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Abstract 

I present an automated approach to identifying 
the most widely disputed claims online. This 
method consists of performing web searches 
for trigger phrases (e.g., “falsely claimed 
that”), processing and clustering the results, 
and promoting tight clusters as candidates for 
“disputed claim” status. This approach results 
in fairly high precision clusters and may be 
adapted for large-scale data analysis. 

1 Introduction 

The Internet contains a vast array of web pages, 
blog posts, and articles which make factual claims 
about the world. Although all such claims reflect 
the point of view of their content creator, identify-
ing points of dispute can be a challenging task. 
Dispute Finder is a tool that overlays a network of 
factual claims on top of the existing web, identify-
ing to the user web claims that may be in dispute 
or otherwise of interest. This project attempts to 
augment the Dispute Finder project by identifying 
the most highly disputed claims on the Internet 
through automated means. 

2 Related Work 

This research is based on a number of well-
established methodologies in natural language 
processing and machine learning, including input 
preparation and clustering. Adreopoulos et al 
(2009a) present an excellent analysis of clustering 
techniques in the wild, and their work led me to 
select a hierarchical clustering approach. 

 
 

3 Data and features 

Because the target data set for this project is “the 
most disputed claims online”, I used the Yahoo! 
BOSS search API to assemble a corpus of extracts 
from Web sources. For this initial iteration, I used 
the query “falsely claimed that” to identify candi-
date web pages that might reference a disputed 
claim online. The first 750 English-language re-
sults for this query became the starting point for 
this corpus. For each search hit, the program at-
tempts to scrape the text content of the source page 
to identify the context of the search phrase. For 
pages that could be successfully scraped, 250 char-
acters of text beginning with “falsely claim” be-
came the document's identifier; where this failed, 
the Yahoo! BOSS search abstract was used. 

 
To avoid clustering identical results due to syn-

dicated or plagiarized content, any duplicate docu-
ments were eliminated from the corpus. This 
reduced the corpus to 711 items. 

 
Next, to select features for clustering, the algo-

rithm eliminated the standard stop words included 
in the Python Natural Language Toolkit (NLTK), 
as well as a selection of words frequently used as 
page or section identifiers, e.g., “CNN”, “fac-
tcheck.org”, “politics”, etc. It then uses the Porter 
stemmer to stem the words. 

 
Finally, the algorithm performs term fre-

quency/inverse document frequency (TF/IDF) 
analysis on each remaining word. Each word’s  
 
TF/IDF score is then used as a feature in the vec-
tor-space model. 



 

4 Models and Results 

For the clustering procedure, I considered a 
number of algorithms and methods. The essential 
criteria for consideration were that the algorithm 
be fully unsupervised and that it provide adequate 
density measures with which to reject outliers from 
the clusters. K-means, often the first choice for 
clustering, fails to meet these criteria due to its re-
quirement that the user preselect the number of 
clusters to identify. As the clusters in this research 
are unknown in advance, preselecting any criteria 
would be inappropriate. The HIERDENC algo-
rithm (Andreopoulos 2009b) appears to offer an 
efficient, scalable and fully unsupervised approach 
to this problem; unfortunately, the implementation 
was unavailable at time of research. Ultimately I 
chose a DBSCAN clustering algorithm presented 
by Segaran (2007) due to its sufficiency with re-
gard to the aforementioned criteria and its accessi-
bility in Python. 

 
The algorithm creates a hierarchical cluster by 

first considering each document in the corpus as an 
independent cluster. It then iteratively merges the 
closest clusters in vector space and repeats until 
each document falls under a single master hierar-
chy. 

 
To identify target clusters, the algorithm next it-

erates through the tree and detaches clusters with a 
distance less than 0.75. These concentrated clusters 
are hypothesized to represent discrete claims. If 
successful, each document within a promoted clus-
ter would represent approximately the same claim. 

 
For the given corpus of 711 documents, the al-

gorithm identified 31 clusters meeting the distance 
threshold. Of these, several included nested clus 
 
 
ters; I disregarded these “sub-clusters”, narrowing 
the scope to 23 non-overlapping clusters. A total of 
51 documents total were cited in these 23 clusters. 

 

 
Analysis of the results is here conducted accord-

ing to standard precision/recall measures. 
 
For a precision measure, I manually classified 

each cluster’s documents according to whether 
they seemed to represent the primary claim of the 
other item(s) in the cluster. In cases where a cluster 
contained numerous documents, I compared each 
document to the cluster’s centroid. Through this 
analysis, I identified 42 documents as successfully 
clustered, and 9 documents as unsuccessful, result-
ing in a precision rating of 42/51, or 82%. 

 
In order to identify a recall measure, I manually 

searched for other documents within the corpus 
that, in my estimation, represent the central claim 
of each cluster. I selected the 13 clusters that were 
specific enough to search the corpus for additional 
matches with reasonable assurance of finding the 
relevant documents. Of these clusters, the algo-
rithm had identified 30 total documents. Through 
my search, I identified 34 additional documents 
that represented analogous claims to the original 
30 documents. This means the algorithm correctly 
identified 30 of 64 clusterable documents, giving it 
a recall rating of 47%. 

5 Discussion 

While implementing the clustering, I attempted 
two primary variants of this clustering approach. 
One variant was to use Segaran’s code nearly ver-
batim. This approach did not incorporate any 
TF/IDF analysis, stemming, or other advanced fea-
ture extraction, but it produced a dendrogram con-
sistent with others in literature: balanced, with 
expected forking occurring throughout the tree. 
Unfortunately, this approach had unsatisfactory 
results: although I did not quantitatively analyze 
the accuracy of this approach, even a perfunctory 
visual inspection revealed that most of the clusters 
were badly mismatched. 

 

Figure 1. Promoted dendrogram represents a cluster of related claims 



The second variant, whose results I described 
and analyzed above, involved a hand-coded 
method of creating the vector-space document ma-
trix. This approach utilized stemming, stop word 
elimination, and TF/IDF, and produced satisfactory 
results; however, the dendrogram produced by this 
tree is oddly lopsided (c.f. Figure 2). 

 
My overall methodology leaves ample opportu-

nity for further improvements and research. Some 
of these potential improvements include: 

- Data preparation: instead of collecting n char-
acters surrounding the claim phrase, identify de-
screte sentences or paragraphs in the claim's 
vicinity. This could facilitate more accurate claim 
analysis. 

- Feature extraction: use n-grams for features in-
stead of single-word features. While narrowing the 
scope of cluster similarity, this would move the 
model from a “bag of words” approach to one that 
could potentially differentiate between opposing 
claims using similar vocabularies. 

- Clustering algorithms: experiment with alter-
native clustering approaches. Improve efficiency to 
work at larger scale. 

- Analysis: use Amazon Mechanical Turk for 
larger-scale results analysis. 

 
Although much more research is called for, this 

paper demonstrates that even a bag-of-words-based 
clustering method can consolidate information 
from disparate sources into sets of related asser-
tions. Although recall is low, precision is good 
enough to reasonably conclude that an analogous 
clustering approach may be a viable solution to the 
problem of identifying disputed claims on the 
Web. 
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Figure 2: Two vector-space models result 
 in very different dendrograms. At left, the dendo-

gram resulting from my vector-space model; at right, 
the dendrogram from Segaran’s code. 


