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Abstract 

This document contains a summary of the 
authors’ experiences with the Computational 
Medicine Center’s 2007 Medical Natural 
Language Processing Challenge.  It includes 
an overview of the basic NLP tasks they per-
formed, their results, and suggestions for fu-
ture work. 

1 Introduction 

The goal of this project was to develop an algo-
rithm that could accurately auto-assign ICD-9-CM 
codes to clinical free text.  The project itself is the 
final deliverable for the Applied Natural Language 
Processing1 course taught by Barbara Rosario at 
the School of Information2, UC Berkeley.  The 
idea for the project, as well as the corpus, comes 
from the Computational Medicine Center’s 2007 
Medical Natural Language Processing Challenge. 
 
1.1 Background 
 
The World Health Organization (WHO) is respon-
sible for the management of the International Clas-
sification of Diseases (ICD).  The ICD is the 
international standard diagnostic classification for 
general epidemiological and clinical use.3  The 
United States uses ICD-9-CM, a clinical modifica-
tion of the 9th revision of ICD, to code and classify 
morbidity data from inpatient and outpatient re-
cords, and physician offices.4 The National Center 
for Health Statistics (NCHS) and the Centers for 

                                                
1 http://courses.ischool.berkeley.edu/i256/f09/ 
2 http://www.ischool.berkeley.edu 
3 http://www.who.int/classifications/icd/en/ 
4 http://www.cdc.gov/nchs/icd.htm 

Medicare and Medicaid (CMS) are the governmen-
tal organizations that oversee all modifications to 
ICD-9-CM in the United States. 

While classification of morbidity data is useful 
for many reasons, the role ICD-9-CM codes play 
in healthcare reimbursement tends to overshadow 
other uses.  Almost every patient encounter with a 
provider is tagged with one or more ICD-9-CM 
codes.  These codes, in conjunction with Current 
Procedural Terminology (CPT) codes, are used to 
process the majority of health insurance claims in 
the United States.  The Centers for Medicare and 
Medicaid negotiate the baseline reimbursement 
rates that other insurance providers benchmark 
against. 
 
1.2 Purpose 
 
Physician impressions and diagnoses are usually 
captured via dictation or as free text, either written 
by hand or entered into unstructured form fields.  
Coders, often professionally trained, must then 
interpret what the physician meant and assign ICD-
9-CM codes prior to filing claims.  Because the 
codes determine the amount the provider will be 
reimbursed for their service, it’s crucial that they 
be as accurate as possible.  The complexity of 
ICD-9-CM makes this task far from trivial. 

As evidenced by our corpus, coders frequently 
disagree on what codes should be assigned.  This is 
to be expected given the nature of interpretation 
tasks and the subtle differences between ICD-9-
CM codes.  While it’s unrealistic to think that the 
right NLP algorithm could automate the process of 
assigning codes, algorithms can and already do 
help coders reach a decision faster by suggesting 
possible codes to choose from.  The decision sup-
port approach has been embraced by the healthcare 
industry for a number of tasks, ICD-9-CM coding 



being just one of them.  This project is an attempt 
at constructing a useful decision support algorithm 
for such a task. 

2 Related Work 

A number of the teams who participated in the 
Computational Medicine Center’s challenge have 
since published their methods and the results they 
achieved.  The strategies pursued by the authors of 
the two papers we’ve referenced were quite simi-
lar, and their algorithms both performed signifi-
cantly better than ours.  We will outline how their 
approach differed from ours here, and then briefly 
revisit some of the ideas that arise in our conclu-
sion. 

It became clear in reading the papers that pos-
sessing a strong understanding of the medical do-
main, and more specifically the logic behind the 
assignment of ICD-9-CM codes, is fundamental to 
this task.  It also became clear that a purely statisti-
cal approach would underperform when put up 
against rule based systems.  This point is well illus-
trated by considering the differences between the 
symptoms of diseases and the diseases themselves.  
To borrow an example from Crammer et al, the 
symptoms “cough” and “fever” are often associ-
ated with the disease “pneumonia.”  All three of 
these words have ICD-9-CM codes associated with 
them but the disease code will always take prece-
dence if the patient has the disease.  The challenge 
arises because in the majority of cases the patient 
will have these symptoms and not the disease.  
This leads to the over coding of symptoms. 

 Intelligent rule based systems have successfully 
overcome challenges like the one mentioned 
above.  However these rules are tedious to manu-
ally code into your system.  Farkas and Szarvas 
implement machine-learning techniques for dis-
covering and implementing these rules, but this 
type of approach was beyond our scope.  Instead 
we decided to see how well we could do with a 
purely statistical learning system that is described 
in more detail in sections three and four. 

 

3 Data and Features 

Our primary data source was a set of Radiology 
documents, marked up in XML, provided by the 
Computational Medicine Challenge.  The docu-

ments were obtained from the Department of Ra-
diology at the Cincinnati Children’s Hospital 
Medical Center.  Data was included in accordance 
with the following four principles: 

 
1. All data was made completely anonymous in ac-
cordance with HIPPA standards (which included dis-
ambiguation and data scrubbing). 
2. The dataset was constructed to best represent real-
world conditions. 
3. Data was also selected to represent all coding 
classes with more than one sample instance. 
4.  Representations of low-frequency classes were in-
cluded.5 
 
Each Radiology document contains two distinct 

sections.  The first section is broken into two free 
text fields, the clinical history and the impression. 
The clinical history is a quick summary of a pa-
tient’s condition as observed by the ordering phy-
sician prior to a radiological procedure.  The 
impression is a Radiologists interpretation of the 
results of the procedure.  The second section in 
each document contains a list of ICD-9-CM diag-
nostic codes relating to the patient visit. 

 
3.1 ICD-9-CM Coding 

 
ICD-9-CM codes range from 3-5 digits and are 

organized in a hierarchy.  The general rule is that 
the more digits a code has, the more specific the 
clinical concept it represents.  As mentioned previ-
ously, codes can represent both symptoms and dis-
eases. 

The rules for coding can be complex and some-
times arbitrary.  As guidelines, certain diagnoses 
should always be coded and uncertain diagnoses 
should never be coded. In practice, coding can be 
highly variable and institution-specific. For this 
reason each document in the dataset contains codes 
from three separate institutions, the clinic and two 
external coding companies.  In a democratic fash-
ion, when at least two of the three sources chose 
the same code a “CMC Majority” code was added 
to reflect this agreement.  This process is known as 
Majority Coding.  It is possible for none of the 
three sources to agree (and thus provide no major-
ity codes). 

While each coder is allowed to assign multiple 
codes to a document, the first code they assign is 
                                                
5 Pestian JP, Itert L, Andersen CL, Duch W. 



always considered the primary code.  The primary 
code has the strongest weight of all the codes when 
considered for claim processing.6 

The data from the challenge was split into the 
following two sets: 
 

1. Training Set (978 documents) 
2. Testing Set (976 documents) 

 
The two sets contained a total of 45 unique ICD-9-
CM codes.  The distribution of these codes in the 
training set is shown below. 
 

 
 

 
 
The documents also contained 94 distinct possible 
majority code combinations, though many of these 
combinations appeared no more than one or two 
times. 
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3.2 UMLSKS Data 
 
As we thought about how we might augment our 
dataset with external data it occurred to us that the 
most obvious improvement would simply be to 
leverage the official ICD-9-CM code definitions. 
In order to gain access to these definitions we had 
to register for a license from the United States Na-
tional Library of Medicine (NLM).  Once our li-
cense request was approved we were able to login 
to the Unified Medical Language Knowledge 
Source Server7 (UMLSKS), or more specifically, 
the NLM’s “UMLS and Source View” tool. 

It turned out that the application had a bit of a 
learning curve due to the complexity of the data 
that it makes available.  Eventually we were able to 
extract the definitions for all of the majority ICD-
9-CM codes in our dataset.  We then built a custom 
Python dictionary from the data using the IDC-9-
CM codes as keys and the definition strings as val-
ues.  This dictionary was used to build our corpus 
as described in the next section. 
 
3.3 Corpus Building 
 
In our first attempt at building a corpus we thought 
it would be helpful to subclass the XMLCorpus-
Reader and XMLCorpusView, both included in the 
python-based Natural Language Toolkit (NLTK).  
As it turned out, the XML schemas upon which 
these libraries were based differed significantly 
from the XML documents in our primary data 
source.  For instance, the British National corpus, 
the sole example8 of these classes in use, is com-
posed of numerous XML files, each of which con-
tains their own set of documents.  Most of the 
documents within these files are simply a single 
large text element.  Our data, on the other hand, is 
composed of multiple documents included in a 
single XML file. Further, as mentioned previously, 
each radiology report document included two dis-
tinct sections, each with multiple child elements.  
In short, the given model didn’t closely match our 
data source and attempting to make it work turned 
out to be more trouble than it was worth. 

                                                
7 http://www.nlm.nih.gov/research/umls/ 
8 
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.corpus.read
er.bnc-pysrc.html 
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Our second attempt proved to be successful be-
cause we parsed the XML ourselves and built our 
own custom corpus using python data structures, 
not something we had attempted in class previ-
ously.  The function we developed successfully 
returns our custom corpus from base XML files for 
both training and test corpuses (and further works 
with subsets of the data that we used for develop-
ment to avoid over-fitting of our data, etc…).  We 
leveraged python’s ElementTree module and used 
XPath to traverse the xml tree in building up the 
data structure. 

At the core of our corpus there are the following 
two buckets: 
 

1. Document Data (individual document data) 
2. Corpus Data (aggregated document data) 

 
All of the data we have either refers to a single 
document or to all of the documents in aggregate. 

For each document in the document list we 
would extract, process and store the entire clinical 
history text and the entire impression text com-
pletely separately.  We tokenized each text and 
then normalized it by lowercasing and stripping it.  
We then used NLTK’s implementation of the Por-
ter stemmer to stem each token, and again saved 
these lists of processed tokens separately. 

For each set of tokens, we then removed all 
elements that were either punctuation, in NLTK’s 
list of stop words, or were digits. 

We further added part-of-speech (POS) tagging 
(using NLTK’s POS-tagger) and saved the result 
of both the clinical history text and the impression 
text separately. 

We further added bigrams for both clinical his-
tory and impression texts using NLTK’s bigram 
processor. 

For easy, standardized access in each document, 
we then also created a dictionary including all of 
the above information. 

Code elements were then added to the corpus for 
each document.  For each ICD-9-CM code, we 
stored the order of the code, the origin of the code 
(which designated the entity responsible for adding 
the code to the dataset).  

For the dictionary of “overall corpus data”, we 
stored data so it could easily be aggregated across 
all documents in one place.  Overall corpus data 
that we created included all clinical history tokens, 
all impression tokens, the most common 75 history 

tokens, the most common 75 impression tokens, 
clinical history tagged with POS tagging, impres-
sions tagged with POS tagging, all nouns in the 
clinical history, all nouns in the impressions, all 
clinical history bigrams, all impression bigrams, 
the 75 most common history bigrams and the top 
75 most common impression bigrams.  

Finally we added all stemmed, stripped, and 
lowercased (normalized) tokens from the 
UMLSKS definitions and added on the distinct set 
of its tokens to our corpus. 
 
3.4 Features 
 
We extracted a wide range of features from our 
corpus for our classification activities.  

We extracted age as a feature via complex cus-
tom regular expressions from our corpus text sec-
tions found in radiation documents. We normalized 
age to an integer representing “number of days 
old”, and then aggregated these integer-based ages 
into more coarsely-grained categories of ages: e.g. 
‘under 1 month old’, ‘up to 1 month old’, 'under 3 
months old', etc…). 

We also indicated the presence (or lack of pres-
ence) of all UMLSKS definition tokens in both the 
history text and in the impression texts (set a Boo-
lean value for each token). 

We indicated categories with the number of 
words in each text description in case this was 
found to be significant.  

We indicated the presence (or lack of presence) 
of the top 75 bigrams in both the clinical history 
text and in the impression text. 

We indicated the presence (or lack of presence) 
of all nouns in our clinical history and impression 
texts. 

We indicated the presence (or lack of presence) 
of top tokens in both our clinical history text and 
impression texts. 

We also tried feeding back into our feature set 
the most informative words that we found from 
both our clinical history and impression texts, 
combined. 

We ran many combinations of the above Fea-
tures through our models. (You will see our results 
in section 4.4, below). 

 
 
 



4 Models and Results 

For our classification process we attempted to pre-
dict proper ICD-9-CM primary codes for all radi-
ology documents in both the training and test 
corpuses using a variety of the features we ex-
tracted.  In our case, primary codes were indicated 
as the code ordered first in association with a radi-
ology document.  Using this model we would 
achieve 100% accuracy if our predicted primary 
codes matched the actual primary codes found in 
the training and test datasets. 
 
4.1 Naïve Bayes, Maximum Entropy, and Deci-
sion Tree Classification Models 
 
We tested a wide matrix of features against Naïve 
Bayes, Maximum Entropy, and Decision Tree 
Classifiers. We experienced great success with the 
NLTK Naïve Bayes Classifier, some success with 
NLTK’s Maximum Entropy Classifier (though its 
running literally took hours of processing time for 
single runs), and we experienced unrecoverable 
non-debuggable errors when attempting to run us-
ing NLTK’s Decision tree classifier. 
 
4.2 Runtime Constraints and Solutions 
 
To attain the best results possible, we developed a 
matrix of feature possibilities for our classification 
tests. The matrix included more feature combina-
tions than we had available compute time to possi-
bly accomplish.  In light of this constraint, we 
front-loaded many features into our corpus (as you 
may have noticed in the details of section 3.3, and 
then decided to serialize our pre-prepared corpus to 
disk using python’s cPickle library.  The corpus 
preparation phase that had previously taken min-
utes to compute now was reduced to mere seconds 
via the serialization technique, an encouraging ac-
complishment. 

It was through repeated iterations that we 
achieved our final results matrix for the Naïve 
Bayes classifier.  
 
4.3 Results 
 
Note that running with the NLTK Maximum En-
tropy Classifier yielded generally lower results as 
seen in the charts, however, due to extremely long 
run times (even using pickling), it was not possible 

to attempt all the feature sets that we wished to 
use. 
 
4.3.1 Naïve Bayes 
 
Below are the results from some of the many fea-
ture set combinations we tried using Naïve Bayes: 

 
4.3.2 Maximum Entropy 
 

 
4.4 Benchmarks 
 
The challenge assessed accuracy in terms of two f1 
standards and a cost standard each defined mathe-
matically in the competition documentation.9  As 
previously noted, our accuracy was determined 
according to primary code accuracy.  In spite of 
this, the competition accuracy results offer a useful 
benchmark to assess our work.  The best f1 stan-
dard accuracy from the challenge was 89% and the 
average f1 standard accuracy in the challenge was 
77%. 

5 Conclusions 

This project gave us the opportunity to apply the 
concepts we learned in our natural language proc-
essing course to an interesting domain.  The chal-
lenge put forth by the Computational Medicine 
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Center provided us a great corpus and a benchmark 
upon which we could measure our success. The 
National Library of Medicine gave us access to 
some valuable data with which to augment our 
corpus. The NLTK library provided us with the 
tools necessary to annotate the corpus, build our 
features, and test their effectiveness using some of 
the more common classification algorithms.  To 
the extent that success is measured by how much 
you learn we’re very happy with the results we 
obtained. 

The applicability of the classification task we 
performed is indisputable.  As discussed in section 
1.2, there is a large and immediate commercial 
need for these types of algorithms.  Not only could 
they decrease the costs of healthcare but they could 
also increase the accuracy of data that is used for 
all kinds of research, leading to improvements in 
quality and outcomes.  These facts made our work 
more interesting and exciting. 

The results we obtained using the material and 
the tools covered in class were pretty good.  Using 
almost purely statistical methods and a multitude 
of different feature set combinations we were able 
to obtain an accuracy of 77%.  While this was 
quite a bit lower than the ~90% accuracy that won 
the contest, it is significantly higher than what we 
would have achieved by simply assigning the most 
common ICD-9-CM code to everything.  We are 
pretty confident that we could not have gotten 
much higher using our current methods. 

There exists ample opportunity for future im-
provement to our algorithm.  Addressing the symp-
tom versus disease issue would probably be the 
best place to start.  We could use some of our cur-
rent machine learning methods to help us deter-
mine where we are over fitting and then implement 
custom rules to address these areas.  This is essen-
tially the approach taken by Crammer et al and 
Richárd Farkas and György Szarvas.  However this 
is a time consuming process unless you can find a 
way to automatically discover and incorporate 
these rules.  
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