
Web Claim Finder: A cluster-based approach
for identifying disputed claims on the Web

Daniel N. Byler
School of Information

University of California, Berkeley
Berkeley, California

dbyler@gmail.com

Abstract

I present an automated approach to identifying
the most widely disputed claims online. This
method consists of performing web searches
for trigger phrases (e.g., “falsely claimed
that”), processing and clustering the results,
and promoting tight clusters as candidates for
“disputed claim” status. This approach results
in fairly high precision clusters and may be
adapted for large-scale data analysis.

1 Introduction

The Internet contains a vast array of web pages,
blog posts, and articles which make factual claims
about the world. Although all such claims reflect
the point of view of their content creator, identify-
ing points of dispute can be a challenging task.
Dispute Finder is a tool that overlays a network of
factual claims on top of the existing web, identify-
ing to the user web claims that may be in dispute
or otherwise of interest. This project attempts to
augment the Dispute Finder project by identifying
the most highly disputed claims on the Internet
through automated means.

2 Related Work

This research is based on a number of well-
established methodologies in natural language
processing and machine learning, including input
preparation and clustering. Adreopoulos et al
(2009a) present an excellent analysis of clustering
techniques in the wild, and their work led me to
select a hierarchical clustering approach.

3 Data and features

Because the target data set for this project is “the
most disputed claims online”, I used the Yahoo!
BOSS search API to assemble a corpus of extracts
from Web sources. For this initial iteration, I used
the query “falsely claimed that” to identify candi-
date web pages that might reference a disputed
claim online. The first 750 English-language re-
sults for this query became the starting point for
this corpus. For each search hit, the program at-
tempts to scrape the text content of the source page
to identify the context of the search phrase. For
pages that could be successfully scraped, 250 char-
acters of text beginning with “falsely claim” be-
came the document's identifier; where this failed,
the Yahoo! BOSS search abstract was used.

To avoid clustering identical results due to syn-

dicated or plagiarized content, any duplicate docu-
ments were eliminated from the corpus. This
reduced the corpus to 711 items.

Next, to select features for clustering, the algo-

rithm eliminated the standard stop words included
in the Python Natural Language Toolkit (NLTK),
as well as a selection of words frequently used as
page or section identifiers, e.g., “CNN”, “fac-
tcheck.org”, “politics”, etc. It then uses the Porter
stemmer to stem the words.

Finally, the algorithm performs term fre-

quency/inverse document frequency (TF/IDF)
analysis on each remaining word. Each word’s

TF/IDF score is then used as a feature in the vec-
tor-space model.

4 Models and Results

For the clustering procedure, I considered a
number of algorithms and methods. The essential
criteria for consideration were that the algorithm
be fully unsupervised and that it provide adequate
density measures with which to reject outliers from
the clusters. K-means, often the first choice for
clustering, fails to meet these criteria due to its re-
quirement that the user preselect the number of
clusters to identify. As the clusters in this research
are unknown in advance, preselecting any criteria
would be inappropriate. The HIERDENC algo-
rithm (Andreopoulos 2009b) appears to offer an
efficient, scalable and fully unsupervised approach
to this problem; unfortunately, the implementation
was unavailable at time of research. Ultimately I
chose a DBSCAN clustering algorithm presented
by Segaran (2007) due to its sufficiency with re-
gard to the aforementioned criteria and its accessi-
bility in Python.

The algorithm creates a hierarchical cluster by

first considering each document in the corpus as an
independent cluster. It then iteratively merges the
closest clusters in vector space and repeats until
each document falls under a single master hierar-
chy.

To identify target clusters, the algorithm next it-

erates through the tree and detaches clusters with a
distance less than 0.75. These concentrated clusters
are hypothesized to represent discrete claims. If
successful, each document within a promoted clus-
ter would represent approximately the same claim.

For the given corpus of 711 documents, the al-

gorithm identified 31 clusters meeting the distance
threshold. Of these, several included nested clus

ters; I disregarded these “sub-clusters”, narrowing
the scope to 23 non-overlapping clusters. A total of
51 documents total were cited in these 23 clusters.

Analysis of the results is here conducted accord-

ing to standard precision/recall measures.

For a precision measure, I manually classified

each cluster’s documents according to whether
they seemed to represent the primary claim of the
other item(s) in the cluster. In cases where a cluster
contained numerous documents, I compared each
document to the cluster’s centroid. Through this
analysis, I identified 42 documents as successfully
clustered, and 9 documents as unsuccessful, result-
ing in a precision rating of 42/51, or 82%.

In order to identify a recall measure, I manually

searched for other documents within the corpus
that, in my estimation, represent the central claim
of each cluster. I selected the 13 clusters that were
specific enough to search the corpus for additional
matches with reasonable assurance of finding the
relevant documents. Of these clusters, the algo-
rithm had identified 30 total documents. Through
my search, I identified 34 additional documents
that represented analogous claims to the original
30 documents. This means the algorithm correctly
identified 30 of 64 clusterable documents, giving it
a recall rating of 47%.

5 Discussion

While implementing the clustering, I attempted
two primary variants of this clustering approach.
One variant was to use Segaran’s code nearly ver-
batim. This approach did not incorporate any
TF/IDF analysis, stemming, or other advanced fea-
ture extraction, but it produced a dendrogram con-
sistent with others in literature: balanced, with
expected forking occurring throughout the tree.
Unfortunately, this approach had unsatisfactory
results: although I did not quantitatively analyze
the accuracy of this approach, even a perfunctory
visual inspection revealed that most of the clusters
were badly mismatched.

Figure 1. Promoted dendrogram represents a cluster of related claims

The second variant, whose results I described
and analyzed above, involved a hand-coded
method of creating the vector-space document ma-
trix. This approach utilized stemming, stop word
elimination, and TF/IDF, and produced satisfactory
results; however, the dendrogram produced by this
tree is oddly lopsided (c.f. Figure 2).

My overall methodology leaves ample opportu-

nity for further improvements and research. Some
of these potential improvements include:

- Data preparation: instead of collecting n char-
acters surrounding the claim phrase, identify de-
screte sentences or paragraphs in the claim's
vicinity. This could facilitate more accurate claim
analysis.

- Feature extraction: use n-grams for features in-
stead of single-word features. While narrowing the
scope of cluster similarity, this would move the
model from a “bag of words” approach to one that
could potentially differentiate between opposing
claims using similar vocabularies.

- Clustering algorithms: experiment with alter-
native clustering approaches. Improve efficiency to
work at larger scale.

- Analysis: use Amazon Mechanical Turk for
larger-scale results analysis.

Although much more research is called for, this

paper demonstrates that even a bag-of-words-based
clustering method can consolidate information
from disparate sources into sets of related asser-
tions. Although recall is low, precision is good
enough to reasonably conclude that an analogous
clustering approach may be a viable solution to the
problem of identifying disputed claims on the
Web.

Acknowledgments

My thanks to Barbara Rosario and Rob Ennals for
their invaluable help on this project.

References

Bill Andreopoulos, Aijun An, Xiaogang Wang and Mi-
chael Schroeder. 2009. A roadmap of clustering algo-
rithms: finding a match for a biomedical application.

Briefings in Bioinformatics, Vol. 10, No. 3: 297-314,
2009.

Bill Andreopoulos, Aijun An, Xiaogang Wang, Dirk
Labudde. 2009. Efficient layered density-based clus-
tering of categorical data. Journal of Biomedical In-
formatics 42: 365-376.

Toby Segaran. 2007. Collective Intelligence. O'Reilly
Media.

Figure 2: Two vector-space models result
 in very different dendrograms. At left, the dendo-

gram resulting from my vector-space model; at right,
the dendrogram from Segaran’s code.

