
Clinical Natural Language Processing
Auto-Assigning ICD-9 Codes

Abe Coffman Nat Wharton
School of Information School of Information

University of California, Berkeley University of California, Berkeley
Berkeley, CA, USA Berkeley, CA, USA

abecoffman@gmail.com wharton.n@gmail.com

Abstract

This document contains a summary of the
authors’ experiences with the Computational
Medicine Center’s 2007 Medical Natural
Language Processing Challenge. It includes
an overview of the basic NLP tasks they per-
formed, their results, and suggestions for fu-
ture work.

1 Introduction

The goal of this project was to develop an algo-
rithm that could accurately auto-assign ICD-9-CM
codes to clinical free text. The project itself is the
final deliverable for the Applied Natural Language
Processing1 course taught by Barbara Rosario at
the School of Information2, UC Berkeley. The
idea for the project, as well as the corpus, comes
from the Computational Medicine Center’s 2007
Medical Natural Language Processing Challenge.

1.1 Background

The World Health Organization (WHO) is respon-
sible for the management of the International Clas-
sification of Diseases (ICD). The ICD is the
international standard diagnostic classification for
general epidemiological and clinical use.3 The
United States uses ICD-9-CM, a clinical modifica-
tion of the 9th revision of ICD, to code and classify
morbidity data from inpatient and outpatient re-
cords, and physician offices.4 The National Center
for Health Statistics (NCHS) and the Centers for

1 http://courses.ischool.berkeley.edu/i256/f09/
2 http://www.ischool.berkeley.edu
3 http://www.who.int/classifications/icd/en/
4 http://www.cdc.gov/nchs/icd.htm

Medicare and Medicaid (CMS) are the governmen-
tal organizations that oversee all modifications to
ICD-9-CM in the United States.

While classification of morbidity data is useful
for many reasons, the role ICD-9-CM codes play
in healthcare reimbursement tends to overshadow
other uses. Almost every patient encounter with a
provider is tagged with one or more ICD-9-CM
codes. These codes, in conjunction with Current
Procedural Terminology (CPT) codes, are used to
process the majority of health insurance claims in
the United States. The Centers for Medicare and
Medicaid negotiate the baseline reimbursement
rates that other insurance providers benchmark
against.

1.2 Purpose

Physician impressions and diagnoses are usually
captured via dictation or as free text, either written
by hand or entered into unstructured form fields.
Coders, often professionally trained, must then
interpret what the physician meant and assign ICD-
9-CM codes prior to filing claims. Because the
codes determine the amount the provider will be
reimbursed for their service, it’s crucial that they
be as accurate as possible. The complexity of
ICD-9-CM makes this task far from trivial.

As evidenced by our corpus, coders frequently
disagree on what codes should be assigned. This is
to be expected given the nature of interpretation
tasks and the subtle differences between ICD-9-
CM codes. While it’s unrealistic to think that the
right NLP algorithm could automate the process of
assigning codes, algorithms can and already do
help coders reach a decision faster by suggesting
possible codes to choose from. The decision sup-
port approach has been embraced by the healthcare
industry for a number of tasks, ICD-9-CM coding

being just one of them. This project is an attempt
at constructing a useful decision support algorithm
for such a task.

2 Related Work

A number of the teams who participated in the
Computational Medicine Center’s challenge have
since published their methods and the results they
achieved. The strategies pursued by the authors of
the two papers we’ve referenced were quite simi-
lar, and their algorithms both performed signifi-
cantly better than ours. We will outline how their
approach differed from ours here, and then briefly
revisit some of the ideas that arise in our conclu-
sion.

It became clear in reading the papers that pos-
sessing a strong understanding of the medical do-
main, and more specifically the logic behind the
assignment of ICD-9-CM codes, is fundamental to
this task. It also became clear that a purely statisti-
cal approach would underperform when put up
against rule based systems. This point is well illus-
trated by considering the differences between the
symptoms of diseases and the diseases themselves.
To borrow an example from Crammer et al, the
symptoms “cough” and “fever” are often associ-
ated with the disease “pneumonia.” All three of
these words have ICD-9-CM codes associated with
them but the disease code will always take prece-
dence if the patient has the disease. The challenge
arises because in the majority of cases the patient
will have these symptoms and not the disease.
This leads to the over coding of symptoms.

 Intelligent rule based systems have successfully
overcome challenges like the one mentioned
above. However these rules are tedious to manu-
ally code into your system. Farkas and Szarvas
implement machine-learning techniques for dis-
covering and implementing these rules, but this
type of approach was beyond our scope. Instead
we decided to see how well we could do with a
purely statistical learning system that is described
in more detail in sections three and four.

3 Data and Features

Our primary data source was a set of Radiology
documents, marked up in XML, provided by the
Computational Medicine Challenge. The docu-

ments were obtained from the Department of Ra-
diology at the Cincinnati Children’s Hospital
Medical Center. Data was included in accordance
with the following four principles:

1. All data was made completely anonymous in ac-
cordance with HIPPA standards (which included dis-
ambiguation and data scrubbing).
2. The dataset was constructed to best represent real-
world conditions.
3. Data was also selected to represent all coding
classes with more than one sample instance.
4. Representations of low-frequency classes were in-
cluded.5

Each Radiology document contains two distinct

sections. The first section is broken into two free
text fields, the clinical history and the impression.
The clinical history is a quick summary of a pa-
tient’s condition as observed by the ordering phy-
sician prior to a radiological procedure. The
impression is a Radiologists interpretation of the
results of the procedure. The second section in
each document contains a list of ICD-9-CM diag-
nostic codes relating to the patient visit.

3.1 ICD-9-CM Coding

ICD-9-CM codes range from 3-5 digits and are

organized in a hierarchy. The general rule is that
the more digits a code has, the more specific the
clinical concept it represents. As mentioned previ-
ously, codes can represent both symptoms and dis-
eases.

The rules for coding can be complex and some-
times arbitrary. As guidelines, certain diagnoses
should always be coded and uncertain diagnoses
should never be coded. In practice, coding can be
highly variable and institution-specific. For this
reason each document in the dataset contains codes
from three separate institutions, the clinic and two
external coding companies. In a democratic fash-
ion, when at least two of the three sources chose
the same code a “CMC Majority” code was added
to reflect this agreement. This process is known as
Majority Coding. It is possible for none of the
three sources to agree (and thus provide no major-
ity codes).

While each coder is allowed to assign multiple
codes to a document, the first code they assign is

5 Pestian JP, Itert L, Andersen CL, Duch W.

always considered the primary code. The primary
code has the strongest weight of all the codes when
considered for claim processing.6

The data from the challenge was split into the
following two sets:

1. Training Set (978 documents)
2. Testing Set (976 documents)

The two sets contained a total of 45 unique ICD-9-
CM codes. The distribution of these codes in the
training set is shown below.

The documents also contained 94 distinct possible
majority code combinations, though many of these
combinations appeared no more than one or two
times.

6 Computational Medicine Challenge

3.2 UMLSKS Data

As we thought about how we might augment our
dataset with external data it occurred to us that the
most obvious improvement would simply be to
leverage the official ICD-9-CM code definitions.
In order to gain access to these definitions we had
to register for a license from the United States Na-
tional Library of Medicine (NLM). Once our li-
cense request was approved we were able to login
to the Unified Medical Language Knowledge
Source Server7 (UMLSKS), or more specifically,
the NLM’s “UMLS and Source View” tool.

It turned out that the application had a bit of a
learning curve due to the complexity of the data
that it makes available. Eventually we were able to
extract the definitions for all of the majority ICD-
9-CM codes in our dataset. We then built a custom
Python dictionary from the data using the IDC-9-
CM codes as keys and the definition strings as val-
ues. This dictionary was used to build our corpus
as described in the next section.

3.3 Corpus Building

In our first attempt at building a corpus we thought
it would be helpful to subclass the XMLCorpus-
Reader and XMLCorpusView, both included in the
python-based Natural Language Toolkit (NLTK).
As it turned out, the XML schemas upon which
these libraries were based differed significantly
from the XML documents in our primary data
source. For instance, the British National corpus,
the sole example8 of these classes in use, is com-
posed of numerous XML files, each of which con-
tains their own set of documents. Most of the
documents within these files are simply a single
large text element. Our data, on the other hand, is
composed of multiple documents included in a
single XML file. Further, as mentioned previously,
each radiology report document included two dis-
tinct sections, each with multiple child elements.
In short, the given model didn’t closely match our
data source and attempting to make it work turned
out to be more trouble than it was worth.

7 http://www.nlm.nih.gov/research/umls/
8
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.corpus.read
er.bnc-pysrc.html

0

50

100

150

200

250

300

78
6.
2

59
1

59
3.
89

49
3.
9

51
8

59
3.
5

V6
7.
09

78
6.
09

59
3.
1

78
6.
59

75
3

V4
2.
0

0
50
100
150
200
250
300

co
ug
h

fe
ve
r

UT
I

ve
si
co
ur
et
er
al

re
?lu
x

hy
dr
on
ep
hr
os
is

pn
eu
m
on
ia

ca
lc
i?i
ed
 b
la
dd
er

w
he
ez
in
g

ur
et
er
ic

ad
he
si
on
s

be
ni
gn
 h
em

at
ur
i

ot
he
r

Our second attempt proved to be successful be-
cause we parsed the XML ourselves and built our
own custom corpus using python data structures,
not something we had attempted in class previ-
ously. The function we developed successfully
returns our custom corpus from base XML files for
both training and test corpuses (and further works
with subsets of the data that we used for develop-
ment to avoid over-fitting of our data, etc…). We
leveraged python’s ElementTree module and used
XPath to traverse the xml tree in building up the
data structure.

At the core of our corpus there are the following
two buckets:

1. Document Data (individual document data)
2. Corpus Data (aggregated document data)

All of the data we have either refers to a single
document or to all of the documents in aggregate.

For each document in the document list we
would extract, process and store the entire clinical
history text and the entire impression text com-
pletely separately. We tokenized each text and
then normalized it by lowercasing and stripping it.
We then used NLTK’s implementation of the Por-
ter stemmer to stem each token, and again saved
these lists of processed tokens separately.

For each set of tokens, we then removed all
elements that were either punctuation, in NLTK’s
list of stop words, or were digits.

We further added part-of-speech (POS) tagging
(using NLTK’s POS-tagger) and saved the result
of both the clinical history text and the impression
text separately.

We further added bigrams for both clinical his-
tory and impression texts using NLTK’s bigram
processor.

For easy, standardized access in each document,
we then also created a dictionary including all of
the above information.

Code elements were then added to the corpus for
each document. For each ICD-9-CM code, we
stored the order of the code, the origin of the code
(which designated the entity responsible for adding
the code to the dataset).

For the dictionary of “overall corpus data”, we
stored data so it could easily be aggregated across
all documents in one place. Overall corpus data
that we created included all clinical history tokens,
all impression tokens, the most common 75 history

tokens, the most common 75 impression tokens,
clinical history tagged with POS tagging, impres-
sions tagged with POS tagging, all nouns in the
clinical history, all nouns in the impressions, all
clinical history bigrams, all impression bigrams,
the 75 most common history bigrams and the top
75 most common impression bigrams.

Finally we added all stemmed, stripped, and
lowercased (normalized) tokens from the
UMLSKS definitions and added on the distinct set
of its tokens to our corpus.

3.4 Features

We extracted a wide range of features from our
corpus for our classification activities.

We extracted age as a feature via complex cus-
tom regular expressions from our corpus text sec-
tions found in radiation documents. We normalized
age to an integer representing “number of days
old”, and then aggregated these integer-based ages
into more coarsely-grained categories of ages: e.g.
‘under 1 month old’, ‘up to 1 month old’, 'under 3
months old', etc…).

We also indicated the presence (or lack of pres-
ence) of all UMLSKS definition tokens in both the
history text and in the impression texts (set a Boo-
lean value for each token).

We indicated categories with the number of
words in each text description in case this was
found to be significant.

We indicated the presence (or lack of presence)
of the top 75 bigrams in both the clinical history
text and in the impression text.

We indicated the presence (or lack of presence)
of all nouns in our clinical history and impression
texts.

We indicated the presence (or lack of presence)
of top tokens in both our clinical history text and
impression texts.

We also tried feeding back into our feature set
the most informative words that we found from
both our clinical history and impression texts,
combined.

We ran many combinations of the above Fea-
tures through our models. (You will see our results
in section 4.4, below).

4 Models and Results

For our classification process we attempted to pre-
dict proper ICD-9-CM primary codes for all radi-
ology documents in both the training and test
corpuses using a variety of the features we ex-
tracted. In our case, primary codes were indicated
as the code ordered first in association with a radi-
ology document. Using this model we would
achieve 100% accuracy if our predicted primary
codes matched the actual primary codes found in
the training and test datasets.

4.1 Naïve Bayes, Maximum Entropy, and Deci-
sion Tree Classification Models

We tested a wide matrix of features against Naïve
Bayes, Maximum Entropy, and Decision Tree
Classifiers. We experienced great success with the
NLTK Naïve Bayes Classifier, some success with
NLTK’s Maximum Entropy Classifier (though its
running literally took hours of processing time for
single runs), and we experienced unrecoverable
non-debuggable errors when attempting to run us-
ing NLTK’s Decision tree classifier.

4.2 Runtime Constraints and Solutions

To attain the best results possible, we developed a
matrix of feature possibilities for our classification
tests. The matrix included more feature combina-
tions than we had available compute time to possi-
bly accomplish. In light of this constraint, we
front-loaded many features into our corpus (as you
may have noticed in the details of section 3.3, and
then decided to serialize our pre-prepared corpus to
disk using python’s cPickle library. The corpus
preparation phase that had previously taken min-
utes to compute now was reduced to mere seconds
via the serialization technique, an encouraging ac-
complishment.

It was through repeated iterations that we
achieved our final results matrix for the Naïve
Bayes classifier.

4.3 Results

Note that running with the NLTK Maximum En-
tropy Classifier yielded generally lower results as
seen in the charts, however, due to extremely long
run times (even using pickling), it was not possible

to attempt all the feature sets that we wished to
use.

4.3.1 Naïve Bayes

Below are the results from some of the many fea-
ture set combinations we tried using Naïve Bayes:

4.3.2 Maximum Entropy

4.4 Benchmarks

The challenge assessed accuracy in terms of two f1
standards and a cost standard each defined mathe-
matically in the competition documentation.9 As
previously noted, our accuracy was determined
according to primary code accuracy. In spite of
this, the competition accuracy results offer a useful
benchmark to assess our work. The best f1 stan-
dard accuracy from the challenge was 89% and the
average f1 standard accuracy in the challenge was
77%.

5 Conclusions

This project gave us the opportunity to apply the
concepts we learned in our natural language proc-
essing course to an interesting domain. The chal-
lenge put forth by the Computational Medicine

9 http://computationalmedicine.org/challenge/res.php

Center provided us a great corpus and a benchmark
upon which we could measure our success. The
National Library of Medicine gave us access to
some valuable data with which to augment our
corpus. The NLTK library provided us with the
tools necessary to annotate the corpus, build our
features, and test their effectiveness using some of
the more common classification algorithms. To
the extent that success is measured by how much
you learn we’re very happy with the results we
obtained.

The applicability of the classification task we
performed is indisputable. As discussed in section
1.2, there is a large and immediate commercial
need for these types of algorithms. Not only could
they decrease the costs of healthcare but they could
also increase the accuracy of data that is used for
all kinds of research, leading to improvements in
quality and outcomes. These facts made our work
more interesting and exciting.

The results we obtained using the material and
the tools covered in class were pretty good. Using
almost purely statistical methods and a multitude
of different feature set combinations we were able
to obtain an accuracy of 77%. While this was
quite a bit lower than the ~90% accuracy that won
the contest, it is significantly higher than what we
would have achieved by simply assigning the most
common ICD-9-CM code to everything. We are
pretty confident that we could not have gotten
much higher using our current methods.

There exists ample opportunity for future im-
provement to our algorithm. Addressing the symp-
tom versus disease issue would probably be the
best place to start. We could use some of our cur-
rent machine learning methods to help us deter-
mine where we are over fitting and then implement
custom rules to address these areas. This is essen-
tially the approach taken by Crammer et al and
Richárd Farkas and György Szarvas. However this
is a time consuming process unless you can find a
way to automatically discover and incorporate
these rules.

Acknowledgments
We’d like to thank Barbara Rosario for teaching
the natural language processing course and provid-
ing us with the background knowledge necessary
to take on this project. We’d also like to thank

Gopal Vaswani who provided assistance as the
GSI for the course.

We should also mention that the Computational
Medicine Center did a great job setting up this
challenge and making the data available to students
such as ourselves. We can only hope that more
organizations such as this one will make corpus
data available for future challenges in the medical
field.

References
Computational Medicine Center. 2007. The Computa-

tional Medicine Center’s 2007 Medical Natural Lan-
guage Processing Challenge.

 http://computationalmedicine.org/challenge/index.ph
p

Richárd Farkas and György Szarvas. 2007. Automatic

Construction of Rule-based ICD-9-CM Coding Sys-
tems. BMC Bioinformatics, 2008.

 http://www.biomedcentral.com/content/pdf/1471-
2105-9-S3-S10.pdf

Koby Crammer, Mark Dredze, Kuzman Ganchev, and

Partha Pratim Talukdar. 2007. Automatic Code As-
signment to Medical Text.

 http://www.cs.jhu.edu/~mdredze/publications/cmc_bi
onlp07.pdf

Pestian JP, Itert L, Andersen CL, Duch W. Preparing

Clinical Text for Use in Biomedical Research. Jour-
nal of Database Management. 2005;17(2):1-12

