE 27

 
IS 257 – Fall 2015 

Triggers in MySQL 
CREATE TABLE test1(a1 INT);  
CREATE TABLE test2(a2 INT);  
CREATE TABLE test3(a3 INT NOT NULL 

AUTO_INCREMENT PRIMARY KEY);  
CREATE TABLE test4( a4 INT NOT NULL 

AUTO_INCREMENT PRIMARY KEY, b4 INT DEFAULT 
0 );  

delimiter | 
CREATE TRIGGER testref BEFORE INSERT ON test1 

FOR EACH ROW  
    BEGIN 
        INSERT INTO test2 SET a2 = NEW.a1;  
        DELETE FROM test3 WHERE a3 = NEW.a1;  
        UPDATE test4 SET b4 = b4 + 1 WHERE a4 = 

NEW.a1;  
END | 
delimiter ; 
 



 
2015.10.22 SLIDE 28

 
IS 257 – Fall 2015 

Triggers in MySQL (cont) 
mysql> INSERT INTO test3 (a3) VALUES  
(NULL), (NULL), (NULL), (NULL), (NULL), (NULL), (NULL), (NULL), (NULL),  
(NULL);  
mysql> INSERT INTO test4 (a4) VALUES (0), (0), (0), (0), (0), (0), (0), (0),  
(0), (0);  
mysql> INSERT INTO test1 VALUES  
    -> (1), (3), (1), (7), (1), (8), (4), (4); 
mysql> SELECT * FROM test1; 
+------+ 
| a1   | 
+------+ 
|    1 | 
|    3 | 
|    1 | 
|    7 | 
|    1 | 
|    8 | 
|    4 | 
|    4 | 
+------+ 
 



 
2015.10.22 SLIDE 29

 
IS 257 – Fall 2015 

Triggers in MySQL (cont.) 
mysql> SELECT * FROM test2; 
+------+ 
| a2   | 
+------+ 
|    1 | 
|    3 | 
|    1 | 
|    7 | 
|    1 | 
|    8 | 
|    4 | 
|    4 | 
+------+ 
 

mysql> SELECT * FROM test3; 
+----+ 
| a3 | 
+----+ 
|  2 | 
|  5 | 
|  6 | 
|  9 | 
| 10 | 
+----+ 
 

mysql> SELECT * FROM test4; 
+----+------+ 
| a4 | b4   | 
+----+------+ 
|  1 |    3 | 
|  2 |    0 | 
|  3 |    1 | 
|  4 |    2 | 
|  5 |    0 | 
|  6 |    0 | 
|  7 |    1 | 
|  8 |    1 | 
|  9 |    0 | 
| 10 |    0 | 
+----+------+ 
 



 
2015.10.22 SLIDE 30

 

Triggers in SQLite 

IS 257 – Fall 2015 



 
2015.10.22 SLIDE 31

 
IS 257 – Fall 2015 

Lecture Outline 

•  Object-Relational DBMS 
– OR features in Oracle  and MySQL 
– OR features in PostgreSQL 

•  Extending OR databases (examples from 
PostgreSQL) 



 
2015.10.22 SLIDE 32

 
IS 257 – Fall 2015 

PostgreSQL 

•  Derived from POSTGRES 
– Developed at Berkeley by Mike Stonebraker 

and his students (EECS) starting in 1986 
•  Postgres95 

– Andrew Yu and Jolly Chen adapted 
POSTGRES to SQL and greatly improved the 
code base 

•  PostgreSQL 
– Name changed in 1996, and since that time 

the system has been expanded to support all 
SQL standard features, plus unique 
extensions 



 
2015.10.22 SLIDE 33

 
IS 257 – Fall 2015 

PostgreSQL Classes 

•  The fundamental notion in Postgres is that of a 
class, which is a named collection of object 
instances. Each instance has the same 
collection of named attributes, and each attribute 
is of a specific type. Furthermore, each instance 
has a permanent object identifier (OID) that is 
unique throughout the installation. Because SQL 
syntax refers to tables, we will use the terms 
table and class interchangeably. Likewise, an 
SQL row is an instance and SQL columns are 
attributes. 



 
2015.10.22 SLIDE 34

 
IS 257 – Fall 2015 

Creating a Class 

•  You can create a new class by specifying the 
class name, along with all attribute names and 
their types:  

CREATE TABLE weather ( 
    city            varchar(80), 
    temp_lo         int,           -- low temperature 
    temp_hi         int,           -- high temperature 
    prcp            real,          -- precipitation 
    date            date 
);  



 
2015.10.22 SLIDE 35

 
IS 257 – Fall 2015 

PostgreSQL 

•  Postgres can be customized with an arbitrary 
number of user-defined data types. 
Consequently, type names are not syntactical 
keywords, except where required to support 
special cases in the SQL92 standard.  

•  So far, the Postgres CREATE command looks 
exactly like the command used to create a table 
in a traditional relational system. However, we 
will presently see that classes have properties 
that are extensions of the relational model.  



 
2015.10.22 SLIDE 36

 
IS 257 – Fall 2015 

PostgreSQL 

•  All of the usual SQL commands for 
creation, searching and modifying classes 
(tables) are available. With some 
additions… 

•  Inheritance 
•  Non-Atomic Values 
•  User defined functions and operators 



 
2015.10.22 SLIDE 37

 
IS 257 – Fall 2015 

Inheritance 

CREATE TABLE cities ( 
    name            text, 
    population      float, 
    altitude        int     -- (in ft) 
); 

CREATE TABLE capitals ( 
    state           char(2) 
) INHERITS (cities); 
  



 
2015.10.22 SLIDE 38

 
IS 257 – Fall 2015 

Inheritance 
ray=# create table cities (name varchar(50), population float,  
      altitude int); 
CREATE TABLE 
ray=# \d cities 
             Table "public.cities" 
   Column   |         Type          | Modifiers 
------------+-----------------------+----------- 
 name       | character varying(50) | 
 population | double precision      | 
 altitude   | integer               | 
 
ray=# create table capitals (state char(2)) inherits (cities); 
CREATE TABLE 
ray=# \d capitals 
            Table "public.capitals" 
   Column   |         Type          | Modifiers 
------------+-----------------------+----------- 
 name       | character varying(50) | 
 population | double precision      | 
 altitude   | integer               | 
 state      | character(2)          | 
Inherits: cities 
 



 
2015.10.22 SLIDE 39

 
IS 257 – Fall 2015 

Inheritance 

•  In Postgres, a class can inherit from zero 
or more other classes. 

•  A query can reference either  
– all instances of a class  
– or all instances of a class plus all of its 

descendants 



 
2015.10.22 SLIDE 40

 
IS 257 – Fall 2015 

Inheritance 

•  For example, the following query finds all the 
cities that are situated at an attitude of 500ft or 
higher:  

SELECT name, altitude 
    FROM cities 
    WHERE altitude > 500; 
+----------+----------+ 
|name      | altitude | 
+----------+----------+ 
|Las Vegas | 2174     | 
+----------+----------+ 
|Mariposa  | 1953     | 
+----------+----------+ 



 
2015.10.22 SLIDE 41

 
IS 257 – Fall 2015 

Inheritance     

•  On the other hand, to find the names of all cities, 
including state capitals, that are located at an 
altitude over 500ft, the query is:  

SELECT c.name, c.altitude 
   FROM cities* c 
    WHERE c.altitude > 500; 
which returns:  
+----------+----------+ 
|name      | altitude | 
+----------+----------+ 
|Las Vegas | 2174     | 
+----------+----------+ 
|Mariposa  | 1953     | 
+----------+----------+ 
|Madison   | 845      | 
+----------+----------+ 



 
2015.10.22 SLIDE 42

 
IS 257 – Fall 2015 

Inheritance 

•  The "*" after cities in the preceding query 
indicates that the query should be run over 
cities and all classes below cities in the 
inheritance hierarchy 

•  Many of the PostgreSQL commands 
(SELECT, UPDATE and DELETE, etc.) 
support this inheritance notation using "*"  



 
2015.10.22 SLIDE 43

 
IS 257 – Fall 2015 

Non-Atomic Values 

•  One of the tenets of the relational model is 
that the attributes of a relation are atomic 
–  I.e. only a single value for a given row and 

column (I.e., 1st Normal Form) 
•  Postgres does not have this restriction: 

attributes can themselves contain sub-
values that can be accessed from the 
query language 
– Examples include arrays and other complex 

data types. 



 
2015.10.22 SLIDE 44

 
IS 257 – Fall 2015 

Non-Atomic Values - Arrays 

•  Postgres allows attributes of an instance to be 
defined as fixed-length or variable-length multi-
dimensional arrays. Arrays of any base type or 
user-defined type can be created. To illustrate 
their use, we first create a class with arrays of 
base types.  

 
CREATE TABLE SAL_EMP ( 
    name            text, 
    pay_by_quarter  int4[], 
    schedule        text[][] 
);  



 
2015.10.22 SLIDE 45

 
IS 257 – Fall 2015 

Non-Atomic Values - Arrays 

•  The preceding SQL command will create a class 
named SAL_EMP with a text string (name), a 
one-dimensional array of int4 (pay_by_quarter), 
which represents the employee's salary by 
quarter and a two-dimensional array of text 
(schedule), which represents the employee's 
weekly schedule 

•  Now we do some INSERTSs; note that when 
appending to an array, we enclose the values 
within braces and separate them by commas. 



 
2015.10.22 SLIDE 46

 
IS 257 – Fall 2015 

Inserting into Arrays 

INSERT INTO SAL_EMP 
    VALUES ('Bill', 
    '{10000, 10000, 10000, 10000}', 
    '{{"meeting", "lunch"}, {}}'); 

INSERT INTO SAL_EMP 
    VALUES ('Carol', 
    '{20000, 25000, 25000, 25000}', 
    '{{"talk", "consult"}, {"meeting"}}'); 
  



 
2015.10.22 SLIDE 47

 
IS 257 – Fall 2015 

Querying Arrays 

•  This query retrieves the names of the employees 
whose pay changed in the second quarter:  

SELECT name 
    FROM SAL_EMP 
    WHERE SAL_EMP.pay_by_quarter[1] <> 
    SAL_EMP.pay_by_quarter[2]; 
+------+ 
|name  | 
+------+ 
|Carol | 
+------+  



 
2015.10.22 SLIDE 48

 
IS 257 – Fall 2015 

Querying Arrays 

•  This query retrieves the third quarter pay of all 
employees:  

 
SELECT SAL_EMP.pay_by_quarter[3] FROM 

SAL_EMP; 
+---------------+ 
|pay_by_quarter | 
+---------------+ 
|10000          | 
+---------------+ 
|25000          | 
+---------------+ 



 
2015.10.22 SLIDE 49

 
IS 257 – Fall 2015 

Querying Arrays 

•  We can also access arbitrary slices of an array, 
or subarrays. This query retrieves the first item 
on Bill's schedule for the first two days of the 
week.  

SELECT SAL_EMP.schedule[1:2][1:1] 
    FROM SAL_EMP 
    WHERE SAL_EMP.name = 'Bill'; 
+-------------------+ 
|schedule           | 
+-------------------+ 
|{{"meeting"},{""}} | 
+-------------------+ 



 
2015.10.22 SLIDE 50

 
IS 257 – Fall 2015 

Lecture Outline 

•  Object-Relational DBMS 
– OR features in Oracle 
– OR features in PostgreSQL 

•  Extending OR databases (examples from 
PostgreSQL) 



 
2015.10.22 SLIDE 51

 
IS 257 – Fall 2015 

PostgreSQL Extensibility 

•  Postgres is extensible because its operation is catalog-
driven 
–  RDBMS store metadata, or information about databases, tables, 

columns, etc., in what are commonly known as system catalogs. 
(Some systems call this the data dictionary).  

•  One key difference between Postgres and standard 
RDBMS is that Postgres stores much more information 
in its catalogs 
–  not only information about tables and columns, but also 

information about its types, functions, access methods, etc. 
•  These classes can be modified by the user, and since 

Postgres bases its internal operation on these classes, 
this means that Postgres can be extended by users 
–  By comparison, conventional database systems can only be 

extended by changing hardcoded procedures within the DBMS 
or by loading modules specially-written by the DBMS vendor.  



 
2015.10.22 SLIDE 52

 
IS 257 – Fall 2015 

Postgres System Catalogs 



 
2015.10.22 SLIDE 53

 
IS 257 – Fall 2015 

User Defined Functions 

•  CREATE FUNCTION allows a Postgres user to 
register a function with a database. 
Subsequently, this user is considered the owner 
of the function 

CREATE FUNCTION name ( [ ftype [, ...] ] ) 
    RETURNS rtype 
    AS {SQLdefinition}    
    LANGUAGE 'langname' 
    [ WITH ( attribute [, ...] ) ] 
 
CREATE FUNCTION name ( [ ftype [, ...] ] ) 
    RETURNS rtype 
    AS obj_file , link_symbol   
    LANGUAGE 'C' 
    [ WITH ( attribute [, ...] ) ] 



 
2015.10.22 SLIDE 54

 
IS 257 – Fall 2015 

Simple SQL Function 

•  CREATE FUNCTION one() RETURNS int4 
   AS 'SELECT 1 AS RESULT' 
    LANGUAGE 'sql'; 
 
SELECT one() AS answer; 

answer  
-------- 
      1  



 
2015.10.22 SLIDE 55

 
IS 257 – Fall 2015 

A more complex function 

•  To illustrate a simple SQL function, consider the 
following, which might be used to debit a bank 
account:  

create function TP1 (int4, float8) returns int4 
    as ‘update BANK set balance = BANK.balance - $2 
        where BANK.acctountno = $1; 
        select balance from bank  
          where accountno = $1; ‘  language 'sql';    
•  A user could execute this function to debit 

account 17 by $100.00 as follows:  
select (x = TP1( 17,100.0)); 



 
2015.10.22 SLIDE 56

 
IS 257 – Fall 2015 

SQL Functions on Composite Types  

•  When creating functions with composite types, you have to include 
the attributes of that argument. If EMP is a table containing 
employee data, (therefore also the name of the composite type for 
each row of the table) a function to double salary might be…  

 
CREATE FUNCTION double_salary(EMP) RETURNS integer  
     AS ' SELECT $1.salary * 2 AS salary; ' LANGUAGE SQL;  
 
SELECT name, double_salary(EMP) AS dream FROM EMP WHERE 

EMP.cubicle ~= point '(2,1)';  
name | dream  
  ------+-------  
  Sam | 2400  
 
Notice the use of the syntax $1.salary to select one field of the argument row value. Also 

notice how the calling SELECT command uses a table name to denote the entire 
current row of that table as a composite value.  



 
2015.10.22 SLIDE 57

 
IS 257 – Fall 2015 

SQL Functions on Composite Types 

•  It is also possible to build a function that 
returns a composite type. This is an 
example of a function that returns a single 
EMP row:  

CREATE FUNCTION new_emp() RETURNS 
EMP  

   AS ' SELECT text ''None'' AS name,  
   1000 AS salary,  
   25 AS age,  
   point ''(2,2)'' AS cubicle; ' LANGUAGE SQL;  



 
2015.10.22 SLIDE 58

 
IS 257 – Fall 2015 

External Functions 

•  This example creates a C function by calling a 
routine from a user-created shared library. This 
particular routine calculates a check digit and 
returns TRUE if the check digit in the function 
parameters is correct. It is intended for use in a 
CHECK contraint.  

CREATE FUNCTION ean_checkdigit(bpchar, bpchar) RETURNS 
bool 

    AS '/usr1/proj/bray/sql/funcs.so' LANGUAGE 'c'; 
CREATE TABLE product ( 
    id        char(8) PRIMARY KEY, 
    eanprefix char(8) CHECK (eanprefix ~ '[0-9]{2} [0-9]{5}') 
                      REFERENCES brandname(ean_prefix), 
    eancode   char(6) CHECK (eancode ~ '[0-9]{6}'), 
    CONSTRAINT ean    CHECK (ean_checkdigit(eanprefix, 

eancode)));  



 
2015.10.22 SLIDE 59

 
IS 257 – Fall 2015 

Creating new Types 

•  CREATE TYPE allows the user to register a new 
user data type with Postgres for use in the 
current data base. The user who defines a type 
becomes its owner. typename is the name of the 
new type and must be unique within the types 
defined for this database.  

CREATE TYPE typename ( INPUT = input_function, OUTPUT = 
output_function 

      , INTERNALLENGTH = { internallength | VARIABLE } [ , 
EXTERNALLENGTH = { externallength | VARIABLE } ] 

    [ , DEFAULT = "default" ] 
    [ , ELEMENT = element ] [ , DELIMITER = delimiter ] 
    [ , SEND = send_function ] [ , RECEIVE = receive_function ] 
    [ , PASSEDBYVALUE ] ) 



 
2015.10.22 SLIDE 60

 
IS 257 – Fall 2015 

New Type Definition 

•  This command creates the box data type and 
then uses the type in a class definition:  

CREATE TYPE box (INTERNALLENGTH = 8, 
    INPUT = my_procedure_1, OUTPUT = 

my_procedure_2); 
 
CREATE TABLE myboxes (id INT4, description 

box);  



 
2015.10.22 SLIDE 61

 
IS 257 – Fall 2015 

New Type Definition 

•  In the external language (usually C) 
functions are written for 

•  Type input 
– From a text representation to the internal 

representation 
•  Type output 

– From the internal represenation to a text 
representation 

•  Can also define function and operators to 
manipulate the new type  



 
2015.10.22 SLIDE 62

 
IS 257 – Fall 2015 

New Type Definition Example 

•  A C data structure is defined for the new 
type: 

typedef struct Complex { 
    double      x; 
    double      y; 
} Complex; 
  



 
2015.10.22 SLIDE 63

 
IS 257 – Fall 2015 

New Type Definition Example 

Complex * 
     complex_in(char *str) 
     { 
         double x, y; 
         Complex *result; 
         if (sscanf(str, " ( %lf , %lf )", &x, &y) != 2) { 
             elog(WARN, "complex_in: error in parsing”); 
             return NULL; 
         } 
         result = (Complex *)palloc(sizeof(Complex)); 
         result->x = x; 
         result->y = y; 
         return (result); 
     } 



 
2015.10.22 SLIDE 64

 
IS 257 – Fall 2015 

New Type Definition Example 

char * 
     complex_out(Complex *complex) 
     { 
         char *result; 
         if (complex == NULL) 
             return(NULL); 
         result = (char *) palloc(60); 
         sprintf(result, "(%g,%g)", complex->x,  

                    complex->y); 
         return(result); 
     } 



 
2015.10.22 SLIDE 65

 
IS 257 – Fall 2015 

New Type Definition Example 

•  Now tell the system about the new type… 
CREATE FUNCTION complex_in(opaque) 
    RETURNS complex 
    AS 'PGROOT/tutorial/obj/complex.so' 
    LANGUAGE 'c'; 
 
CREATE FUNCTION complex_out(opaque) 
    RETURNS opaque 
    AS 'PGROOT/tutorial/obj/complex.so' 
    LANGUAGE 'c'; 
 
CREATE TYPE complex ( 
    internallength = 16, 
    input = complex_in, 
    output = complex_out); 



 
2015.10.22 SLIDE 66

 
IS 257 – Fall 2015 

Operator extensions 

CREATE FUNCTION complex_add(complex, 
complex) 

  RETURNS complex 
    AS '$PWD/obj/complex.so' 
    LANGUAGE 'c'; 
 
CREATE OPERATOR + ( 
    leftarg = complex, 
    rightarg = complex, 
    procedure = complex_add, 
    commutator = + ); 



 
2015.10.22 SLIDE 67

 
IS 257 – Fall 2015 

Create tables using the type 

•  CREATE TABLE test_complex (a 
complex, b complex); 

•  INSERT INTO test_complex (a,b) values 
(….); 

 



 
2015.10.22 SLIDE 68

 
IS 257 – Fall 2015 

Now we can do… 

•  SELECT (a + b) AS c FROM test_complex; 

•  +----------------+ 
•  |c               | 
•  +----------------+ 
•  |(5.2,6.05)      | 
•  +----------------+ 
•  |(133.42,144.95) | 
•  +----------------+ 
•    



 
2015.10.22 SLIDE 69

 
IS 257 – Fall 2015 

Creating new Aggregates 

CREATE AGGREGATE complex_sum ( 
    sfunc1 = complex_add, 
    basetype = complex, 
    stype1 = complex, 
    initcond1 = '(0,0)'); 
SELECT complex_sum(a) FROM test_complex; 
         +------------+ 
         |complex_sum | 
         +------------+ 
         |(34,53.9)   | 
         +------------+ 



 
2015.10.22 SLIDE 70

 
IS 257 – Fall 2015 

Rules System 

•  CREATE RULE name AS ON event 
    TO object [ WHERE condition ] 
    DO [ INSTEAD ] [ action | NOTHING ] 

•  Rules can be triggered by any event 
(select, insert, update, delete, etc.) as 
opposed to triggers that can only apply to 
insert, update, delete and truncate 



 
2015.10.22 SLIDE 71

 

Triggers in PostgreSQL 
•  CREATE [ CONSTRAINT ] TRIGGER name 

{ BEFORE | AFTER | INSTEAD OF } { event 
[ OR ... ] } ON table_name [ FROM 
referenced_table_name ]  
[ NOT DEFERRABLE | [ DEFERRABLE ] 
{ INITIALLY IMMEDIATE | INITIALLY 
DEFERRED } ]  
[ FOR [ EACH ] { ROW | STATEMENT } ] 
[ WHEN ( condition ) ] EXECUTE PROCEDURE 
function_name ( arguments )  

•  where event can be one of: INSERT UPDATE 
[ OF column_name [, ... ] ] DELETE TRUNCATE  

IS 257 – Fall 2015 



 
2015.10.22 SLIDE 72

 
IS 257 – Fall 2015 

Views as Rules 

•  Views in Postgres are implemented using the 
rule system. In fact there is absolutely no 
difference between a  

  CREATE VIEW myview AS SELECT * FROM 
mytab; 

•  compared against the two commands  
CREATE TABLE myview (same attribute list as 

for mytab); 
CREATE RULE "_RETmyview" AS ON SELECT 

TO myview DO INSTEAD 
                      SELECT * FROM mytab; 



 
2015.10.22 SLIDE 73

 
IS 257 – Fall 2015 

Extensions to Indexing 

•  Access Method extensions in Postgres 
•  GiST: A Generalized Search Trees  

– Joe Hellerstein, UC Berkeley 



 
2015.10.22 SLIDE 74

 
IS 257 – Fall 2015 

Indexing in OO/OR Systems 

•  Quick access to user-defined objects 
•  Support queries natural to the objects 
•  Two previous approaches 

– Specialized Indices (“ABCDEFG-trees”) 
•  redundant code: most trees are very similar 
•  concurrency control, etc. tricky! 

– Extensible B-trees & R-trees (Postgres/
Illustra) 

•  B-tree or R-tree lookups only! 
•  E.g. ‘WHERE movie.video < ‘Terminator 2’ 



 
2015.10.22 SLIDE 75

 
IS 257 – Fall 2015 

GiST Approach 

•  A generalized search tree. Must be: 
•  Extensible in terms of queries 
•  General (B+-tree, R-tree, etc.) 
•  Easy to extend 
•  Efficient (match specialized trees) 
•  Highly concurrent, recoverable, etc. 



 
2015.10.22 SLIDE 76

 
IS 257 – Fall 2015 

GiST Applications 

•  New indexes needed for new apps... 
–  find all supersets of S 
–  find all molecules that bind to M 
–  your favorite query here (multimedia?) 
–  Keyword text indexes? 

•  ...and for new queries over old domains: 
–  find all points in region from 12 to 2 o’clock 

 
–  find all text elements estimated relevant to a query 

string 


