
 1

Classification of Internal Mailing Lists

Erin Knight Ryan Greenberg
School of Information School of Information

University of California - Berkeley University of California - Berkeley

Abstract
The School of Information at UC Berkeley has
two main internal mailing lists, Fun and Noise,
for informal communication between students,
faculty and alumni. Fun is meant for time-
sensitive, actionable information such as
events, parties and concerts. Noise is intended
to cover everything else, including technology
reviews, job opportunities, political opinions,
news, and knowledge sharing. This project
seeks to address two problems with these lists.
First, although people may have a sense of
which list messages belong to, people often
send content to one list when it should be sent
to the other, or they duplicate content on both
lists. Second, the Noise list has so much traffic
that it is difficult for readers to prioritize their
attention. We trained a classifier to distinguish
Noise messages from Fun messages, and
another classifier to organize Noise messages
into discrete categories. These classifiers could
be implemented as programs on a mail server
to direct incoming messages and categorize
them accordingly.

1 Introduction

Students, faculty, staff, and alumni at UC
Berkeley's School of Information use two internal
mailing lists extensively for communication, Noise
(noise@ischool) and Fun (fun@ischool). Noise is
dedicated to discussions of new technologies,
politics, and general "noise," whereas Fun is meant
for specific opportunities such as an upcoming
movie showing or a party invitation.

Starting in 1999, the Fun mailing list was the main
medium for informal exchange at the iSchool. In
2004, the Noise list and the distinction between the
two lists emerged from students' desire to separate
time-sensitive social activities and opportunities
from general discussions and knowledge sharing.
This distinction has been a contested topic over the
years, one that was often strictly enforced by
members of the iSchool community. On occasion,
messages sent to the wrong list were met with a
response to the original sender (and the whole list):
"This is really more appropriate for Fun" or “Do
not send emails like this to Fun. This is a Noise
discussion”. It was an indirect slap on the wrist and
branding that the sender was unconnected with or
an outsider to the iSchool community.

Lately, however, the distinction between these two
mailing lists has been muddied by misuse. Many
students end up send messages to both lists to be
sure their message is received. This means many
Fun emails end up in Noise and vice-versa.
Whether the issue stems from an inability to
determine the distinction, or an unwillingness to
decide between the two lists, the result dilutes the
value of the distinction, which helps students,
faculty, and staff filter information and prioritize
their attention.

Information overload is also an issue within the
Noise list itself. Because it is seen as the catchall
for information exchange outside of events or
activities, it is understandably flooded with a
variety of messages. This corpus, while informal,
represents a valuable record of student knowledge,
trends, expertise and social interaction. It is a
running record of the ideas, topics and opinions
that are important to the community at any given

 2

time. One may go so far as to assert that most of
the iSchool implicit knowledge, at some point, is
expressed or built upon through Noise. That said,
there is also a lot of “noise”, with random
messages about an apartment for rent or a lost
power cord. Weeding out the “noise” from Noise is
difficult. Faced with increasing traffic, many
subscribers cannot manage the flow and as a result
filter out the list completely. These students and
faculty potentially miss out on some critical
knowledge sharing and discussions that are
relevant to them, because there is not way to easily
evaluate the relevance and priority of Noise
messages at a glance. One solution would be to
classify the Noise messages into several top-level
categories to enable people to follow specific
categories, or prioritize certain messages and their
time.

Our work on these problems consisted of two
parts. First, we trained a classifier to label
messages as either Noise or Fun, to help separate
traffic to the two lists. Second, we trained a
separate classifier to subcategorize messages sent
to Noise with labels including technology, politics,
job opportunities, news and miscellaneous.

2 Related Work

Email classification is one of the most common
uses of statistical NLP. Since Paul Graham wrote
"A Plan for Spam", statistical language techniques
have become the foundation of spam detection. [1]
Using Bayesian filtering with the frequencies of
tokens in email message bodies and headers has
yielded a high level of accuracy with a minimal
number of false positives. Researchers have done
significant work in both NLP and machine learning
related to spam classification of email.

There are fewer examples of classifying email in
domains beyond spam/non-spam. One example is
Linger, a system that allows users to train a
classifier by placing email messages into folders.
The system learns the characteristics of messages
in those folders and seeks to automatically file
messages into folders in the future. [2] Although
the classification techniques used by Linger are
similar to the ones we used, this system works on
the end user's machine whereas we would like to
label messages at the point where the mail server
receives them.

Additionally, in general, much work has been done
in NLP on topic classification. In fact, NLTK has
many corpora that are built around these types of
NLP techniques like the Reuters topic collection.
[3] Real world applications such as Google News
and advanced search engines do topic classification
to carve up a vast information space into smaller,
targeted categories to help people find relevant
information more easily.

3 Data and Features

3.1 Corpus Construction and Preprocessing

We initially used one year of data for each list,
framed around the school year calendar, which was
August 2008 to August 2009. This timeframe
yielded far fewer messages from Fun, so we
expanded the timeframe to include two years of
messages from Fun, from August 2007 to August
2009. We retrieved archives of all the messages
from these timeframes using the email interface
provided by the Majordomo software that
maintains the mailing lists.

Once we had archive files containing all of the
messages sent to each list, we split these files into
individual messages. We used the Python Email
module to process each message, removing binary
file attachments, multiple message payloads,
HTML formatting, extraneous headers, and
signatures. Because our goal was to classify
incoming messages, we only used messages that
started threads and ignored any replies. This was
based on the assumption that replies would be
posted to the list where the initial message was
sent. After preprocessing we had 1485 messages in
Noise and 789 in Fun.

We used the Natural Language Toolkit (NLTK) [4]
to load these messages as a corpus. By subclassing
NLTK's CategorizedPlainTextCorpusReader we
were able to isolate the header, subject and body of
the message for more fine-tuned analysis.
Messages were labeled according to the mailing
list they were originally sent to. Cross-posted
messages were labeled Fun.

3.2 Features

Our initial assumption was that the words for each
message alone would be enough to classify
messages. Based on our analysis of the messages
themselves, we used the following features:

 3

- Words. Do people use different words in
the material they send to Fun compared
with messages sent to Noise? We used the
2500 most common words from each
category in the corpus as features, after
excluding words longer than 14 characters
or shorter than 4 characters. We also used
modal verbs as features.

- Links. Does the email contain a link? We
assumed that the Noise messages would be
more likely to contain links since much of
the message traffic is sharing links.

- Forwarded messages. Was the email a
forwarded message? Many people forward
other emails to Noise, although we were
uncertain if this feature would be
significant when compared across lists.

- Dates, Times, and Ordinals. Many posts to
Fun involve events with include a date or
time, which we thought would be a
distinguishing feature. We checked for this
by looking for time strings like "6pm",
"5:30", month names, and other date
indicators like "5th".

We experimented with using popular bigrams from
the corpus as a feature, but this increased
processing time considerably with negligible
benefit. For the second task involving classifying
messages as parts of Noise, we added the length of
the message itself as a feature.

3.3 Labeling

Both of our analyses required supervised training,
so we needed to label the corpora.

Inclusion in one list or the other sufficed for
labeling for the first analysis. As mentioned
above, loading the corpus using NLTK's
CategorizedPlainTextCorpusReader enabled easy
and automatic labeling as either "fun" or "noise".

For the second part of our work we used the same
previously processed Noise corpus mentioned
above, which included 1485 messages (excluding
replies). We reviewed these messages and hand-
labeled them into five categories:

- tech - Technology reviews and
discussions.

- news - Knowledge-sharing, typically
forwarding a link and the associated
discussion.

- politics - Opinions and debate around
political issues, mostly the 2008 election
given the time frame we used.

- jobs - Job or grant opportunities, contests.
- misc - Everything else.

This was a slightly time-intensive exercise since
we manually sorted the list into five folders
representing the five categories. We ended up with
82 messages in 'jobs', 461 in 'misc', 622 in 'news',
106 in 'politics' and 198 'tech'. After sorting, we
loaded these messages using our subclass of
NLTK's CategorizedPlainTextCorpusReader,
which again automatically applied the labels based
on the folder the messages were in.

4 Models and Results

4.1 Noise vs. Fun Classification

Our first analysis involved a binary classification
task, since all messages were either labeled 'noise'
or 'fun'. We used a Naive Bayes classifier, which
achieved an 80% accuracy rate. Many of the most
distinguishing features were words obviously
related to events, which are the types of messages
that we want classified as “fun”. For example, the
following words occurred 8 to 10 times more often
in messages from Fun than Noise: musicians,
nearby, musical, concert, celebrate, prize, dance,
audiences, admission and doors. The features we
defined besides words had less discriminating
power. In one pass the only other features that
appeared in the top 1000 features were whether the
message had "AM" or "PM" (4.1 times more likely
to be Fun) or whether the message had an
associated time (2.7 times more likely to be Fun).

We also used a maximum entropy classifier since
we had multiple, potentially dependent features,
and we were trying to determine the topic from the
words, which is more in line with a discriminative
approach. After four iterations of training, our
classifier achieved only 65% accuracy. This could
be because the features were not dependent, or due
to some technical issues we had with the classifier,
including several iterations with a “nan” result.

Given a balanced corpus with two categories, a
classifier could achieved 50% accuracy by chance,

 4

which means that 80% would be a significant
improvement in accuracy. However, the Noise and
Fun do not receive equal volumes of messages, and
judging the significance of our results depends on
the timeframe being evaluated. There has been a
fall-off over the past year in traffic to Fun, which
means that a classifier selecting the largest
category by default could achieve nearly 95%
accuracy. This recent phenomenon is part of the
problem we are trying to solve, so we think a more
fair comparison is the timeframe of our corpus
when traffic was split more evenly across
categories, with messages to Noise comprising
about 72% of the total. Using this metric, an 80%
accuracy rating is still an improvement, though not
as dramatic as it might seem.

4.2 Noise Classification

The Noise classification was a multi-class
classification problem since any given message
could have been in one of five categories. We
achieved practically the same accuracy with a
Naive Bayes and Decision Tree classifier.

Naive Bayes Classifier - We achieved a 63%
accuracy and the most informative features were:

Decision Tree Classifier - This classifier also had
approximately 60% accuracy. The output
pseudocode illustrated the significance of various
features and combinations of features, such as “has
link” and “craigslist”.

While 63% accuracy is lower than that achieved in
part one in absolute terms, it represents a greater
improvement. For a classifier with five labels,
chance selection can achieve 20% accuracy. By
selecting the largest category (‘news’) as a default,
our classifier could achieve 40% accuracy because
'news' in our corpus accounted for 40% of
messages. Compared with this baseline, 63% is a
significant improvement over chance and optimal
selection.

5 Future Work

For this project, we were focusing solely on the
classification and underlying NLP methods. We
would like to see user interface components for
each of these classifiers that would allow the
community using these mailing lists to benefit
from our work. Additionally, we would like to
explore other approaches to the classification that
would combine our analyses for potentially better
results.

5.1 Interfaces

Based on our work in part one, separating
messages sent to Fun and Noise, we envision a
website or application interface where students and
faculty could "check" their message before sending
it, to find out which list would be most appropriate.
Another possibility would be to send all messages
to a single address and rely on our classifier
installed on the mail server to redirect messages to
the appropriate destination.

 5

Figure 1. Interface mockup of website for users to
determine which mailing list their message belongs on.

Our work on the classification of the Noise corpus
would be most valuable if it facilitated organized
or labeled messages in users' email clients. One
simple way to achieve this would be to run our
classifier on the mail server and to apply an X-
header with the category of each incoming
message. Then users could set up a rule to label
and file the messages appropriately using Gmail or
another email client.

Figure 2. Email client view with Noise messages labeled
appropriately.

5.2 Further Classification

Another avenue for future work would be to
combine the two classification problems discussed
in this paper. If we considered Fun as another one
of the categories of content comprising Noise, we
might achieve better results. Rather than
comparing messages from Fun against the all of
the different kind of messages in Noise, some of
which may share characteristics with Fun, we
could use 'fun' or 'events' as a sixth label in a
unified analysis.

6 Conclusions

We achieved only moderate success in our first
task of separating messages directed to Noise and
Fun (80% compared with a 72% baseline). The
words in the messages proved to be the strongest
features for training, and many words associated
with our characterization of Fun emerged as highly
distinguishing features. Ultimately, messages sent
to Noise and Fun were not as distinct as we had
imagined. Part of this is due to the problem we
were trying to solve, since people have directed
messages inappropriately in some instances. As a
result, messages that are more properly Fun may
have appeared in Noise and vice versa. Another
confounding factor is that messages about
academic events and course offerings often looked
very similar to Fun messages in that they have a
time and use some of the same words as Fun.
Additionally, evaluating the effectiveness of our
classifier was difficult because of changes in traffic
on Noise and Fun over time.

Classifying messages sent to Noise was simpler.
Using a Naive Bayes classifier we achieved 63%
accuracy (40% baseline). Although this is less
accurate in absolute terms than our work in part
one, it represents a greater improvement. A future
version would combine the two analyses and add
the Fun messages as another category in the
classification, for potentially better results.

Overall we consider our classification efforts to be
fairly successful, given the data we had to work
with. We feel the separate mailing lists, and
distinction between them, are important for
information filtering. Additionally, carving up the
Noise list is very valuable for prioritizing the
iSchool community’s information influx.
Providing interfaces to these classifiers, either via a
website or as an integrated part of a mail server,
could allow users to consume information sent to
these internal mailing lists more efficiently.

 6

7 Resources

[1] Paul Graham, “A Plan for Spam,” Aug. 2002.
Retrieved from http://www.paulgraham.com/spam.html.

[2] J. Clark, I. Koprinska, and J. Poon, “LINGER-a
smart personal assistant for e-mail classification,” Proc.
of the 13th Intern. Conference on Artificial Neural
Networks (ICANN’03), 2003, pp. 274–277.

[3] Bird, S., Klein, E., Loper, E. (2009). Natural
Language Processing with Python - Analyzing Text
with the Natural Language Toolkit. O'Reilly Media.
http://www.nltk.org/book

4] NLTK API. (2009). API documentation for NLTK.
http://nltk.googlecode.com/svn/trunk/doc/api/index.html

[5] Manning, C. & Schütze, H., Foundations of Statisti-
cal Natural Language Processing, MIT Press. Cam-
bridge, MA: May 1999.

