
Annette Greiner and Sarah Van Wart
12/10/2009

1

Summarizing Public Opinion on a Topic

1 Abstract
We present SPOT (Summarizing Public Opinion on a Topic), a new blog browsing web application that

combines clustering with summarization to present an organized, annotated selection of blog articles

related to a user query. SPOT addresses the diversity of subtopics and opinions in the blogosphere that

relate to any single topic. It retrieves relevant hits from the Google blog search by using the Google API,

clusters them to create logical groupings, and extracts sentences to build a summary of each grouping.

We have succeeded in implementing an initial version of the system. While this early prototype does

yield useful results, it would benefit from further optimization and experimentation with alternative

algorithms.

2 Introduction
Blogs provide a broad range of opinions on issues and events, which are often more personal, informal,

and emotional than other text-centric mediums. Arguably, blogs can be seen as a cross section of

popular opinion, and can offer different insights into various topics that are not possible to glean from

traditional news sources. Blog text has the potential to provide a wealth of valuable information that

can be applied to a number of arenas, including marketing, public policy, election campaigns, and

education. Thus, providing an easy way to parse the range of opinions on a particular topic in the

blogosphere could be an extremely valuable sense-making tool.

Summarizing Public Opinion on a Topic, SPOT, is one attempt to distill the blogosphere's sentiment on a

particular topic into groupings of easily understandable sub-categories. By (1) providing a way to

dynamically query the blogosphere, (2) grouping resulting blogs into related subgroups or themes, and

(3) summarizing each theme, SPOT aims to provide the user with an understanding of the range of

events and opinions for a given topic.

This paper describes some of the methods we explored in trying to use unsupervised learning to

dynamically catalog blog sentiment and summarize the results. We discuss our use of document vector

dimensionality reduction techniques, TF/IDF, and the K-Means clustering algorithm in the development

of several models and suggest some future directions for this work.

3 Related Work
As the blogosphere has grown over the past several years, so has the research community's interest in

exploring methods for mining, organizing, and clustering blog text. Though research in this area is

becoming more prevalent, blog text analysis is still a relatively new field, and there are numerous open

questions.

Regarding blog clustering, Li, Shuting, and Zhang, in their 2007 work, downloaded blog pages from a

website corpus and performed K-Means clustering. By analyzing both the distribution of documents

around cluster centroids (entropy), and the extent to which the documents from each cluster belonged

Annette Greiner and Sarah Van Wart
12/10/2009

2

to a single class (from a predetermined set of classes), they found that by assigning larger weight values

to blog comments, they were able to produce better clusters (Li et al. 2007). Hayes and Avesani, in their

2007 exploration of topic-relevant blogs, used Spherical K-Means clustering1 to determine topic clusters

and then used individual blog tag sets to find the most topic-relevant blog in a cluster. Though they

used intra- and inter-cluster distance to evaluate the clusters themselves, they used Google's page rank

results to evaluate the system's ability to determine the most topic-relevant blog (Hayes and Avesani,

2007). In another 2007 project, Elmer et al. did a study to determine the political influence of bloggers

in the Canadian election campaign. The project used Google's Blog Search API2 to retrieve blog posts,

and treated the top results returned as a proxy indicator for blog post prevalence and popularity (Elmer

et. al. 2007).

Regarding text summarization, there has already been quite a bit of research done in this area. Radev et

al. (2000, 2001) used a test of centrality based on distance from a cluster centroid to construct text

summaries. The multiple-document summarizer used in those studies, MEAD, uses the centroids

computed in the clustering step to summarize sentences. The 2001 work by Radev et al. also

incorporated scoring for the positioning of sentences within their documents and their similarity to the

first sentence in the document. LexRank (Erkan and Radev, 2004) uses a different take on centrality. It

is a graph-based algorithm where nodes represent sentences and edges represent similarities between

them. Based on the notion of prestige in social networks, it scores sentences by the number of other

sentences in the document with high similarity to it.

SPOT is similar to previous work on a number of fronts. For clustering, SPOT uses TD/IDF techniques

with the K-Means clustering algorithm to group similar blogs together, and intra- versus inter-cluster

distance to evaluate the effectiveness of the clustering technique. For blog summarization, SPOT also

uses a test of centrality from a centroid to extract the best sentences, but it calculates a sentence-based

centroid from the sentences in the cluster rather than taking the document-based centroid used in the

initial clustering.

SPOT also differs, from existing projects in that it downloads, analyzes, and clusters blog texts on-the-fly

from Google's search engine search results. In addition, SPOT provides a way to analyze not only the

entire blog texts of returned blog entries, but also the blog titles and blog snippets that are returned

from Google.

4 Data and Features
The data that SPOT analyzes consists of the top N results returned from Google's Blog Search API, based

on a user-generated free-text query. We made this data choice because we wanted to test a more

pragmatic implementation of blog clustering and summarization techniques that could be computed on-

the-fly, in order to accommodate the blogosphere's constantly changing content. Since Google is the

market leading search engine3, and the Google API provides a simple way in which to retrieve results, we

1
 A variation of the K-Means algorithm that scales well for large document collections

2
 http://blogsearch.google.com

3 It is estimated, as of August 2009, that Google commands 64.6% of the search engine market share
(http://news.cnet.com/8301-10805_3-10354394-75.html)

http://blogsearch.google.com/

Annette Greiner and Sarah Van Wart
12/10/2009

3

felt that this choice would mirror the way that many people retrieve blog posts on the internet.In

addition to allowing users to query dynamic data, SPOT provides a number of other useful features: (1)

a web-based interface, (2) the various themes that exist within a particular blog topic in the form of

clustered blog entries, and (3) and summaries of each of these blog topic themes. From the web

interface, a user can type in a search query, submit his/her search, and be presented with grouped lists

of URLs, as well as a summary of each grouping. These group summaries are essentially descriptions of

the clusters themselves, and can be seen as statistically generated themes for a given topic within the

blogosphere.

SPOT provides the user with the ability to analyze blog search results by either parsing the entire

contents of each blog (more computationally expensive), or looking at the structured data returned

from Google's Blog Search API (faster). Regarding Google's structured data, since the algorithms that

determine the description field for each blog are not publicly disclosed, it is difficult to say precisely how

this field is populated; however from empirical analysis, Google seems to use a combination of the

<description> tag, sentences from the first or last paragraph of the blog text, and sometimes even blog

comments.

By logically grouping blog posts on a given topic into themes and summarizing these themes, SPOT aids

the user in making sense of the range of events, themes, and opinions.

5 Models and Results

5.1 Clustering

5.1.1 Methods

Sorting blog articles into logical groupings is inherently a clustering task. Since we cannot know what

types of groups would be appropriate for a given query in advance, we cannot use classification. We also

have no labeled data for training SPOT, so we needed an approach that allowed us to use unlabeled

data. Noting the cluster hypothesis—the idea that documents that cluster together meet similar

information needs—we feel this is a reasonable approach to finding useful groupings of blog articles and

presenting them to a browsing user. Because SPOT must retrieve data while the user waits for a

response to her query, it was important to choose a clustering algorithm with good performance. We

felt that hierarchical clustering would be too slow for such an application. Thus, SPOT determines the

groupings of blog articles by using flat clustering.

We use the most widely used algorithm for flat clustering, K-Means. With this approach, a set of random

points are initially chosen as cluster centers, articles are assigned to the cluster with the nearest center,

the centroid for each cluster is calculated, and the process repeats with the new set of centroids used as

cluster centers. We use 50 repetitions in our K-Means clustering.

In order to create vectors for use by the K-Means algorithm, we treat each blog article as a "bag of

words". We remove stop words by checking against a list of stop words, and we do stemming with

WordNet's lemmatizer. The resulting words are used to calculate TF-IDF values used in the vectors.

Annette Greiner and Sarah Van Wart
12/10/2009

4

Unfortunately, server configuration issues have thus far prevented the online version of SPOT from

being able to use stemming.

Since any clustering technique requires some definition of how many clusters to make, this was an issue

we needed to address. We had several options for setting the number of clusters. Our initial version of

SPOT allows the user to select the number. We chose this option in development so that we could try

different numbers and get a feel for the effects of changing it on system performance as well as

clustering results. Ultimately, we would like to implement a version of SPOT that tries a series of cluster

numbers and chooses the best based on internal evaluation criteria.

Related to the number of clusters is the number of blog articles gathered for clustering. This number has

a strong effect on the speed of returning a result page to the user. Here, again, we chose to allow the

user to select the number, in order to get a sense for how many articles we could expect to return in a

reasonable amount of processing time. When analyzing entire HTML files retrieved from the Google API,

even a small number of articles is handled very slowly. When switching to analyzing only snippets, the

number of articles can be larger but still begins to slow with more than 30.

5.1.2 Evaluation

To evaluate the accuracies of our clusters, we compared within-cluster and between-cluster variability.

Within-cluster variation was calculated by averaging the Euclidean distances of all the clustered articles

from their respective cluster centers. The between-cluster variation was computed by finding a mean

centroid vector (a centroid of all the centroids) and calculating the average distance of each centroid

from that mean. Our within-cluster variations tended to be larger than our between-cluster variations.

(A typical result for two clusters gives an average variation within clusters of 4.42 and an average

variation among cluster centroids of 1.75, for a ratio of 0.39.) As we increased the number of clusters,

the within-cluster variations decreased and the between-cluster variations increased. We believe that

the large variation within clusters results from having widely dispersed cluster members. As the number

of clusters increases, the number of items in each cluster decreases. Thus, each cluster is more tightly

grouped and its members are less widely dispersed.

We also compared the numbers of articles assigned to each centroid in order to assess the balance of

groupings between clusters. We considered more even balances to be good, though with relatively small

numbers of articles pulled and a corpus that changes with public whim, it is not unlikely for certain views

of a topic to be less well represented in the corpus than others. In addition, we assessed the clustering

results qualitatively by inspection, noting whether the cluster groups made sense to a browsing user.

We found that some searches were more readily grouped into recognizable clusters than others. It was

typical to see at least one grouping that did not make intuitive sense and at least one that did.

5.2 Summarization

5.2.1 Methods

For the summarization of our clusters, we used a centrality-based approach. We chose to find the three

most similar sentences to a centroid for the collection of sentences in each cluster. That is, we

calculated a centroid from the vectors for all sentences in all the articles in each cluster. We then sorted

the sentences by distance from the centroid, taking the three sentences with the smallest distances as

Annette Greiner and Sarah Van Wart
12/10/2009

5

our summary. We again used a "bag of words" model to create vectors, but for this task the bags of

words were assembled at the level of the sentence. We also removed stop words and used WordNet's

lemmatizer for stemming (except that the online version does not do stemming, as noted above).

We tried two approaches for calculating distances between vectors for summarization. Initially, we used

Euclidean distance. Later, we switched to using the cosine distance. This change appeared to improve

the summary sentences, yielding noticeably fewer of the occasional sentence fragments that our

segmenter had parsed incorrectly. The average summary length increased significantly with this change

as well.

5.2.2 Evaluation

In order to evaluate the summarization, we looked at the Euclidean distances and cosine distances

returned by the summarizer. Since the two methods for measuring distance do not yield numbers that

can be directly compared (Euclidean distance being a point-to-point measure and cosine distance being

an angular one), we cannot compare the two numerically. The Euclidean distances do provide a sense of

the similarity, since a difference of 90 degrees would indicate an orthogonal text. A typical set of the

top three sentences, retrieved by SPOT, ranges from 65 to 68 degrees in cosine distance from the

sentence centroid.

Qualitative analysis of summarization indicates that our sentence segmenter is failing to correctly

handle ellipses and frequently generates sentence fragments. We use the Punkt sentence segmenter as

implemented in NLTK. Improving this piece of our pipeline is likely to yield much better clusters as well

as better summaries.

Another measure of summarization is compression. Our compression level depends on the number of

articles in a given cluster, which in turn is dependent on the number of articles selected and the number

of clusters selected. We consistently deliver three sentences, thus delivering greater compression the

larger the selection values.

5.3 Overall Interface
As can be seen in Appendix 1, SPOT’s overall interface – a web-based search tool with adjustable

numbers of clusters to be formed and URLs to be analyzed – allows for users to view clustering scores,

as well as to perform their own empirical analysis of the summarizer as a whole. For example, when we

type the word “Obama” into the search form, and asked SPOT to analyze the top 25 URLs returned from

the Google Blog Search API and cluster the results into 5 clusters, we see that all of the articles related

to the “Nobel Prize” group together.

6 Conclusions
SPOT offers a new way of browsing the blogosphere and getting a sense of what different groups of

people are saying about a given query topic. By combining clustering with summarization, we have been

able to build a functional, though not yet optimal, tool for online blog browsing.

Our choice of clustering method is constrained by the need for a system that returns results in a

reasonable amount of time. Performance issues also affect the selection of the number of blogs to

Annette Greiner and Sarah Van Wart
12/10/2009

6

cluster and the number of clusters. Given more development time, we would like to build a version of

SPOT that optimizes the selections based on the blog content, yielding a number of clusters that suits

the natural grouping of blog articles.

We would have liked to see a higher ratio of between-cluster to within-cluster variation.

Experimentation with ways of programmatically finding an optimal number of clusters and an optimal

number of blog articles could improve that mark. We could also try using different clustering algorithms,

such as hierarchical clustering or variations of K-Means. Using additional features, such as weighting of

proper names or words in titles, recognizing elements of document structure in the raw blog text, and

removing advertising are all likely to yield improved results.

We would also like to see smaller cosine distances between summary sentences and the centroid of

sentences within a cluster. Improved sentence segmentation could yield better results here, as could

weighting for sentence position or similarity to initial sentences. Switching the summarizer to a graph-

based measure of centrality would be of interest as well.

Finally, we recognize that performance tuning of our code would be of great value, especially since it

could make more compute-intensive clustering options (such as hierarchical clustering) viable. We feel

that being able to analyze a larger number of blog texts more efficiently would greatly improve the

effectiveness of SPOT.

7 References
1. Beibei Li, Shuting Xu, and Jun Zhang, “Enhancing clustering blog documents by utilizing

author/reader comments,” in Proceedings of the 45th annual southeast regional conference

(Winston-Salem, North Carolina: ACM, 2007), 94-99,

http://portal.acm.org/citation.cfm?id=1233359.

2. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, An Introduction to

Information Retrieval, Cambridge University Press, online edition, 2009.

3. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document collections. In G. K. R.

Grossman and R. Naburu, editors, Data Mining for Scientific and Engineering Applications.

Kluwer Academic Publishers, 2001.

4. G. Elmer et al., “Election bloggers: Methods for determining political influence,” First Monday

12, no. 4-2 (2007).

5. Günes Erkan, Dragomir R. Radev, "LexRank: Graph-Based Lexical Centrality as Salience in Text

Summariztion." Journal of Artificial Intelligence Research, Vol. 22 (2004), pp. 457-479.

6. C. Hayes and P. Avesani, “Using tags and clustering to identify topic-relevant blogs,” in

International Conference on Weblogs and Social Media, 2007.

7. D. Radev, S. Blair-Goldensohn, and Z. Zhang, "Experiments in Single and Multi-Document

Summarization using MEAD," In First Document Understanding Conference (New Orleans, LA,

2001).

8. D. Radev, H. Jing, and M. Budzikowska, "Centroid-Based Summarization of Multiple Documents:

Sentence Extraction, Utility-Based Evaluation, and User Studies." In ANLP/NAACL Workshop on

Summarization (Seattle, WA, April 2000).

Annette Greiner and Sarah Van Wart
12/10/2009

7

8 Appendices

8.1 Appendix 1: SPOT in Action
http://groups.ischool.berkeley.edu/spot/spot.html

http://groups.ischool.berkeley.edu/spot/spot.html

