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Abstract 
The School of Information at UC Berkeley has 
two main internal mailing lists, Fun and Noise, 
for informal communication between students, 
faculty and alumni. Fun is meant for time-
sensitive, actionable information such as 
events, parties and concerts. Noise is intended 
to cover everything else, including technology 
reviews, job opportunities, political opinions, 
news, and knowledge sharing. This project 
seeks to address two problems with these lists. 
First, although people may have a sense of 
which list messages belong to, people often 
send content to one list when it should be sent 
to the other, or they duplicate content on both 
lists. Second, the Noise list has so much traffic 
that it is difficult for readers to prioritize their 
attention. We trained a classifier to distinguish 
Noise messages from Fun messages, and 
another classifier to organize Noise messages 
into discrete categories. These classifiers could 
be implemented as programs on a mail server 
to direct incoming messages and categorize 
them accordingly. 

1   Introduction 

Students, faculty, staff, and alumni at UC 
Berkeley's School of Information use two internal 
mailing lists extensively for communication, Noise 
(noise@ischool) and Fun (fun@ischool). Noise is 
dedicated to discussions of new technologies, 
politics, and general "noise," whereas Fun is meant 
for specific opportunities such as an upcoming 
movie showing or a party invitation. 

Starting in 1999, the Fun mailing list was the main 
medium for informal exchange at the iSchool. In 
2004, the Noise list and the distinction between the 
two lists emerged from students' desire to separate 
time-sensitive social activities and opportunities 
from general discussions and knowledge sharing. 
This distinction has been a contested topic over the 
years, one that was often strictly enforced by 
members of the iSchool community. On occasion, 
messages sent to the wrong list were met with a 
response to the original sender (and the whole list): 
"This is really more appropriate for Fun" or “Do 
not send emails like this to Fun. This is a Noise 
discussion”. It was an indirect slap on the wrist and 
branding that the sender was unconnected with or 
an outsider to the iSchool community. 

Lately, however, the distinction between these two 
mailing lists has been muddied by misuse. Many 
students end up send messages to both lists to be 
sure their message is received. This means many 
Fun emails end up in Noise and vice-versa. 
Whether the issue stems from an inability to 
determine the distinction, or an unwillingness to 
decide between the two lists, the result dilutes the 
value of the distinction, which helps students, 
faculty, and staff filter information and prioritize 
their attention. 

Information overload is also an issue within the 
Noise list itself. Because it is seen as the catchall 
for information exchange outside of events or 
activities, it is understandably flooded with a 
variety of messages. This corpus, while informal, 
represents a valuable record of student knowledge, 
trends, expertise and social interaction. It is a 
running record of the ideas, topics and opinions 
that are important to the community at any given 
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time. One may go so far as to assert that most of 
the iSchool implicit knowledge, at some point, is 
expressed or built upon through Noise. That said, 
there is also a lot of “noise”, with random 
messages about an apartment for rent or a lost 
power cord. Weeding out the “noise” from Noise is 
difficult. Faced with increasing traffic, many 
subscribers cannot manage the flow and as a result 
filter out the list completely. These students and 
faculty potentially miss out on some critical 
knowledge sharing and discussions that are 
relevant to them, because there is not way to easily 
evaluate the relevance and priority of Noise 
messages at a glance. One solution would be to 
classify the Noise messages into several top-level 
categories to enable people to follow specific 
categories, or prioritize certain messages and their 
time. 

Our work on these problems consisted of two 
parts. First, we trained a classifier to label 
messages as either Noise or Fun, to help separate 
traffic to the two lists. Second, we trained a 
separate classifier to subcategorize messages sent 
to Noise with labels including technology, politics, 
job opportunities, news and miscellaneous. 

2  Related Work 

Email classification is one of the most common 
uses of statistical NLP. Since Paul Graham wrote 
"A Plan for Spam", statistical language techniques 
have become the foundation of spam detection. [1] 
Using Bayesian filtering with the frequencies of 
tokens in email message bodies and headers has 
yielded a high level of accuracy with a minimal 
number of false positives. Researchers have done 
significant work in both NLP and machine learning 
related to spam classification of email. 

There are fewer examples of classifying email in 
domains beyond spam/non-spam. One example is 
Linger, a system that allows users to train a 
classifier by placing email messages into folders. 
The system learns the characteristics of messages 
in those folders and seeks to automatically file 
messages into folders in the future. [2] Although 
the classification techniques used by Linger are 
similar to the ones we used, this system works on 
the end user's machine whereas we would like to 
label messages at the point where the mail server 
receives them. 

Additionally, in general, much work has been done 
in NLP on topic classification. In fact, NLTK has 
many corpora that are built around these types of 
NLP techniques like the Reuters topic collection. 
[3] Real world applications such as Google News 
and advanced search engines do topic classification 
to carve up a vast information space into smaller, 
targeted categories to help people find relevant 
information more easily. 

3 Data and Features 

3.1 Corpus Construction and Preprocessing 

We initially used one year of data for each list, 
framed around the school year calendar, which was 
August 2008 to August 2009. This timeframe 
yielded far fewer messages from Fun, so we 
expanded the timeframe to include two years of 
messages from Fun, from August 2007 to August 
2009. We retrieved archives of all the messages 
from these timeframes using the email interface 
provided by the Majordomo software that 
maintains the mailing lists. 

Once we had archive files containing all of the 
messages sent to each list, we split these files into 
individual messages. We used the Python Email 
module to process each message, removing binary 
file attachments, multiple message payloads, 
HTML formatting, extraneous headers, and 
signatures. Because our goal was to classify 
incoming messages, we only used messages that 
started threads and ignored any replies. This was 
based on the assumption that replies would be 
posted to the list where the initial message was 
sent. After preprocessing we had 1485 messages in 
Noise and 789 in Fun. 

We used the Natural Language Toolkit (NLTK) [4] 
to load these messages as a corpus. By subclassing 
NLTK's CategorizedPlainTextCorpusReader we 
were able to isolate the header, subject and body of 
the message for more fine-tuned analysis. 
Messages were labeled according to the mailing 
list they were originally sent to. Cross-posted 
messages were labeled Fun. 

3.2 Features 

Our initial assumption was that the words for each 
message alone would be enough to classify 
messages. Based on our analysis of the messages 
themselves, we used the following features: 
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- Words. Do people use different words in 
the material they send to Fun compared 
with messages sent to Noise? We used the 
2500 most common words from each 
category in the corpus as features, after 
excluding words longer than 14 characters 
or shorter than 4 characters. We also used 
modal verbs as features. 

- Links. Does the email contain a link? We 
assumed that the Noise messages would be 
more likely to contain links since much of 
the message traffic is sharing links. 

- Forwarded messages. Was the email a 
forwarded message? Many people forward 
other emails to Noise, although we were 
uncertain if this feature would be 
significant when compared across lists. 

- Dates, Times, and Ordinals. Many posts to 
Fun involve events with include a date or 
time, which we thought would be a 
distinguishing feature. We checked for this 
by looking for time strings like "6pm", 
"5:30", month names, and other date 
indicators like "5th". 

We experimented with using popular bigrams from 
the corpus as a feature, but this increased 
processing time considerably with negligible 
benefit. For the second task involving classifying 
messages as parts of Noise, we added the length of 
the message itself as a feature. 

3.3 Labeling 

Both of our analyses required supervised training, 
so we needed to label the corpora. 

Inclusion in one list or the other sufficed for 
labeling for the first analysis.  As mentioned 
above, loading the corpus using NLTK's 
CategorizedPlainTextCorpusReader enabled easy 
and automatic labeling as either "fun" or "noise". 

For the second part of our work we used the same 
previously processed Noise corpus mentioned 
above, which included 1485 messages (excluding 
replies). We reviewed these messages and hand-
labeled them into five categories: 

- tech - Technology reviews and 
discussions. 

- news - Knowledge-sharing, typically 
forwarding a link and the associated 
discussion. 

- politics - Opinions and debate around 
political issues, mostly the 2008 election 
given the time frame we used. 

- jobs - Job or grant opportunities, contests. 
- misc - Everything else. 

This was a slightly time-intensive exercise since 
we manually sorted the list into five folders 
representing the five categories. We ended up with 
82 messages in 'jobs', 461 in 'misc', 622 in 'news', 
106 in 'politics' and 198 'tech'. After sorting, we 
loaded these messages using our subclass of 
NLTK's CategorizedPlainTextCorpusReader, 
which again automatically applied the labels based 
on the folder the messages were in. 

4 Models and Results 

4.1 Noise vs. Fun Classification 

Our first analysis involved a binary classification 
task, since all messages were either labeled 'noise' 
or 'fun'. We used a Naive Bayes classifier, which 
achieved an 80% accuracy rate. Many of the most 
distinguishing features were words obviously 
related to events, which are the types of messages 
that we want classified as “fun”. For example, the 
following words occurred 8 to 10 times more often 
in messages from Fun than Noise: musicians, 
nearby, musical, concert, celebrate, prize, dance, 
audiences, admission and doors. The features we 
defined besides words had less discriminating 
power. In one pass the only other features that 
appeared in the top 1000 features were whether the 
message had "AM" or "PM" (4.1 times more likely 
to be Fun) or whether the message had an 
associated time (2.7 times more likely to be Fun). 

We also used a maximum entropy classifier since 
we had multiple, potentially dependent features, 
and we were trying to determine the topic from the 
words, which is more in line with a discriminative 
approach. After four iterations of training, our 
classifier achieved only 65% accuracy.  This could 
be because the features were not dependent, or due 
to some technical issues we had with the classifier, 
including several iterations with a “nan” result. 

Given a balanced corpus with two categories, a 
classifier could achieved 50% accuracy by chance, 
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which means that 80% would be a significant 
improvement in accuracy. However, the Noise and 
Fun do not receive equal volumes of messages, and 
judging the significance of our results depends on 
the timeframe being evaluated. There has been a 
fall-off over the past year in traffic to Fun, which 
means that a classifier selecting the largest 
category by default could achieve nearly 95% 
accuracy. This recent phenomenon is part of the 
problem we are trying to solve, so we think a more 
fair comparison is the timeframe of our corpus 
when traffic was split more evenly across 
categories, with messages to Noise comprising 
about 72% of the total. Using this metric, an 80% 
accuracy rating is still an improvement, though not 
as dramatic as it might seem. 

4.2  Noise Classification 

The Noise classification was a multi-class 
classification problem since any given message 
could have been in one of five categories. We 
achieved practically the same accuracy with a 
Naive Bayes and Decision Tree classifier. 

Naive Bayes Classifier - We achieved a 63% 
accuracy and the most informative features were: 

 

Decision Tree Classifier - This classifier also had 
approximately 60% accuracy. The output 
pseudocode illustrated the significance of various 
features and combinations of features, such as “has 
link” and “craigslist”. 

 
 

While 63% accuracy is lower than that achieved in 
part one in absolute terms, it represents a greater 
improvement. For a classifier with five labels, 
chance selection can achieve 20% accuracy. By 
selecting the largest category (‘news’) as a default, 
our classifier could achieve 40% accuracy because 
'news' in our corpus accounted for 40% of 
messages. Compared with this baseline, 63% is a 
significant improvement over chance and optimal 
selection. 

5 Future Work 

For this project, we were focusing solely on the 
classification and underlying NLP methods. We 
would like to see user interface components for 
each of these classifiers that would allow the 
community using these mailing lists to benefit 
from our work.  Additionally, we would like to 
explore other approaches to the classification that 
would combine our analyses for potentially better 
results. 

5.1 Interfaces 

Based on our work in part one, separating 
messages sent to Fun and Noise, we envision a 
website or application interface where students and 
faculty could "check" their message before sending 
it, to find out which list would be most appropriate. 
Another possibility would be to send all messages 
to a single address and rely on our classifier 
installed on the mail server to redirect messages to 
the appropriate destination. 
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Figure 1. Interface mockup of website for users to 
determine which mailing list their message belongs on. 

Our work on the classification of the Noise corpus 
would be most valuable if it facilitated organized 
or labeled messages in users' email clients. One 
simple way to achieve this would be to run our 
classifier on the mail server and to apply an X-
header with the category of each incoming 
message. Then users could set up a rule to label 
and file the messages appropriately using Gmail or 
another email client. 

 
Figure 2. Email client view with Noise messages labeled 
appropriately. 

 
5.2 Further Classification 

Another avenue for future work would be to 
combine the two classification problems discussed 
in this paper. If we considered Fun as another one 
of the categories of content comprising Noise, we 
might achieve better results. Rather than 
comparing messages from Fun against the all of 
the different kind of messages in Noise, some of 
which may share characteristics with Fun, we 
could use 'fun' or 'events' as a sixth label in a 
unified analysis. 

6 Conclusions 

We achieved only moderate success in our first 
task of separating messages directed to Noise and 
Fun (80% compared with a 72% baseline). The 
words in the messages proved to be the strongest 
features for training, and many words associated 
with our characterization of Fun emerged as highly 
distinguishing features. Ultimately, messages sent 
to Noise and Fun were not as distinct as we had 
imagined. Part of this is due to the problem we 
were trying to solve, since people have directed 
messages inappropriately in some instances. As a 
result, messages that are more properly Fun may 
have appeared in Noise and vice versa. Another 
confounding factor is that messages about 
academic events and course offerings often looked 
very similar to Fun messages in that they have a 
time and use some of the same words as Fun. 
Additionally, evaluating the effectiveness of our 
classifier was difficult because of changes in traffic 
on Noise and Fun over time. 

Classifying messages sent to Noise was simpler. 
Using a Naive Bayes classifier we achieved 63% 
accuracy (40% baseline). Although this is less 
accurate in absolute terms than our work in part 
one, it represents a greater improvement.  A future 
version would combine the two analyses and add 
the Fun messages as another category in the 
classification, for potentially better results. 

Overall we consider our classification efforts to be 
fairly successful, given the data we had to work 
with.  We feel the separate mailing lists, and 
distinction between them, are important for 
information filtering. Additionally, carving up the 
Noise list is very valuable for prioritizing the 
iSchool community’s information influx. 
Providing interfaces to these classifiers, either via a 
website or as an integrated part of a mail server, 
could allow users to consume information sent to 
these internal mailing lists more efficiently. 
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