# NLP-based Course Clustering and Recommendation 

Kentaro Suzuki, Hyunwoo Park

December 10, 2009


#### Abstract

We have implemented NLP-based UC Berkeley course recommendation system by scoring similarity of courses and clustering courses based on course descriptions. In terms of course scoring, a simple tf-idf scheme and the inner product model is so powerful that we can easily find similar courses for each course. In terms of course clustering, the EM algorithm can effectively cluster courses into several clusters. Each cluster has one or some characteristic(s) and the information of which cluster a course belongs to is useful additional information for users to search the courses which they may be interested in because the cluster information may make up for a downside of a scalar representation of course similarity.


## 1 Introduction

When students register courses to enroll in, they usually depend on their department's formal advice or their friends' informal recommendation. It is partly because there is no legitimate resource outside with which students search the list of related courses. In other words, it is generally hard to discover a new course which one might be interested in taking only if one knows its existence.

Recognizing this problem, we decided to use Natural Language Processing (NLP) as a tool for generating a set of relevant courses for a given course entry. These lists are to be used for recommending courses regardless of the department the class is offered by.

## 2 Related Work

One related work to our project is online course catalog. UC Berkeley is currently providing online course schedul $\ell^{1}$. but a user cannot search a course based on course description. Instead, meta information such as a department code or class time is the only available source to search with. This system is useful when a user knows some information about the course he/she is looking for. However, when a user is just trying to discover relevant courses, benefits of this system can be very limited. When it comes to cross-departmental course recommendation, such a system cannot provide a sufficient measure to find relevant courses.

## 3 Data, Features and Models

### 3.1 Corpus Construction

First, the entire course catalog should be gathered and constructed in order to be used as an NLP corpus to be analyzed. Another online course catalog search interfact ${ }^{2}$ provided by UC Berkeley was used to scrape course information. The following five information was collected for each course: department, department code, course number, title, description. After removing courses without description, 7004 courses remained.

[^0]Table 1: Sample Course Raw Data

| Dept Name | Information |
| :---: | :---: |
| Dept Code | INFO |
| Course No | 256 |
| Title | Applied Natural Language Processing |
| Description | This course examines the state-of-the-art in applied Natural Language Processing (also known as content analysis and language engineering), with an emphasis on how well existing algorithms perform and how they can be used (or not) in applications. Topics include part-of-speech tagging, shallow parsing, text classification, information extraction, incorporation of lexicons and ontologies into text analysis, and question answering. Students will apply and extend existing software tools to text-processing problems. |

### 3.2 Lemmatization

We used course title and description as the target of our NLP analysis. We then tokenized title and description of each course by removing white spaces and punctuations, and making it lowercased. Therefore, the analysis is based on unigrams. One problem we faced after this process was that frequency of each word is actually quite low to be useful. There can be several ways to do so, and we decided to lemmatize each word using NLTK's WordNet morphy() function. Stemming with the Porter's stemmer was an alternative, but we thought it reduced feature too much. On the other side, some words appeared too much. We removed them using a list of stop words. ${ }^{3}$

Table 2: Sample Course Data After Lemmatization

Dept Name
Dept Code Course No Title Description

Information
INFO
256
apply natural language processing
course examine state-of-the-art apply natural language processing also know content analysis language engineering emphasis how well exist algorithm perform how they can use not application topic include part-of-speech tag shallow parse text classification information extraction incorporation lexicon ontology into text analysis question answer student apply extend exist software tool text-processing problem

### 3.3 Features and Models

### 3.3.1 Features and Models for Scoring

In order to compute a score of similarity between courses, we use a vector space model and tf-idf weighting scheme. We use $\mathrm{tf}_{t, d}$, the frequency of term $t$ in course description $d$, as term occurrence parameter, and $\log \frac{N}{\mathrm{df}_{t}}$, the logarithm document frequency, as document frequency, where $N$ is the total number of courses and $\mathrm{df}_{t}$ is the number of courses $t$ occurs in. tf-idf course vectors $\left(\mathrm{tf}_{1, d} \times \frac{\mathrm{N}}{\mathrm{df}_{1}}, \mathrm{tf}_{2, d} \times \frac{\mathrm{N}}{\mathrm{df}_{2}}, \cdots\right)$ are normarized and vector similarity is computed by inner product.This method is very common in the field of information retrieval [1]. In terms of scoring, we used course titles as well as course descriptions to improve the results. In that case, the weight between title and description was 1 to 1 .

[^1]
### 3.3.2 Features and Models for Clustering

We adopted the bag of words approach to generate a feature for each course. If a course has a word, the element of the course vector will be true, and false otherwise. Namely, the course description representation vector is described as $<e_{1}, e_{2}, e_{3}, \ldots e_{M}>$, where $e_{i}=1$ if term $t_{i}$ appears in the course description, otherwise $e_{t}=0$. Each boolean vector represents a course. For clustering, multi-gaussian Bernoulli model[2] is assumed. Namely, we assume that each course is generated from one of clusters and the probability of occurrence of a word in each course description is computed based on the distance between each course vector and the center of each cluster. We classify each course to the cluster with the maximum probability of generating the course.

In terms of clustering model, the course description representation vector is described as $<e_{1}, e_{2}, e_{3}, \ldots e_{M}>$, where $e_{i}=1$ if term $t_{i}$ appears in the course description, otherwise $e_{t}=0$.

We use the EM algorithm to compute clusters [3. However, in case we start to run the EM algorithm from a randomized initial set of clusters, the EM algorithm needs quite a few iterate computations to find the most appropriate set of clusters. In order to save computational time, we use K-means to find initial state of centroids of clusters.

## 4 Results

### 4.1 Scoring

Scoring result seems very good. We have already implemented a search-engine like interface 4 and you can refer to it. For example, "INFO 202 Information Organization and Retrieval"'s top 5 most similar courses are "INFO 245 Organization of Information in Collections", "INFO 211 Group and Organizational Approaches to Information Systems Use", "IND ENG C215 Analysis and Design of Databases", "IND ENG 215 Analysis and Design of Databases" and "INFO C258 Analysis and Design of Databases". These 5 courses are related to information organization and database, which are so closed to the contents of INFO 202. Also, "INFO 205 Information Law and Policy" 's top 5 most similar courses are "INFO 221 Information Policy", "INFO 203 Social and Organizational Issues of Information", "INFO 231 Economics of Information", "INFO 235 Cyberlaw" and "INFO 212 Information in Society". These 5 courses are related to information law and policy as well as social aspects and issues of information. Many students who are interested in INFO 205 are probably interested in these courses.

We examined a quantitive analysis about how good the scoring result was. In terms of I School graduate courses, the average ratio of the similarity of top 3 high similarity scores(i.e. the average of $\#$ of similar course/(\# of similar courses+\# of non-similar courses)) is $76 \%$. Also, the average ratio of the similarity of top 5 high similarity scores is $69 \%$, and when it gets to top 10 , the average ratio becomes $57 \%$. [Fig. 1 ] These scores show the result is useful to find similar courses.

Also we have implemented 2-D network visualization ${ }^{5}$, 2-D visualization was written in Processing and modified some codes from a book [4]. The visualization provides more informative features about network structures of courses that are omitted in terms of search-engine-interface representation. The screenshots of these implementations are included in Appendix A.

[^2]

Figure 1: The average ratio of the number of similar courses(First top 10 results of I School graduate courses)


Figure 2: Trend of loglikelihood, AIC and BIC

### 4.2 Clustering

At first, we intended to compute clusters with all courses. However, we encountered errors such as a memory error and an error derived from inability of computing inverse matrix. The reason why these errors occur is because too many course vectors(i.e. 7004) and too big vocabulary size(i.e. 13457) often cause troubles to the EM algorithm computation with a home-use computer and the Python programming language.

Then, we reduced test data size, i.e. all courses of 5 close-related departments: Information, Computer Science, Mathematics, Statistics and Economics. The number of courses of the 5 departments are 458. We only use the terms that occurs 9 or more than 9 times in all course descriptions. The size of vocabulary is 323 .

To find the appropriate number of clusters, we use two criteria: AIC(Akaike Information Criterion) and BIC(Bayesian Information Criterion). [Fig. 2 shows the transition of log-likelihood, AIC and BIC. In terms of AIC, the appropriate number of clusters is 7 , and in terms of BIC, the appropriate number of clusters is 15.

When we use 7 clusters to classify 5 department courses, we can find each cluster has some characteristics.

- For example, Cluster 0 contains a lot of seminar courses such as "Freshman Seminar" and "Sophomore Seminar". In UC Berkeley, each department has so many seminar courses and these descriptions are very similar to each other. Cluster 0 also contains some economics courses such as "Political Economics" and "International Economics". These economics courses are less mathematical economics than "Econometrics" or "Micro Economics". We can describe Cluster 0 as "Seminar/Political Econ Cluster".
- Cluster 1 contains many Math department courses. These courses are more related to some particular fields of mathematics such as calculus, algebra and geometry. We can describe Cluster 1 as "Math(especially algebra, calculus and geometry) Cluster".
- Cluster 2 also contains many math courses, but the tendency is different from Cluster1. These math courses are related to more abstract mathematics, such as Lie Group theory, discrete mathematics and set theory. We can label this cluster as "Math(especially abstract mathematics) Cluster".
- Cluster 3 contains a lot of programming courses. We can label this cluster as "Programming course Cluster".
- Cluster 4 tends to contain I School or CS courses. One of the characteristics of the cluster is that the courses in the cluster tend to be more social/human/organization related courses such as "User Interface Design and Management". We may describe the cluster as "Info/CS(especially human/social aspects) Cluster".
- Cluster 5 is also Info/CS-related cluster, but tends to be more hardware/data-structural aspects. In other words, the cluster captures more "traditional" CS courses. We can describe the cluster as "traditional CS Cluster".
- Cluster 6 clearly captures probability-related/statistical courses. We can describe the cluster as "Probability/Stat Cluster".

Of course, there are several courses that cannot be suitable for the labels of clusters described above. 7 clusters may not be enough to precisely classify all courses. However, using too many clusters to classify courses will result in the situation such that "one cluster has only one course", which is meaningless. More detail results of clustering are attached in Appendix B.

We also analyze the result of course clustering based on 15 clusters. We can find 15 cluster is finer classification in detail. More detail results of clustering are attached as Appendix C.

These clustering information can be used as additional information of the result of similarity scoring. For example, the scoring result of "INFO256 Applied Natural Language Processing" contains a lot of courses generally considered non-related to NLP, such as "Metal Processing" and "Postbiblical Hebrew Text Analysis". However, we cannot differentiate these courses if we only use the similarity scoring with a scalar value of similarity. Clustering information can be used to reduce the list of similar courses by excluding totally different courses belonging to totally different clusters. Also, the cluster information can be used as an auto-generated tag for each course. Auto-generated tag can enable users easily to organize which courses the users want to see/hide.

## 5 Conclusion

We have implemented NLP-based UC Berkeley course recommendation system by scoring similarity of courses and clustering courses with course descriptions. In terms of course scoring, a simple tf-idf scheme and the inner product model is so useful that we can easily find similar courses for each course. Also, search

| ID | Words that the cluster is most likely to generate | The cluster can be labeled as... | Samples of courses |
| :---: | :---: | :---: | :---: |
| 0 | topic, economics, economic, seminar, policy, department, semester, change, cover, politics, faculty, vary, political, market, special, offer ... | Seminar/Political Econ Cluster | Info24 Freshman seminar <br> CS84 Sophomore Seminar <br> Econ215A Political Economics <br> Econ280B International Economics |
| 1 | theorem, function, equation, space, differential, algebra, integral, series, partial, geometry, surface, finite, riemann, algebraic, transformation,... | Math(esp. <br> algebra, calculus <br> and geometry) <br> Cluster | Math 54: Linear Algebra and Differential Equations <br> Math 222A:Partial Differential Equations |
| 2 | sequence, their, fields, field, lie, set, fall, begin, number, relations, price, class, labor, construction... | Math(esp. abstract math Cluster | Math 261B: Le Group Math 235A: Theory of Sets |
| 3 | course, student, science, introduction, research, it, program, mathematical, instructor, how, may, but, provide, mathematics, who, work, unit, under,... | Programming course Cluster | CS9F:C+ for Programmers CS9G:JAVA for Programmers CS9H:Python for Programmers |
| 4 | design, information, group, study, computer, use, issue, management, organization, project, technology, development, implementation, new... | Info/CS(especiall y human/social aspects) Cluster | CS169: User Interface Design and Development <br> INFO214: Needs and Usability Assessment |
| 5 | system, datum, programming, technique, language, structure, algorithm, network, advance, control, engineering, search, performance... | Traditional CS Cluster | CS61B:Data Structure <br> INFO206: Distributed Computing Application and Infrastructure INFO257: Database Management |
| 6 | probability, estimation, random, variable, regression, statistical, markov, statistics... | Probability/Stat Cluster | STAT205B Probability Theory CS281A:Statistical Learning Theory |

Figure 3: The summary of course clustering (7 clusters)
engine like interface and 2-D network model may help students to choose their interest courses. In terms of course clustering, the EM algorithm can automatically cluster courses into several clusters. Each cluster has one or some characteristic(s) and the information of which cluster a course belongs to is useful additional information for users to search the courses which they are interested in because the cluster information may make up for a downside of a scalar representation of course similarity. However, clustering costs a lot of time and memory to compute. All course clustering is difficult by home PC and with a script language like Python, so that we need more powerful PCs or sophisticated algorithms that reduces computational time and complexity. To expand our service, we can further develop a system (1) saving the courses a user has taken or is interested in, (2) recommending a set of courses based on the given list. In terms of clustering, we can literally expand the boundary by clustering courses from all departments instead of five of them.

## References

[1] C. D. Manning and H. Schütze, Foundation of Statistical Natural Language and Processing,MIT Press, pp540-542
[2] C. D. Manning et al., Introduction to Information Retrieval, Cambridge University Press, pp245-248
[3] C. D. Manning et al., Introduction to Information Retrieval, Cambridge University Press, pp338-340
[4] Ben Fry, Visualizing Data, O'Reilly Media

## A Application Screenshots

## A. 1 Recommendation Engine

## NLP-based Similar Course Recommendation

Select Department: Information (INFO

$\qquad$ 1. Search

- INFO 141 Search Engines: Technology Society and Business
- INFO 142AC Access to American Cultural Heritages
- INFO 146 Foundations of New Media
- INFO 152 Mobile Application Design and Development
- INFO 152 Mobile Application Design and Development (Similarity: 1)
- EL ENG 192 Mechatronic Design Laboratory (Similarity: 0.341034)
- IND ENG 140 Introduction to Mobile Industrial Robots (Similarity: 0.23812)
- INFO 213 User Interface Design and Development (Similarity: 0.221935)
- MBA 246A Service Strategy (Similarity: 0.205949)
- EWMBA 246A Service Strategy (Similarity: 0.205949)
- UGBA 149A Information Technology Strategy (Similarity: 0.186317)
- MBA 249A Information Technology Strategy (Similarity: 0.186317 )
- COMPSCI 261 Security in Computer Systems (Similarity: 0.184114)
- IND ENG 151 Service Operations Design and Analysis (Similarity: 0.182913)
- EWMBA 249A Information Technology Strategy (Similarity: 0.176263)
- COMPSCI 160 User Interface Design and Development (Similarity: 0.173062)
- LD ARCH 204 Advanced Project Design (Similarity: 0.159423)
his course look at the quickly developing landscape of mobile application it focus on web-based mobile application and thus cover issue of web service design restful service design mobile plattorm iphone android symbians 60 webos windows mobile blackbery os brew javamejavatx flash light and the specific constraint and requirement of user interface esign for limited devices the course combine a conceptual everview design issue and practical development issue


## A. 2 2-D Network Visualization



## Appendix B: Detailed Result of 7 cluster model

## Cluster 1's courses(excerpt)

Cluster 0's courses(excerpt)

| COMPS <br> CI | 24 | Freshman Seminars |
| :--- | ---: | :--- |
| COMPS <br> CI | 39 | Freshman/Sophomore Seminar |
| COMPS | 84 | Sophomore Seminar |
| CI |  |  |


| MATH | 1A | Calculus |
| :---: | :---: | :---: |
| MATH | 16A | Analytic Geometry and Calculus |
| MATH | 53M | Multivariable Calculus with Computers |
| MATH | 54 | Linear Algebra and Differential Equations |
| MATH | H54 | Honors Linear Algebra and Differential Equations |
| MATH | 54M | Linear Algebra and Differential Equations with Computers |
| MATH | 104 | Introduction to Analysis |
| MATH | 105 | Second Course in Analysis |
| MATH | 128B | Numerical Analysis |
| MATH | 170 | Mathematical Methods for Optimization |
| MATH | 189 | Mathematical Methods in Classical and Quantum Mechanics |
| MATH | 202A | Introduction to Topology and Analysis |
| MATH | 202B | Introduction to Topology and Analysis |
| MATH | 205 | Theory of Functions of a Complex Variable |
| MATH | 206 | Banach Algebras and Spectral Theory |
| MATH | 220 | Introduction to Probabilistic Methods in Mathematics and the Sciences |
| MATH | 221 | Advanced Matrix Computations |
| MATH | 222A | Partial Differential Equations |
| MATH | 222B | Partial Differential Equations |
| MATH | 228A | Numerical Solution of Differential Equations |
| MATH | 228B | Numerical Solution of Differential Equations |
| MATH | 258 | Classical Harmonic Analysis |
| STAT | 251 | Stochastic Analysis with Applications to Mathematical Finance |


| MATH | 55\|Discrete Mathematics |  |
| :---: | :---: | :---: |
| MATH | 113Introduction to Abstract Algebra |  |
| MATH | 235A | Theory of Sets |
| MATH | 114 | Second Course in Abstract Algebra |
| MATH | 215B | Algebraic Topology |
| MATH | 215A | Algebraic Topology |
| MATH | 254B | Number Theory |
| MATH | 254A | Number Theory |
| MATH | 245A | General Theory of Algebraic Structures |
| MATH | 261B | Lie Groups |
| MATH | 261A | Lie Groups |
| MATH | 256A | Algebraic Geometry |
| MATH | 256B | Algebraic Geometry |
| MATH | 227A | Theory of Recursive Functions |
| MATH | 135Introduction to the Theory of Sets |  |
| MATH | 225B | Metamathematics |
| MATH | 225A | Metamathematics |
| MATH | 224B | Mathematical Methods for the Physical Sciences |
| MATH | 224A | Mathematical Methods for the Physical Sciences |
| MATH | 290 | Seminars |
| MATH | 12 | Mathematical and Computational Methods in Molecular Biology |
| MATH | 240 | Riemannian Geometry |
| MATH | 236 | Metamathematics of Set Theory |
| MATH | 142 | Elementary Algebraic Topology |
| ECON | 260B | Comparative Economics |
| ECON | 260A | Comparative Economics |
| ECON | 206 | Mechanism Design and Agency Theory |
| ECON | 209A | Theory and Application of NonCooperative Games |
| ECON | 136 | Financial Economics |
| ECON | 136 | Financial Economics |
| $\begin{aligned} & \mathrm{COMP} \\ & \mathrm{SCI} \end{aligned}$ | 172 | Computability and Complexity |

Cluster 3's courses(excerpt)

## Cluster 4's courses(excerpt)

| COMPSCI | 3Introduction to Symbolic Programming |  |
| :---: | :---: | :---: |
| COMPSCI | 3L | Introduction to Symbolic Programming |
| COMPSCI | 3S | Introduction to Symbolic Programming (Self-Paced) |
| COMPSCI | 9A | Matlab for Programmers |
| COMPSCI | 9B | Pascal for Programmers |
| COMPSCI | 9 C | C for Programmers |
| COMPSCI | 9D | Scheme and Functional Programming for Programmers |
| COMPSCI | 9F | C++ for Programmers |
| COMPSCI | 9G | JAVA for Programmers |
| COMPSCI | 9 H | Python for Programmers |
| COMPSCI | 47A | Completion of Work in Computer Science 61A |
| COMPSCI | 47B | Completion of Work in Computer Science 61B |
| COMPSCI | 47C | Completion of Work in Computer Science 61C |
| COMPSCI | 61A | The Structure and Interpretation of Computer Programs |
| COMPSCI | C191 | Quantum Information Science and Technology |
| COMPSCI | H196A | Senior Honors Thesis Research |
| COMPSCI | H196B | Senior Honors Thesis Research |
| ECON | C103 | Introduction to Mathematical Economics |
| ECON | C142 | Applied Econometrics and Public Policy |
| ECON | C181 | International Trade |
| ECON | 204 | Mathematical Tools for Economics |
| ECON | C225 | Workshop in Institutional Analysis |
| ECON | 230B | Public Economics |
| ECON | 241A | Econometrics |
| INFO | 141 | Search Engines: Technology, Society, and Business |
| INFO |  | Technology and Poverty |
| INFO |  | Information Law and Policy |
| INFO | 209 | Professional Skills Workshop |
| INFO | 256 | Applied Natural Language Processing |
| INFO | 298A | Directed Group Work on Final Project |
| MATH |  | Transition to Upper Division Mathematics |
| MATH | C103 | Introduction to Mathematical Economics |
| MATH | 121A | Mathematical Tools for the Physical Sciences |
| MATH | 121B | Mathematical Tools for the Physical Sciences |
| MATH | 300 | Teaching Workshop |
| STAT | C245E | Statistical Genomics |
| STAT | C245F | Statistical Genomics |
| STAT |  | Resources for Statistical Computing |


| COMPSCI | 61 C |  | Machine Structures |
| :--- | :--- | :--- | :--- |
| COMPSCI |  | 150 | lomponents and Design Techniques for Digital |
| Systems |  |  |  |

## Cluster 5's courses(excerpt)

| COMPSCI | 61B |  | Data Structures |
| :---: | :---: | :---: | :---: |
| COMPSCI |  |  | Introduction to Embedded Systems |
| COMPSCI |  | 161 | Computer Security |
| COMPSCI |  | 162 | Operating Systems and System Programming |
| COMPSCI |  | 170 | Efficient Algorithms and Intractable Problems |
| COMPSCI | C182 |  | The Neural Basis of Thought and Language |
| COMPSCI |  |  | Foundations of Computer Graphics |
| COMPSCI |  |  | Introduction to Database Systems |
| COMPSCI |  |  | Introduction to Artificial Intelligence |
| COMPSCI |  | 258 | Parallel Processors |
| COMPSCI |  | 261 | Security in Computer Systems |
| COMPSCI | 262A |  | Advanced Topics in Computer Systems |
| COMPSCI | 262B |  | Advanced Topics in Computer Systems |
| COMPSCI |  | 265 | Compiler Optimization and Code Generation |
| COMPSCI |  | 266 | Introduction to System Performance Analysis |
| COMPSCI | C267 |  | Applications of Parallel Computers |
| COMPSCI |  | 268 | Computer Networks |
| COMPSCI |  | 27 | Combinatorial Algorithms and Data Structures |
| COMPSCI |  | 273 | Foundations of Parallel Computation |
| COMPSCI |  | 274 | Computational Geometry |
| COMPSCI |  | 285 | Solid Free-Form Modeling and Fabrication |
| COMPSCI |  |  | Implementation of Data Base Systems |
| COMPSCI |  | 287 | Advanced Robotics |
| ECON | 202A |  | Macroeconomic Theory |
| ECON | 202B |  | Macroeconomic Theory |
| INFO |  |  | Distributed Computing Applications and Infrastructure |
| INFO |  |  | Privacy, Security, and Cryptography |
| INFO |  |  | XML Foundations |
| INFO |  |  | Computer-Based Communications Systems and Networks |
| INFO |  | 257 | Database Management |
| STAT | 215A |  | Statistical Models: Theory and Application |
| STAT | 215B |  | Statistical Models: Theory and Application |
| STAT |  | 244 | Statistical Computing |
| STAT |  |  | Concepts in Computing with Data |

Cluster 6's courses(excerpt)

| COMPSCI | 70Discrete Mathematics and Probability Theory |  |
| :---: | :---: | :---: |
| COMPSCI | C280 | Computer Vision |
| COMPSCI | C281A | Statistical Learning Theory |
| COMPSCI | C281B | Advanced Topics in Learning and Decision Making |
| ECON | C110 | Game Theory in the Social Sciences |
| ECON |  | Economic Statistics and Econonmetrics |
| ECON |  | 1 Econometric Analysis |
| ECON | 240B | Econometrics |
| MATH | C218A | Probability Theory |
| MATH | C218B | Probability Theory |
| MATH | C223A | Stochastic Processes |
| MATH | C223B | Stochastic Processes |
| STAT |  | Introduction to Probability and Statistics |
| STAT |  | 1 Introductory Probability and Statistics for Business |
| STAT |  | Introduction to Probability and Statistics for Engineers |
| STAT |  | 4 Concepts of Probability |
| STAT | C141 | Statistics for Bioinformatics |
| STAT | C143 | Introduction to Statistical Methods in Computational and Genomic Biology |
| STAT | 200A | Introduction to Probability and Statistics at an Advanced Level |
| STAT | 200B | Introduction to Probability and Statistics at an Advanced Level |
| STAT |  | 4 Probability for Applications |
| STAT | C205A | Probability Theory |
| STAT | 205B | Probability Theory |
| STAT | C205B | Probability Theory |
| STAT | 206A | Stochastic Processes |
| STAT | C206A | Stochastic Processes |
| STAT | 206B | Stochastic Processes |
| STAT | C206B | Stochastic Processes |
| STAT | 210A | Theoretical Statistics |
| STAT | 210B | Theoretical Statistics |
| STAT | 212A | Topics in Theoretical Statistics |
| STAT | 230A | Linear Models |
| STAT | C239A | The Statistics of Causal Inference in the Social Science |
| STAT | C241A | Statistical Learning Theory |
| STAT | C241B | Advanced Topics in Learning and Decision Making |
| STAT | C245A | Biostatistical Methods: Advanced Categorical Data Analysis |
| STAT | C245B | Biostatistical Methods: Survival Analysis and Causality |
| STAT | C245C | Biostatistical Methods: Computational Statistics with Applications in Biology and Medicine |
| STAT | C247C | Longitudinal Data Analysis |
| STAT | C249A | Censored Longitudinal Data and Causality |
| STAT | C249C | Multiple Testing and Loss Function Based Estimation: Applications in Biological Sciences |
| STAT | C261 | Quantitative/Statistical Research Methods in Social Sciences |
| STAT |  | 2 Introduction to Statistics |
| STAT |  | 2 Sampling Surveys |
| STAT |  | Concepts of Statistics |
| STAT |  | Stochastic Processes |
| STAT |  | Analysis of Time Series |

Appendix C: Result of 15 cluster model

|  | Words that the cluster is most likely to generate | The cluster may mean... |
| :--- | :--- | :--- |
| $\mathbf{0}$ | Politics, political, special, interest, institution, tool, setting, experience, <br> growth, dynamic, standard, aspect, develop, alternative, supervise | Politics |
| $\mathbf{1}$ | Problem, semester, instructor, advance, case, current, determination, <br> chosen, labor, each , see | Seminar |
| $\mathbf{2}$ | Theory, emphasis, cover, time, hypothesis, price, various, game, phd, <br> modern, capital, preparation, choice, least | Econ |
| $\mathbf{3}$ | Sequence, set, geometry, fall, begin, number, algebraic, relations, class, <br> operator, operations, logic,,reform | Math(logic) |
| $\mathbf{4}$ | Policy, management, economy, resource, government, environmental, <br> fiscal, environment, level, finance, production, american | Politics |
| $\mathbf{5}$ | Topic, theorem, group, issue, basic, such, algebra, their, fundamental, fields, <br> representation, lie, additional, classification, surface, finite, transformation, <br> manifold, etc, curve, construction, object | Math(fields thory) |
| $\mathbf{6}$ | Equation, space, differential, integral, series, partial, calculus, fourier, <br> analytic, line, solution, vector, ordinary, integration, compact, matrix, <br> boundary, value , euclidean, transform, nonlinear | Math(calculus, <br> liner algebra) |
| 7 | System, introduction, computer, programming, language, problem, project, <br> network, how, control, implementation, who, security, flow, computation, <br> interface, memory, code, software, scheme, arithmetic, digital, array, <br> protocol, self-paced, query, storage, know | CompSci |


| Clus |
| :--- | :--- |
| ter | Words that the cluster is most likely to generate

The cluster may mean...

8 Course, information, it, practice, market, not, but, empirical, focus, form, between, specific, role, these, both, explore, individual, international, behavior, present, can, write, apply, protection, introduce, trade, formal, developing, treatment, into

9 Student, seminar, department, faculty, vary, offer, may, require, work, unit, all, under, member, credit, take, must, opportunity, paper, limited, enrollment, campus, thesis
10 Select, development, sophomore, division, freshman, teaching, lower
11 Include, method, also, study, list, science, use, organization, technology, survey,
Seminar property, intellectual, new, field, other, social , relate, theoretical, computational, Social evaluation, inference, using, decision, distribute, interaction, approach, history, technical, user, service, understanding, discussion, medium, learning

12 Analysis, model, design, datum, technique, linear, structure, algorithm, statistics, statistical, public, regression, search, performance, testing, machine, planning, architecture, database, type, base, effects, experiment, eg, numerical, parallel, computing, selection
13 Application, economics, economic, research, mathematical, engineering, provide, health, intend, one, physical, which, graduate, section, second, country, question, area, services
14 Function, process, year, probability, estimation, change, markov, general, variable, random, concept, mathematic, distribution, convergence, expectation, content, tic measure, numbers, knowledge, limit, large, characteristic, riemann, central, further, sample, some, martingale, example, principle, andor, diffusion, chains, motion, real, strong, need, background, discrete, interval, brownian, poisson, gaussian, laws, metric, elementary

## Cluster 0's courses(excerpt)

## Cluster 1's courses(excerpt)

| MATH | 197 Field Study |  |
| :---: | :---: | :---: |
| ECON | 1 Introduction to Economics |  |
| ECON | 100A | Economic Analysis--Micro |
| ECON | 100A | Economic Analysis--Micro |
| ECON | 151 Labor Economics |  |
| ECON | 162 The Chinese Economy |  |
| ECON | 182 International Monetary Economics |  |
| ECON | 210A Introduction to Economic History |  |
| ECON | 210B Topics in European Economic History |  |
| ECON | 210C Topics in American Economic History |  |
| ECON | 215A Political Economics |  |
| ECON | C215A | Political Economics |
| ECON | 215B | Political Economics |
| ECON | C215B | Political Economics |
| ECON | 224 Economics of Institutions |  |
| ECON | 270 C | Development Economics |
| ECON | C275A Economic Demography |  |
| STAT | 25 Introduction to Probability and Statistics for Engineers |  |
| STAT | 97 Field Study in Statistics |  |
| STAT | 197Field Study in Statistics |  |
| STAT | 240 Nonparametric and Robust Methods |  |
| COMPSCI | 160 User Interface Design and Development |  |
| COMPSCI | 264 Implementation of Programming Languages |  |
| INFO | 213 User Interface Design and Development |  |
| INFO | 245 Organization of Information in Collections |  |
| INFO | 285 Design of Library Services |  |


| MATH | 189 | Mathematical Methods in Classical and Quantum Mechanics |
| :---: | :---: | :---: |
| MATH | 191 | Experimental Courses in Mathematics |
| MATH | 251 | Ring Theory |
| MATH | 270 | Hot Topics Course in Mathematics |
| MATH | 271 | Topics in Foundations |
| MATH | 273 | Topics in Numerical Analysis |
| MATH | 274 | Topics in Algebra |
| MATH | 275 | Topics in Applied Mathematics |
| MATH | 276 | Topics in Topology |
| MATH | 277 | Topics in Differential Geometry |
| MATH | 278 | Topics in Analysis |
| MATH | 279 | Topics in Partial Differential Equations |
| MATH | C290C | Topics in Fluid Mechanics |
| ECON | 105 | History of Economic Thought |
| ECON | 124 | Special Topics in Industrial Organization |
| ECON | 163 | Special Topics in Economic Systems |
| ECON | 220C | Special Topics in Industrial Organization |
| ECON | 234C | Financial Decision-Making in Firms |
| ECON | 243 | Special Topics in Econometrics |
| ECON | 250A | Labor Economics |
| ECON | 250B | Labor Economics |
| ECON | 250C | Labor Economics |
| ECON | 270D | Special Topics in Development |
| STAT | 157 | Seminar on Topics in Probability and Statistics |
| STAT | 232 | Experimental Design |
| COMPSCI | 265 | Compiler Optimization and Code Generation |
| COMPSCI | 297 | Field Studies in Computer Science |
| INFO | 211 | Group and Organizational Approaches to Information Systems Use |
| INFO | 242 | XML Foundations |
| INFO | C258 | Analysis and Design of Databases |
| INFO | 298 | Directed Group Study |

## Cluster 2's courses(excerpt)

| MATH | H104 | Introduction to Analysis |
| :---: | :---: | :---: |
| MATH | H113 | Introduction to Abstract Algebra |
| MATH | 170 | Mathematical Methods for Optimization |
| MATH | 236 | Metamathematics of Set Theory |
| ECON | 101A | Economic Theory--Micro |
| ECON | 101A | Economic Theory--Micro |
| ECON | 126 | Industrial Organization: Theory and Evidence |
| ECON | 136 | Financial Economics |
| ECON | 136 | Financial Economics |
| ECON | 140 | Economic Statistics and Econonmetrics |
| ECON | 141 | Econometric Analysis |
| ECON | 201A | Economic Theory |
| ECON | 201B | Economic Theory |
| ECON | 202A | Macroeconomic Theory |
| ECON | 202B | Macroeconomic Theory |
| ECON | 209A | Theory and Application of Non-Cooperative Games |
| ECON | 234A | Macroeconomic Finance |
| ECON | 236C | Capital and Economic Growth |
| ECON | 240A | Econometrics |
| ECON | 240B | Econometrics |
| STAT | 153 | Introduction to Time Series |
| STAT | 155 | Game Theory |
| STAT | 230A | Linear Models |
| STAT | 248 | Analysis of Time Series |
| INFO | 240 | Principles of Information Retrieval |

Cluster 3's courses(excerpt)

| MATH | 1B | Calculus |
| :---: | :---: | :---: |
| MATH |  | 32Precalculus |
| MATH |  | 55 Discrete Mathematics |
| MATH |  | 115Introduction to Number Theory |
| MATH |  | 116Cryptography |
| MATH |  | 118 Fourier Analysis, Wavelets, and Signal Processing |
| MATH |  | 123 Ordinary Differential Equations |
| MATH | 125A | Mathematical Logic |
| MATH |  | 127 Mathematical and Computational Methods in Molecular Biology |
| MATH |  | 130 The Classical Geometries |
| MATH |  | 135 Introduction to the Theory of Sets |
| MATH |  | 136 Incompleteness and Undecidability |
| MATH |  | 151 Mathematics of the Secondary School Curriculum I |
| MATH |  | 203Asymptotic Analysis in Applied Mathematics |
| MATH |  | 204 Ordinary Differential Equations |
| MATH | 215A | Algebraic Topology |
| MATH | 215B | Algebraic Topology |
| MATH | 224A | Mathematical Methods for the Physical Sciences |
| MATH | 224B | Mathematical Methods for the Physical Sciences |
| MATH | 225A | Metamathematics |
| MATH | 225B | Metamathematics |
| MATH | 227A | Theory of Recursive Functions |
| MATH |  | 229 Theory of Models |
| MATH | 235A | Theory of Sets |
| MATH |  | 239 Discrete Mathematics for the Life Sciences |
| MATH | 250B | Multilinear Algebra and Further Topics |
| MATH | 254A | Number Theory |
| MATH | 254B | Number Theory |
| MATH | 256A | Algebraic Geometry |
| MATH | 256B | Algebraic Geometry |
| MATH |  | 290 Seminars |
| ECON |  | 181 International Trade |
| ECON | 260A | Comparative Economics |
| ECON | 260B | Comparative Economics |
| COMPSCI |  | 271Randomness and Computation |

## Cluster 4's courses(excerpt)

| ECON | C3 | Introduction to Environmental Economics and Policy |
| :---: | :---: | :---: |
| ECON | 100B | Economic Analysis--Macro |
| ECON | 100B | Economic Analysis--Macro |
| ECON | 101B | Economic Theory--Macro |
| ECON | 101B | Economic Theory--Macro |
| ECON | 113 | American Economic History |
| ECON | 121 | Industrial Organization and Public Policy |
| ECON | 123 | Government Regulation of Industry |
| ECON | C125 | Environmental Economics |
| ECON | 131 | Public Economics |
| ECON | 138 | Financial and Behavioral Economics |
| ECON | 157 | Health Economics |
| ECON | 161 | Economics of Transition: Eastern Europe |
| ECON | C171 | Economic Development |
| ECON | 206 | Mechanism Design and Agency Theory |
| ECON | 207A | Mathematical Economics |
| ECON | 220A | Industrial Organization |
| ECON | 230A | Public Economics |
| ECON | 230C | Public Sector Microeconomics |
| ECON | 236A | Aggregate Economics |
| ECON | 236B | Aggregate Economics |
| ECON | 280A | International Economics |
| ECON | 280B | International Economics |
| STAT |  | Introductory Probability and Statistics for Business |
| STAT |  | Introduction to Statistical Computing |
| COMPSCI | 9E | Productive Use of the UNIX Environment |
| COMPSCI | 250 | VLSI Systems Design |
| COMPSCI | 262A | Advanced Topics in Computer Systems |
| COMPSCI | 273 | Foundations of Parallel Computation |
| COMPSCI | 284 | Computer-Aided Geometric Design and Modeling |
| COMPSCI | 287 | Advanced Robotics |
| COMPSCI | 288 | Artificial Intelligence Approach to Natural Language Processing |
| INFO | 142AC | Access to American Cultural Heritages |
| INFO | 207 | Analysis of Information Systems |
| INFO | 219 | Privacy, Security, and Cryptography |
| INFO | 220 | Management of Information Systems and Services |
| INFO | 221 | Information Policy |
| INFO | 230 | Economic Methods for Decision Making |
| INFO | 231 | Economics of Information |
| INFO | 235 | Cyberlaw |
| INFO |  | Information Visualization and Presentation |
| INFO | 250 | Computer-Based Communications Systems and Networks |
| INFO | 271A | Quantitative Research Methods for Information Systems and Management |
| INFO | 272 | Qualitative Research Methods for Information Systems and Management |

Cluster 5's courses(excerpt)

| MATH |  | Introduction to Abstract Algebra |
| :---: | :---: | :---: |
| MATH | 114 | Second Course in Abstract Algebra |
| MATH | 142 | Elementary Algebraic Topology |
| MATH | 208 | C*-algebras |
| MATH | 209 | Von Neumann Algebras |
| MATH | 21 | Differentiable Manifolds |
| MATH | 219 | Dynamical Systems |
| MATH | 240 | Riemannian Geometry |
| MATH | 24 | Complex Manifolds |
| MATH | 24 | Symplectic Geometry |
| MATH | 245A | General Theory of Algebraic Structures |
| MATH | 249 | Algebraic Combinatorics |
| MATH | 250A | Groups, Rings, and Fields |
| MATH | 25 | Representation Theory |
| MATH | 255 | Algebraic Curves |
| MATH | 25 | Group Theory |
| MATH | 261A | Lie Groups |
| MATH | 261B | Lie Groups |
| MATH | 265 | Differential Topology |
| STAT | 210A | Theoretical Statistics |
| STAT | 210B | Theoretical Statistics |
| STAT | 24 | Statistical Computing |
| COMPSCI | 172 | Computability and Complexity |
| COMPSCI | 184 | Foundations of Computer Graphics |
| COMPSCI | 276 | Cryptography |

## Cluster 6’s courses(excerpt)

| MATH | 16B | Analytic Geometry and Calculus |
| :---: | :---: | :---: |
| MATH |  | 53Multivariable Calculus |
| MATH | H53 | Honors Multivariable Calculus |
| MATH | 53M | Multivariable Calculus with Computers |
| MATH |  | 54 Linear Algebra and Differential Equations |
| MATH | H54 | Honors Linear Algebra and Differential Equations |
| MATH | 54M | Linear Algebra and Differential Equations with Computers |
| MATH |  | 104Introduction to Analysis |
| MATH |  | 105Second Course in Analysis |
| MATH |  | 110Linear Algebra |
| MATH | 121A | Mathematical Tools for the Physical Sciences |
| MATH | 121B | Mathematical Tools for the Physical Sciences |
| MATH |  | 126Introduction to Partial Differential Equations |
| MATH | 128A | Numerical Analysis |
| MATH | 128B | Numerical Analysis |
| MATH |  | 140Metric Differential Geometry |
| MATH |  | 141 Elementary Differential Topology |
| MATH |  | 143 Elementary Algebraic Geometry |
| MATH |  | 152 Mathematics of the Secondary School Curriculum II |
| MATH |  | 153Mathematics of the Secondary School Curriculum III |
| MATH |  | 160 History of Mathematics |
| MATH |  | 172 Combinatorics |
| MATH |  | 185 Introduction to Complex Analysis |
| MATH |  | 187Senior Level Analysis |
| MATH | 202A | Introduction to Topology and Analysis |
| MATH | 202B | Introduction to Topology and Analysis |
| MATH |  | 205 Theory of Functions of a Complex Variable |
| MATH |  | 206 Banach Algebras and Spectral Theory |
| MATH |  | 212 Several Complex Variables |
| MATH |  | 220 <br> Introduction to Probabilistic Methods in Mathematics and the Sciences |
| MATH |  | 221 Advanced Matrix Computations |
| MATH | 222A | Partial Differential Equations |
| MATH | 222B | Partial Differential Equations |
| MATH | 228A | Numerical Solution of Differential Equations |
| MATH | 228B | Numerical Solution of Differential Equations |
| MATH |  | 258Classical Harmonic Analysis |
| COMPSCI |  | 278/Machine-Based Complexity Theory |

## Cluster 7's courses(excerpt)

## Cluster 8's courses(excerpt)

| COMPSCI |  |  | Introduction to Symbolic Programming |
| :---: | :---: | :---: | :---: |
| COMPSCI | 3L |  | Introduction to Symbolic Programming |
| COMPSCI | 3 S |  | Introduction to Symbolic Programming (Self-Paced) |
| COMPSCI | 9A |  | Matlab for Programmers |
| COMPSCI | 9B |  | Pascal for Programmers |
| COMPSCI | 9 C |  | C for Programmers |
| COMPSCI | 9D |  | Scheme and Functional Programming for Programmers |
| COMPSCI | 9 F |  | C++ for Programmers |
| COMPSCI | 9G |  | JAVA for Programmers |
| COMPSCI | 9 H |  | Python for Programmers |
| COMPSCI | 47A |  | Completion of Work in Computer Science 61A |
| COMPSCI | 47B |  | Completion of Work in Computer Science 61B |
| COMPSCI | 61A |  | The Structure and Interpretation of Computer Programs |
| COMPSCI | 61 C |  | Machine Structures |
| COMPSCI |  | 150 | Components and Design Techniques for Digital Systems |
| COMPSCI |  | 152 | Computer Architecture and Engineering |
| COMPSCI |  | 161 | Computer Security |
| COMPSCI |  | 162 | Operating Systems and System Programming |
| COMPSCI |  | 164 | Programming Languages and Compilers |
| COMPSCI |  | 169 | Software Engineering |
| COMPSCI |  |  | Introduction to Database Systems |
| COMPSCI |  |  | Introduction to Artificial Intelligence |
| COMPSCI |  | 252 | Graduate Computer Architecture |
| COMPSCI |  | 260 | User-Interfaces to Computer Systems |
| COMPSCI |  | 263 | Design of Programming Languages |
| COMPSCI |  | 268 | Computer Networks |
| COMPSCI |  | 282 | Algebraic Algorithms |
| COMPSCI |  | 289 | Knowledge Representation and Use in Computers |
| INFO |  |  | Introduction to High-Level Programming |
| INFO | 257 Database Management |  |  |


| MATH |  | Transition to Upper Division Mathematics |
| :---: | :---: | :---: |
| MATH | 300 | Teaching Workshop |
| ECON |  | Introduction to Economics--Lecture Format |
| ECON |  | Advanced Microeconomic Theory |
| ECON | 119 | Psychology and Economics |
| ECON | 152 | Wage Theory and Policy |
| ECON | C181 | International Trade |
| ECON | 204 | Mathematical Tools for Economics |
| ECON | 219A | Foundations of Psychology and Economics |
| ECON | 230B | Public Economics |
| ECON | 280C | International Economics |
| STAT | 212A | Topics in Theoretical Statistics |
| STAT | 296 | Resources for Statistical Computing |
| COMPSCI | 47C | Completion of Work in Computer Science 61C |
| INFO | 152 | Mobile Application Design and Development |
| INFO | 181 | Technology and Poverty |
| INFO | 182AC | Print, Literacy, and Power in America to 1900 |
| INFO |  | Information Law and Policy |
| INFO | 209 | Professional Skills Workshop |
| INFO | 216 | Computer-Mediated Communication |
| INFO | 246 | Multimedia Information |
| INFO | 256 | Applied Natural Language Processing |
| INFO | 280 | Information and Communication Technologies and Development: Context, Strategies and Impacts |
| INFO |  | Information, Innovation and International Development (I3D): Designing Rural Computing Applications |
| INFO | 298A | Directed Group Work on Final Project |


| Clustercourses | MATH | 24 Freshman Seminars |  |
| :---: | :---: | :---: | :---: |
|  | MATH | 84 | Sophomore Seminar |
|  | MATH | H90 | Honors Undergraduate Seminar in Mathematical Problem Solving |
|  | MATH | 301 | Undergraduate Mathematics Instruction |
|  | MATH | 303 | Professional Preparation: Supervised Teaching of Mathematics |
|  | ECON |  | Freshman Seminar |
|  | ECON | 98 | Directed Group Study |
|  | ECON | 115 | The World Economy in the Twentieth Century |
|  | ECON |  | Industrial Organization Seminar |
|  | ECON | 137 | Aggregate Economics Seminar |
|  | ECON | 153 | Labor Economics Seminar |
|  | ECON | 173 | Economic Development Seminar |
|  | ECON | 183 | International Economic Seminar |
|  | ECON | 190 | Seminar on Topics in Economics |
|  | ECON | H195B | Senior Honors Thesis |
|  | ECON | 197 | Field Studies |
|  | ECON | 198 | Directed Group Study |
|  | ECON | 209B | Theory and Application of Non-Cooperative Games: II |
|  | ECON | 218 | Seminar in Psychology and Economics |
|  | ECON | 219C | Topics in Psychology and Economics |
|  | ECON | 219D | Experimental Economics |
|  | ECON | 235 | Financial Economics Seminar |
|  | ECON | 291 | Departmental Seminar |
|  | ECON | 295 | Survey of Research in Economics |
|  | ECON | 299 | Supervised Independent Study and Research |
|  | ECON | 301 | GSI Practicum |
|  | STAT | 260 | Topics in Probability and Statistics |
|  | STAT | 272 | Statistical Consulting |
|  | STAT | 601 | Individual Study for Master's Candidates |
|  | COMPSCI | 24 | Freshman Seminars |
|  | COMPSCI | 84 | Sophomore Seminar |
|  | COMPSCI | H196A | Senior Honors Thesis Research |
|  | COMPSCI | H196B | Senior Honors Thesis Research |
|  | INFO | 24 | Freshman Seminar |
|  | INFO | 84 | Sophomore Seminar |
|  | INFO | 141 | Search Engines: Technology, Society, and Business |
|  | INFO | 190 | Special Topics in Information |
|  | INFO | 199 | Individual Study |
|  | INFO | 290 | Special Topics in Information |
|  | INFO | 295 | Doctoral Colloquium |
|  | INFO | 296A | Seminar |
|  | INFO | 296B | Seminar |
|  | INFO | 299 | Individual Study |

## Cluster 10's

courses(excerpt)

| MATH |  | Supplementary Work in Lower Division Mathematics |
| :---: | :---: | :---: |
| MATH |  | Supervised Group Study |
| MATH |  | Honors Thesis |
| MATH |  | Directed Group Study |
| MATH |  | Homological Algebra |
| MATH |  | Individual Research |
| MATH |  | Reading Course for Graduate Students |
| MATH |  | Individual Study for Master's Students |
| ECON | 172 | Case Studies in Economic Development |
| ECON | H195A | Senior Honors Thesis |
| ECON | 196 | Special Topics in Economics |
| ECON | 199 | Supervised Independent Study and Research |
| ECON | 220B | Industrial Organization |
| ECON | 241B | Econometrics |
| ECON | 251 | Seminar in Labor Economics |
| ECON | 270A | Development Economics |
| ECON | 270B | Development Economics |
| ECON | 275B | Selected Topics in Economic Demography |
| ECON | 296 | Special Topics in Economics |
| ECON | 298 | Directed Group Study for Graduates |
| STAT | 39 | Freshman/Sophomore Seminar |
| STAT | 98 | Directed Group Study |
| STAT | 198 | Directed Study for Undergraduates |
| STAT | 278B | Statistics Research Seminar |
| STAT | 298 | Directed Study for Graduate Students |
| STAT |  | Professional Preparation: Teaching of Probability and Statistics |
| COMPSCI | 39 | Freshman/Sophomore Seminar |
| COMPSCI | 61BL | Data Structures and Programming Methodology |
| COMPSCI | 61CL | Machine Structures |
| COMPSCI | 98 | Directed Group Study |
| COMPSCI |  | Individual Study and Research for Undergraduates |
| COMPSCI | 194 | Special Topics |
| COMPSCI | 198 | Directed Group Studies for Advanced Undergraduates |
| COMPSCI |  | Supervised Independent Study |
| COMPSCI |  | Special Topics |
| COMPSCI |  | Group Studies Seminars, or Group Research |
| COMPSCI |  | Individual Research |
| COMPSCI |  | Teaching Practice |
| COMPSCI |  | Teaching Techniques for Computer Science |
| COMPSCI |  | Professional Preparation: Supervised Teaching of Computer Science |
| INFO |  | Freshman/Sophomore Seminar |

## Cluster 11's

courses(excerpt)

| ECON | C102 | Natural Resource Economics |
| :---: | :---: | :---: |
| ECON | 222 | Economics of Innovation |
| ECON | C222 | Economics of Innovation |
| STAT | C239A | The Statistics of Causal Inference in the Social Science |
| STAT | C241A | Statistical Learning Theory |
| STAT | C241B | Advanced Topics in Learning and Decision Making |
| STAT | C261 | Quantitative/Statistical Research Methods in Social Sciences |
| COMPSCI | C149 | Introduction to Embedded Systems |
| COMPSCI | C182 | The Neural Basis of Thought and Language |
| COMPSCI | C195 | Social Implications of Computer Technology |
| COMPSCI | 261 | Security in Computer Systems |
| COMPSCI | C280 | Computer Vision |
| COMPSCI | C281A | Statistical Learning Theory |
| COMPSCI | C281B | Advanced Topics in Learning and Decision Making |
| COMPSCI | 302 | Designing Computer Science Education |
| INFO | C103 | History of Information |
| INFO | 146 | Foundations of New Media |
| INFO | 203 | Social and Organizational Issues of Information |
| INFO |  | The Information and Services Economy |
| INFO |  | Information in Society |
| INFO |  | Needs and Usability Assessment |
| INFO | 218 | Concepts of Information |
| INFO | 237 | Intellectual Property Law for the Information Industries |
| INFO | C262 | Theory and Practice of Tangible User Interfaces |
| INFO | C283 | Information and Communications Technology for Development |

## Cluster 12's

courses(excerpt)

## Cluster 13's <br> courses(excerpt)

| ECON | 241 A | Econometrics |
| :--- | :---: | :--- |
| STAT | 133 |  |
| Concepts in Computing with Data |  |  |
| STAT | C141 | Statistics for Bioinformatics |
| STAT | C143 | Introduction to Statistical Methods in <br> Computational and Genomic Biology |
| STAT | $151 A$ | Linear Modelling: Theory and Applications |
| STAT | 151 B | Linear Modelling: Theory and Applications |
| STAT | $215 A$ | Statistical Models: Theory and Application |
| STAT | $215 B$ | Statistical Models: Theory and Application |
| STAT | C245A | Biostatistical Methods: Advanced Categorical <br> Data Analysis |
| STAT | C245B | Biostatistical Methods: Survival Analysis and <br> Causality |
| STAT | C245C | Biostatistical Methods: Computational <br> Statistics with Applications in Biology and <br> Medicine |
| STAT | C247C | Longitudinal Data Analysis <br> STAT |
| C249C | Multiple Testing and Loss Function Based <br> Estimation: Applications in Biological Sciences |  |
| COMPSCI | $61 B$ | Data Structures |
| COMPSCI | 170 | Efficient Algorithms and Intractable Problems |
| COMPSCI | 258 | Parallel Processors |
| COMPSCI | $262 B$ | Advanced Topics in Computer Systems |
| COMPSCI | 266 | Introduction to System Performance Analysis |
| COMPSCI | C267 | Applications of Parallel Computers |
| COMPSCI | 270 | Combinatorial Algorithms and Data Structures |
| COMPSCI | 274 | Computational Geometry |
| COMPSCI | 285 | Solid Free-Form Modeling and Fabrication |
| COMPSCI | 286 | Implementation of Data Base Systems |
| INFO | 202 | Information Organization and Retrieval |
| INFO | 206 | Distributed Computing Applications and |
| Infrastructure |  |  |


| MATH | 1A | Calculus |
| :---: | :---: | :---: |
| MATH | 16A | Analytic Geometry and Calculus |
| MATH | C103 | Introduction to Mathematical Economics |
| MATH | H110 | Linear Algebra |
| MATH | H185 | Introduction to Complex Analysis |
| ECON | C103 | Introduction to Mathematical Economics |
| ECON | C110 | Game Theory in the Social Sciences |
| ECON | C142 | Applied Econometrics and Public Policy |
| ECON | 154 | Economics of Discrimination |
| ECON | C175 | Economic Demography |
| ECON | 219B | Applications of Psychology and Economics |
| ECON | C225 | Workshop in Institutional Analysis |
| ECON | 244 | Applied Econometrics |
| ECON | C270A | Microeconomics of Development |
| ECON | C275B | Aging: Economic and Demographic Aspects |
| STAT | 135 | Concepts of Statistics |
| STAT | C245E | Statistical Genomics |
| STAT | C245F | Statistical Genomics |
| STAT | C249A | Censored Longitudinal Data and Causality |
| COMPSCI | C191 | Quantum Information Science and Technology |
| INFO |  | Document Engineering and Information Architecture |

## Cluster 14's

## courses(excerpt)

| MATH | C218A | Probability Theory |
| :--- | :--- | :--- |
| MATH | C218B | Probability Theory |
| MATH | C223A | Stochastic Processes |
| MATH | C223B | Stochastic Processes |
| STAT | 2Introduction to Statistics |  |
| STAT | 20Introduction to Probability and Statistics |  |
| STAT | 131A | Statistical Inferences for Social and Life Scientists |
| STAT | 134 Concepts of Probability |  |
| STAT | 150 Stochastic Processes |  |
| STAT | 152 Sampling Surveys |  |
| STAT | 200A | Introduction to Probability and Statistics at an <br> Advanced Level |
| STAT | 200B | Introduction to Probability and Statistics at an <br> Advanced Level |
| STAT | 204 Probability for Applications |  |
| STAT | C205A | Probability Theory |
| STAT | 205B | Probability Theory |
| STAT | C205B | Probability Theory |
| STAT | 206A | Stochastic Processes |
| STAT | C206A | Stochastic Processes |
| STAT | 206B | Stochastic Processes |
| STAT | C206B | Stochastic Processes |
| STAT | 251 |  |


[^0]:    ${ }^{1}$ http://schedule.berkeley.edu/
    2 http://sis.berkeley.edu/catalog/gcc_search_menu

[^1]:    ${ }^{3}$ The list of stop words are as follows: a, an, and, are, as, at, be, between, both, by, for, from, have, in, is, it, its, of, on, or, that, the, this, to, will, with.

[^2]:    ${ }^{4}$ http://data.oksure.net/nlp/
    5 http://people.ischool.berkeley.edu/~k_s_/nlp/index.html

