
Matching Dispute Finder Claims to Wikipedia Articles

Michael Armbrust
marmbrus@eecs.berkeley.edu

Beth Trushkowsky
trush@eecs.berkeley.edu

Abstract

Dealing with large datasets is increasingly be-
coming a problem for natural language pro-
cessing researchers. For our class project we
investigate applying the opensource Hadoop
MapReduce framework to the problem of in-
formation retrieval using TFIDF.

1 Introduction

It has been shown that one of the best ways to
improve the accuracy of natural language process-
ing algorithm is to supply more data for training
(Norvig, 2009). However, unless the computational
power of the tools used by researchers increases with
the size of the data, processing time will increasingly
become a limiting factor. For our project we investi-
gate applying the map/reduce distributed processing
paradigm to the NLP task of information retrieval.

Specifically we hoped to match claims from the
website DisputeFinder1 to relevant Wikipedia arti-
cles. In this paper we describe the methods we used
to implement the TFIDF algorithm as a pipeline of
successive Map/Reduce jobs. Additionally, we dis-
cuss improvements that we made and how they af-
fected accuracy of the results.

2 Related Work

The most similar work to ours would be the Wik-
ify! algorithm described in (Michalcea and Csomai,
2007). In this work, the authors extract important
keywords from an input document, then link these
keywords to Wikipedia pages. Possible keywords
are the set of Wikipedia articles titles, with various
morphological transformations. Their algorithm ad-
ditionally uses wiki link text as a means for word
sense disambiguation, which helps determine the
correct article for a keyword. Matching keywords to

1http://disputefinder.cs.berkeley.edu/

articles is unsupervised, as in our approach, and the
authors tried ranking articles with TFIDF and chi-
squared measures However, they found the measure
keyphraseness most effective: for a given keyword,
how likely is it to appear as a link in the Wikipedia
corpus. Our approach also uses TFIDF, but does not
limit the potential keywords to titles of Wikipedia
articles. We also do not do word sense disambigua-
tion, as seeing the various senses of an entity might
be beneficial to our goal of providing background
information.

Providing links to Wikipedia articles is also de-
scribed in (Milne and Witten, 2008). The goal of
this work is to automatically enrich a document with
links to Wikipedia articles. The key differences be-
tween this work and that of Wikify! is that (1) the
former performs word sense disambiguation before
keyword detection, and (2) the former trained a ma-
chine learning algorithm on the Wikipedia corpus to
determine whether a keyword should be linked to
(rather than simple link probability). This approach
is different than ours due to its use of disambiguation
and a supervised method for extracting keywords.

Finding related information using Wikipedia was
explored in (Koolen and Kazai, 2009). While our
approach aims to connect Dispute Finder claims to
Wikipedia articles, this work connects related books
to Wikipedia articles as a means of finding books for
a user’s query. Wikipedia is used as an intermediary
between query terms and books, and the authors em-
ploy query expansion techniques. This work’s goal
was different than ours, but highlights the value of
providing links between different corpuses of infor-
mation.

3 Data Sets

The first dataset we used was a set of claims from
the Dispute Finder website. This was provided as

a JSON2 file with each claim taking the form of a
id and text tuple. The text for each claim is usu-
ally a single phrase, for example: “Global warming
has natural causes” or “Penguins fall over onto their
backs while trying to observe airplanes flying over-
head.” There are approximately 2000 such claims
in the system. Of these, we labeled by hand 20 of
them with up to 5 relevant articles as determined by
human labeler.

Wikipedia provides dumps of the entire website
for researchers who wish to do bulk processing of
the corpus. These can be found on their download
site3. These dumps come as large bziped XML files
and the actual text of the article is stored in wiki-
markup. They provide both a copy that has only the
most recent revision (20 GB uncompressed) and a
copy that contains revision history (2.8 TB uncom-
pressed). For our experiments we used the version
with only the most recent revision for our experi-
ments, as this was already a lot of data. Also, past
revisions often contain wiki-spam which could re-
duce accuracy.

4 Models and Methods

4.1 MapReduce and TF-IDF

In order to reason about which articles are relevant
to a given claim, we compute the TF/IDF score for
every unique word in every article on wikipedia. The
input to our system is a raw wikipedia dump and a
set of claims, both in the forms discussed in Section
3. The output is a set of up to five relevant article for
each claims.

The first step was to take the raw data from
wikipedia and input it into Hadoop. We cre-
ated a custom loader that streamed over the com-
pressed XML, extracting article titles and article
text. These tuples were streamed into a Sequence-
File4 on Hadoop’s distributed file system (HDFS) in
the form of (Article Title, Raw Article Text). This
allowed us to transform the data into a form that is
easier to process without ever needing to fully de-
compress it on a single machine.

The next step is to clean the wiki markup from the
raw text and produce a set of tokenized words for

2http://json.org/
3http://en.wikipedia.org/wiki/Wikipedia database
4http://wiki.apache.org/hadoop/SequenceFile

each article. We chose to separate this step from the
previous so that we could easily try different clean-
ing methods without needing to repeat the relatively
slow non-parallelized loading process. We applied
a set of regular expression transformations to each
article and the resulting output was a new sequence
file in the form (Article Title, Article Tokens).

We compute two values from our cleaned article
tokens. First, for every distinct word in wikipedia
we compute the number of articles that contain that
word. This is done by a simple map job that cre-
ates a set of distinct words for each article and then
emits pairs with those words and the key, and a value
of one. Both the reduce and the combiner simply
sum the values for all equal keys and emit the re-
sult. The result from this step is of the form (Word,
Number of articles on wikipedia that contains this
word). We use a separate job that takes the many
resulting files from this step and condenses them
into a single MapFile which can be used to quickly
lookup the value for any given word. While we
tried a number of other alternatives, including se-
quential lookups or using an embedded database like
the BDB JavaEngine5, this method best balances the
trade-off between index creation time and lookup
time.

Next we compute the TF score for each (arti-
cle,word) pair in wikipedia. This is done with a
straightforward function that takes in (Article Title,
Article Tokens) and emits (Word/Title, TF Score)
pairs These are combined with the IDF value in
the reduce function to produce the final (Word/TF
Score, Title) pairs, which are stored in another
Hadoop MapFile. Note that we have moved the
TFIDF score from the value to the key, and moved
the title to the value. This is due to the ordering pro-
vided by the output of a Hadoop job. We then used
the resulting MapFile index to quickly locate the first
entry for a given word. At this point, each article that
contains this word will be sorted automatically by its
TFIDF value.

We use exactly this technique to locate all of the
words for a given claim and compute a complete
score by summing the TFIDF scores for each arti-
cle and for each word that the claim contains. As an
approximation, we only look at the top 10 articles

5http://www.oracle.com/database/berkeley-db/je/index.html

Wiki	 Dump	
<*tle>Biology</

*tle><text>'''Biolog
y'''	 (from	 [[Greek	
Language|Greek]]	
[[wikt:βιολογία|
βιολογία]]	 -‐	 βίος,	
''bios'',	 "[[life]]";	
[[wik*onary:-‐

λογία|-‐λογία]],	 ’</
text>	

Ar*cle	
Extractor	

Title	
Raw	 Text	

Ar*cle	
Cleaner	

Title	
Tokens	

Word	
Presence	

TF	 Map	

TFIDF	
Reduce	

Word	
Doc	 Count	

Word,	 Ar*cle	

TF	 Score	

Word,	 TFIDF	

Ar*cle	

Claims	

{"text"	 :	 "	
American	 Idol	
favorite	 William	
Hung	 died	 of	 a	

heroin	
overdose.","id"	 :	

5707}	

Claim	
Scorer	

Results	

hfp://
en.wikipedia.org/
wiki/William_hung	

hfp://
en.wikipedia.org/

wiki/Heroin	

Figure 1: The steps of the TFIDF pipeline. Red boxes represent tradition single node sequential jobs, and dark blue
boxes represent Map/Reduce processing.

for any given word when computing this sum.

4.2 Improvements

4.2.1 Redirect Removal
After choosing articles for some claims with the

results of the TFIDF MapReduce pipeline, we saw
that many of the top results included Wikipedia redi-
rect pages, which we decided to remove from con-
sideration. These pages get high TFIDF scores be-
cause they are relatively short and contain a high
proportion of the query term. Redirect pages are not
necessarily incorrect, however they dominate the re-
sults set because there are so many redirect pages for
the same article. For example “Corean” and “Ko-
rea’ng” are both redirected to “Korean”; we don’t
need all three in our results set.

4.2.2 Noun Extraction
The first attempt to use TFIDF for scoring

wikipedia articles uses all words in the claim to com-
pute the score for each article. We felt, however, that
a more appropriate way to filter the articles would be
by the noun phrases in each claim. This technique
seems intuitive because our goal is to provide in-
formation on the entities and events within a claim,
which are really those noun phrases. Noun phrase
extraction is a type of information extraction prob-
lem, whose aim is to transform unstructured text into

structured data. In general, the steps of information
extraction include: (1) sentence segmentation, (2)
tokenization, (3) part-of-speech tagging, and (4) en-
tity detection.

We skip step (1) since each claim is already a
single sentence, and leverage NLTK for steps (2-
4). We tokenize by splitting each claim into an
array of words, then tag each word with its part-
of-speech with nltk.pos tag(). The default
part-of-speech tagger in NLTK works reasonably
well. The next step is chunking, which will seg-
ment the claim into noun phrases. We define a set
of rules, part-of-speech regular expressions, that de-
fine what it means to be a noun phrase. One rule de-
fines a noun phrase as zero or one determiners, fol-
lowed by zero or more adjectives, followed by one
or more nouns: <DT|PP$>?<JJ.*>*<NN.*>+.
This rule works great for claims like, “the tim hor-
tons chain of coffee and baked goods stores adds
nicotine to its coffee to keep customers hooked on
it”. Another rule we tried chunks sequences of
proper nouns, <NNP>+, but that rule isn’t effective
when applied after converting the claim to lower-
case.

After eyeballing the results of the chunking, we
felt the essence of most of the claims was captured.
The final transformation step was to remove stop-
words from the claims. Most transformed claims

we considered successful, e.g. the claim “cups of
instant noodles pose a danger to consumers due
to their wax linings” became “cups instant noodles
danger consumers wax linings”. An example of a
less successful transformation was the claim “refried
beans are beans that have been fried more than once”
becoming “beans beans once”. However, that issue
would likely be resolved by training a part-of-speech
tagger to understand that “refried beans” is an actual
thing.

4.2.3 Using Article Titles

We initially thought that computing TFIDF scores
for all the words in each Wikipedia article would
lead to finding articles that talk a lot about the enti-
ties in the claims. However, Wikipedia article titles
are also good descriptions of the content of the arti-
cle. To compare how searching over the titles differs
from searching over the whole article, we also com-
puted TFIDF scores for just the words in the titles.

5 Evaluation and Results

To evaluate our algorithm, we hand-labeled 20
claims with 2-5 Wikipedia articles we felt would be
meaningful for understanding the people and events
discussed in the claim. We then ran the various ver-
sions of our algorithm, returning the top 5 scored
documents for the 20 claims. We tried using both
the full text of the articles and just the titles, with
both the full tokenized text of the claims and the
noun-extracted transformation of the claims. This
creates four combinations that we evaluated: (arti-
cles,tokens), (articles,nouns), (titles,tokens), and (ti-
tles,nouns). Both noun-extraction of the claims and
searching over articles titles provided better results.

The results are shown in Figure 2 and Table 1.We
first calculated how many of the pre-selected rel-
evant articles, the ones we hand-labeled, were re-
turned. After looking at the results, we decided to
also count how many of the returned articles were
relevant to the claim, even if they were not in the
original set of pre-selected relevant articles. The
bar plot in Figure 2 shows both these counts. Table
1 shows the average percentage of returned articles
from our pre-selected set, as well as the average per-
centage of returned articles that were relevant to the
claims.

One baseline to compare our results to would be
to randomly select five articles from the nine mil-
lion possible articles for each claim. While not very
meaningful, our initial algorithm using full articles
and all the words in the claims actually performs just
as poorly at finding relevant articles–with respect to
our particular definition of relevant. The results do
make sense from a search query perspective; they
weren’t totally random in that regard. See discus-
sion below for a few examples.

Figure 2: Relevant articles returned by the four algo-
rithms. articles,tokens and articles,nouns used full article
text with all claim words or with noun-extracted words,
respectively. titles,tokens and titles,nouns used articles ti-
tles and all claim words or noun-extracted words.

Table 1: Average percent of the hand-labeled relevant ar-
ticles returned, and average percent of returned articles
that were relevant for the four techniques

% of hand-labeled % relevant
titles,nouns 12.3% 22%
titles,tokens 10.8% 14%

articles,nouns 0% 5%
articles,tokens 0% 0%

6 Discussion

One thing we noticed when seeing the results of us-
ing the full articles for TFIDF with all the words in
the claim was that common words (not necessarily
stop words) were giving very high scores to irrele-
vant articles. For instance, a claim about the black
panthers yields the article “Black”. Other times,
high-scoring articles were reasonably returned based
on their content, but probably dominated over actual

relevant articles. This was likely the case for the
returning the article “Buddhism in China”, which
mentions China frequently, for the claim “fortune
cookies originated in china”.

Our evaluation also revealed that the correct set of
relevant articles for a claim isn’t completely obvious
or objective. For example, we pre-selected the arti-
cle “Instant Noodles” for the claim “Cups of instant
noodles pose a danger to consumers due to their wax
linings”. This article was not chosen by the algo-
rithm, but the article “Cup Noodles” was selected.
As hand-labelers, we simply didn’t know that that
article existed. Similarly, we pre-selected “Califor-
nia law” for a claim discussing a particular Califor-
nia state law, but saw in the results set the article
“State law”. While we did not initially choose the
article for state law, it does provide insight on the
notion of state law versus federal law, and provides
links to articles about each state’s laws.

7 Conclusion and Future Work

The goal of this work was to find Wikipedia arti-
cles for Dispute Finder claims in order to provide
relevant background information. This proved to be
a difficult task, both in computation and in evalu-
ation. Using MapReduce in Hadoop was infinitely
valuable in allowing us to try different algorithms
in a reasonable amount of time and effort, due to its
ability to quickly process a lot of data. Our first algo-
rithm, searching for all words in a claim via a TFIDF
index on the full text of the articles, returned results
that made sense but were ultimately irrelevant for
our task. The best algorithm transformed each claim
by extracting noun phrases, and performed a TFIDF
search over the articles’ titles. This algorithm’s re-
sults were 22% relevant, a significant increase from
0%. Still, these results could clearly be improved.

Leveraging page structure by searching over titles
greatly improved our results, and we believe using
other structural elements would provide additional
improvement. Wikipedia articles have informative
subsection titles, and the few sentences of a sec-
tion are often informative as well. Extracting noun
phrases from the claims helped remove irrelevant
terms, but we did notice that the bag-of-words ap-
proach often finds unrelated articles with some key
term (e.g. “China”). One possible extension to our

algorithm would be to create a TFIDF index of bi-
grams or trigrams, rather than just unigrams.

References
Bird, Steven, and Klein, Ewan, and Loper, Edward Natu-

ral Language Processing with Python: Analyzing Text
with the Natural Language Toolkit. O’Reilly Media.
2009.

Koolen, Marijn and Kazai, Gabriella and Craswell, Nick.
Wikipedia pages as entry points for book search.
WSDM ’09: Proceedings of the Second ACM Inter-
national Conference on Web Search and Data Mining.
2009.

Mihalcea, Rada and Csomai, Andras. Wikify!: linking
documents to encyclopedic knowledge. CIKM ’07:
Proceedings of the sixteenth ACM conference on Con-
ference on information and knowledge management.
2007.

Milne, David and Witten, Ian H. Learning to link with
wikipedia. CIKM ’08: Proceeding of the 17th ACM
conference on Information and knowledge manage-
ment. 2008.

Norvig, Peter Innovation in Search and Artificial Intelli-
gence. CITRIS invited speaker. September 2009.

