
ANLP Class Project Report 12/12/06 5:17 PM

1 of 19

IS256 Applied Natural Language Processing

Prof. Marti Hearst

UC Berkeley, School of Information

Fall 2006

We the News

Investigating Blog Punditry

Yiming Liu, Kevin Mateo Lim, Olga Amuzinskaya

TABLE OF CONTENTS

1 We the News
1.1 Introduction
1.2 Project Goals
1.3 Conceptual Vision
1.4 Task Breakdown

2 Retrieval Service
2.1 Retrieval Architecture

3 NLP Analysis Tool
3.1 Analyzer Architecture
3.2 Analyzer Modules

3.2.1 Feature Scorers
3.2.2 XML Reader
3.2.3 Simple Classifier



ANLP Class Project Report 12/12/06 5:17 PM

2 of 19

3.2.4 Naive Bayes Classifier
3.3 Training Corpora

4 Results
4.1 Context
4.2 Result Details

4.2.1 News Event: Democrats Win Elections
4.2.2 News Event: "An Inconvenient Truth" Movie Causes a 
Stir
4.2.3 News Event: Microsoft Internet Explorer 7 Released
4.2.4 Test Set sample run

4.3 Discussion
5 Challenges and Future Work
6 References

1. We the News

1.1 Introduction

We the News is conceived of as a project to examine, analyze, and classify
blogosphere reactions to some controversial news event. Blogs are
interesting in many ways. But sometimes they are interesting not for their
“truth value,” but because they are personal and opinionated. We attempt to
collect and classify blog entries as a gauge of public reaction toward news
events, with the intent of automating the process by which core arguments
and positions on a given topic can be identified and presented.

1.2 Project Goals

The project set out to build two primary components: a web service 
framework that allows semi real-time retrieval of news stories and blog 
entries that relate to those stories, and a NLP tool that uses the structured 
output from the retrieval service to rank, classify, and extract highly affective, 
charged statements from blog texts.

1.3 Conceptual Vision

The retrieval web service is a logistical framework that uses multiple public 
web service APIs and RSS feeds to obtain blog entries that relate to a 
specific event, whether extracted from a news service, or by the user 
manually typing in search parameters. In addition to API service adaptors
and XML input and output processing modules, the service possesses a text 
extraction module that uses some predefined heuristics to identify and 
extract the blog full-text body, given a link to a HTML blog post.



ANLP Class Project Report 12/12/06 5:17 PM

3 of 19

The affect/opinion extraction and classification toolkit is of more interest in
NLP terms. The classification tool extracts highly opinionated statements,
given structured XML input of a set of blog entries. These statements can be
considered “sound-bite” summaries of the entry in question, and should be
in some sense very revealing of the blog author’s core opinions regarding
the subject in question. The toolkit also contains a set of three human
retrieved and constructed training corpora containing 20 to 30 blog posts
each that correspond to a central topic of controversy.

We make a fundamental hypothesis that highly affective sentences are 
proxies for highly opinionated statements, and thus attempt to identify and 
extract these charged statements from the blog text. While this is not always
the case, we assume that this is a reasonable approximation for the majority 
of the cases where we seek toidentify sentences that are revealing of core 
opinion. We assess the performance of our system, with respect to this
hypothesis, in our discussion of results.

1.4 Task Breakdown

Team members held weekly meetings to coordinate project direction.
Further, individual tasks were allocated as follows:

Yiming - concept development, blog full-text extraction, 
SimpleClassifier, SummaryEvaluator

Kevin - web service UI, NaiveBayesClassifier, Inquirer and general 
feature scoring

Olga - XML schema design, XML Reader/Writer, feature scoring

All members - training corpus development, classifier tuning and 
testing

2. Retrieval Service

2.1 Retrieval Architecture



ANLP Class Project Report 12/12/06 5:17 PM

4 of 19

The Orchestration.py module (implemented in Python) controls the web 
service that retrieves blogs posts (along with Flickr pictures) relevant to the 
news story. The orch.py file implements an object of an Orchestration class.
blogservice.php is a thin PHP code layer to enable its deployment as a web 
service.

Parameters are passed to blogservice.php as HTTP GET or HTTP POST 
variables. They include:

The kNumStoriesParam sets the limit to the number of new articles to
retrieve. The default setting is 5.

The kNumBlogsParam limits the number of blogs for each news
event. The default is 5.

The kNumTagsParam limits the number of tags (or term key words
that characterize each story) to extract from each of the news stories. 
The tags extracted from each news story will be used as the search 
terms to find the blog posts around the story.

The kTermsParam provides a manually created list of terms to use
when searching for blogs instead of the tags extracted from each 
news story.

The staticMode parameter is an override control to use a static set of
prebuilt XML files rather than doing a live retrieval.

election – process news and blogs reactions to the recent
elections

truth – process the news and blogs about the movie
“Inconvenient Truth”

internet – process data about the Internet Explorer 7

Orchestration class uses the following data fields to store the extracted 
contents:

collection field is an object of class NewsCollection defined within the
Orchestration.py. It contains the dictionary of newsAtributes (title, 
source, date, authorship attributes of a collection of news articles 
about specific event) and the list of articles on this event. The articles 
is the collection of the objects of ArticleItem type. Each ArticleItem 



ANLP Class Project Report 12/12/06 5:17 PM

5 of 19

contains fields such as title, link, summary, and the collections of 
photos, tags, and blogs associated with this news article.

collectionXML is a string that contains a serialized collection
datafield. It is used to output the results of news, photos, and blog 
extraction work performed by the Orchestration module.

The collection is filled when Orchestration utilized the following modules to 
implement its main functionality:

News Adaptor module is implemented as a newsFeeder data field of
the Orchestration class. Responsible for extracting either live RSS 
feed articles from specified live feed source or from a sample RSS 
feed stored in a static file (for testing purposes). Its class type is 
ArticleExtractor and it is defined in the ArticleExtractor.py.

Term Extractor module is implemented as a termExtractor data field of
Orchestation class. Responsible for extracting key terms from the text 
of a news story. It is of the type TermExtractor, a class defined in 
TermExtractor.py.

Blog Adaptor is implemented as a blogExtractor field of the
Orchestration class. Responsible for extracting full text blogs using
blog post URLs from the Technorati API. Its class type is 
TechnoratiExtractor and it is implemented in the 
TechnoratiExtractor.py file.

Photos Adaptor is a PhotoExtractor object implemented by
PhotoExtractor.py file and its job is to find Flickr photos by using the 
search terms extracted from news articles.PhotoExtractor.py file and 
its job is to find Flickr photos by using the search terms extracted from 
news articles.

XML Writer is a module module that serializes the collection of
Attributes and ArticleItems into an XML text.

3. NLP Analysis Tool

3.1 NLP Analyzer Architecture



ANLP Class Project Report 12/12/06 5:17 PM

6 of 19

The NLP Analyzer consists of two Classifiers, supported by a number of 
feature scorers. Both classifiers operate with the NewsCollection data
structure - they take in a NewsCollection as input, and outputs the same 
NewsCollection structure but with the necessary <emotionalSummary> 
fields filled with what they believe to be highly opinionated sentences.

To facilitate easy operation on the NewsCollection structure, we 
provide two serialization classes. XMLReader will accept a document
that conforms to our NewsCollection XML Schema (as defined in 
allNewsCollection.xsd) and deserialize it into a NewsCollection 
object. XMLWriter, in turn, will take a NewsCollection object and
serialize it into NewsCollection XML Schema form.

Scorers are used to identify the various features that constitute an 
effective opinion statement. These scorers are explored in detail this
section.

SimpleClassifier uses feature scores from all available scorers and 
implements a simple additive algorithm that sums total feature counts 
and selects the top ranking sentences for extraction into an 
"emotional summary", which is a set of sentences that represent the 
core opinion of the blog post being analyzed. The SimpleClassifier
functions as a baseline, and is unsupervised.

NaiveBayesClassifier implements a classical multinomial Naive 
Bayes classification algorithm to distinguish, rank, and extract 
sentences. It is a supervised method that requires a training
collection of blog posts.

Both Classifiers are designed with Cross Validation and Testing modes.
When run on the command line, each *Classifier.py module will execute a 
self-diagnostic, cross-validation routine. The threshold for cross-validation
selection is 0.2 by default, which means 20 percent of posts will be selected 
as test posts. The topic corpus used for evaluation defaults to kElection, the
election 2006 corpus. Classifiers accept a topic argument, however, which
can be "ie" or "truth", to switch to a different corpus.

For Testing mode, the ClassifierTest.py driver script will accept a topic 
argument and use its corresponding corpus for training. The classifier will
then be run on the testing corpus, a collection of about 10 posts for each 



ANLP Class Project Report 12/12/06 5:17 PM

7 of 19

topic that have not been preprocessed by humans for the 
emotionalSummary.

SummaryEvaluator is a class designed to assess the performance of the 
Classifiers during cross-validation. In essence, it compares the original
NewsCollection data structure as deserialized from the human-prepared 
gold standard XML files to the newly generated NewsCollection data 
structure from the Classifier. Discrepancies between each blog posts'
extracted sentences and the extracted sentences in the gold standard are 
noted. The Evaluator will then generate a recall and precision report for the
validation run, with some additional miscellaneous statistics.

3.2 Analyzer Modules

3.2.1 Feature Scorers

Each feature scorer that we implemented followed this convention:

Implement method getScores()

Input 1: collection, type: newsCollection, this data 
structure that holds all the blog post texts for scoring

Input 2: topic, type: string, this contains the path to the 
XML file that should contain the topic-specific blog data.
This parameter both indicates what topic and points to 
the correct data file. In practice, these were populated as
the static values defined in the ServiceConfig module, 
e.g. kElection or kInconvenientTruth

Output: a 3d list of feature scores for the collection, where 
scores[i][j][k] is the feature score for the kth sentence of 
the jth blog post of the ith article in the collection

Allow testing by hand with main method: Each method can be 
run in standalone (e.g. python curseWordScorer.py), in which 
the default topic is kElection (Democratic victory in 2006 
election)

Scorers: Technique description, feature rationales

Strong Valence Word Scorer - This scorer finds "strong" words 
based on the ANEW list of words. Since the ANEW list provides
a valence score (1.0 = Most Extreme Negative, 9.0 = Most 
Extreme Positive), this scorer defines "strength" based on 
distance from the center of the continuum, 5.0. For a given
sentence, this scorer will provide the number of words that are 
greater than 2 valence points from the center (i.e. words with 



ANLP Class Project Report 12/12/06 5:17 PM

8 of 19

valence greater than 7.0 or less than 3.0).

The rationale here is that a sentence with strongly positive 
words (such as "affection," valence score 8.39) and strongly 
negative words (such as "whore," valence score 1.61) are more 
likely to be strongly emotional than sentences without these 
words.

Curse Word Scorer - This scorer builds a dictionary of common 
curse words, as found here. Since stemming proved too slow
over our corpora (see below), we defined two dictionaries for 
detecting curse words:

Curse words that should be detected as substring: 
certain curse words tend to be found within other words, 
which themselves we count as curse words. For
example, substring "damn" is found in "goddamn" and 
"damnit". We deemed that, for certain cursewords, any
word that contained one of these curses a substring was 
most likely a curse itself. It is unlikely that a word would
have "damn" as a substring without evoking its profanity.

Curse words that should only be detected as a fullword: 
The risk of detecting any word that contains a curse is 
that words like "Massachusetts" would count for having 
"ass" as a substring. For this, we define a dictionary of
words that must appear standing alone. However,
understanding that words like "ass" have muliple 
incarnations as curses, we spelled those out (e.g. 
"asses", etc)

We decided that sentences that included cursing were likely to 
be highly charged sentences: "Why must that ######## Hilary 
be so ######?"

pronounWordScorer - This scorer builda a dictionary of 
pronouns, including their various forms. It then uses the 
dictionary to find any tokens within each sentence that are 
pronouns. The score count of a sentence is incremented per 
each token that is a pronoun.

imperativeSentenceScorer - This scorer builds a dictionary of 
verbs, as found here. The scorer examines each sentence and 
increments score counts for those sentences that begin with a 
verb.

exclamationPointScorer - Examines sentences and 
increments score counts for those sentences that end with an 



ANLP Class Project Report 12/12/06 5:17 PM

9 of 19

exclamantion point.

positionSentenceScorer - Identifies the position of each 
sentence in a body of a blog text and increments a score count 
for the sentences which are located either at the beginning or at 
the end of a blog.

SearchTermScorer - Since both human input and automatic 
newsfeed extraction will yield a number of search terms or tags 
(the retrieval framework requires these tags to search for 
relevant blogs and photos), it is useful and simple to use these 
terms as cues for sentence extraction. Since we wish identify
the opinion of the blogger with respect to some topic, it is likely 
that he or she will mention these topic words in the sentences 
where his or her opinion is given. For example, opinions
regarding IE7 may likely refer to its topic, and therefore contain 
terms such as "IE7", "Internet", "Explorer", "Microsoft", etc. This
feature scorer counts the number of times topical search terms 
or tags were used in a given sentence and weights those 
sentences accordingly.

General Inquirer Scorers: These scorers are based on the 
General Inquirer (GI) ord list, which lists a long list of words with 
various tags. Each tag in the GI word set corresponds to a
specific property. What we did is process the raw Inquirer data,
stored as inqtabs.txt (tab delimited file), and for each tag, 
serialized a dictionary of all words bearing that tag. For
example, in the serialized metadictionary for GI tags, (which we 
pickled as inquirer_dict.pkl), each tagname (e.g. 'Strong') is a 
key which yields a dictionary of words. These dictionaries were
built using the inqtabs.txt raw data file, and the InquirerList.py 
module.

So for each inquirer scorer, we load up the appropriate
dictionary and return the counts for each sentence in each blog 
post, for a given topic. Since the inquirer dictionary lists root
words, and stemming is expensive, we decided to define a list 
of suffixes which would be applied to each dictionary word. For
example, "disgusting" is not in the dictionary for inquirer, but by 
listing "ing" as a suffix, we will try affixing "ing" to each dictionary 
word in finding matches. This general set of behaviors with
regard to counting words is implemented in 
inqGeneralScoring.py module.

inqEMOTWordScorer - 'EMOT' is a tag in the GI list.
Words tagged with 'EMOT' are words pertaining to 
emotion, such as 'disgust' and 'bitter.' This scorer returns
count for words (or derivatives of words) that are tagged 



ANLP Class Project Report 12/12/06 5:17 PM

10 of 19

'EMOT.'

inqPleasurScorer - 'Pleasur' is a tag in the Inquirer list.
Words tagged with 'Pleasur' are words that indicate 
enjoyment, such as 'admire' and 'bliss'. This scorer
returns count for words (or derivatives of words) that are 
tagged 'Pleasur.'

We decided that sentences including pleasure words are 
more likely to be affective than those that don't.

inqPainScorer - 'Pain' is a tag in the Inquirer list. Words
tagged with 'Pain' are words that indicate suffering, such 
as such as 'frustrate' and 'dread'. This scorer returns
count for words (or derivatives of words) that are tagged 
'Pain.'

We decided that sentences including pain words are 
more likely to be affective than those that don't.

inqStrongWordScorer - 'Strong' is a tag in the Inquirer 
list. Words tagged with 'Strong' are words that indicate
strength, such as 'affirm' and 'approve'. This scorer
returns count for words (or derivatives of words) that are 
tagged 'Strong.'

We decided that sentences including Strong words are 
more likely to be affective than those that don't.

Cue Word Scorers: Cue words are terms that indicate 
themselves as more or less likely to be in a given class (in our 
case whether or not the sentence is in an affective sentence).
For each term, we calculated a selection ratio : (number of
emotional summary sentences that contain the term) / (total 
number of sentences that contain this term). Stigma words we
defined as words that had particularly low selection ratio (they 
seem less likely than average to be in the emotional sets we 
picked). Bonus words we defined as words that had a
particularly high selection ratio (that is, they're more likely to be 
in the emotional sets we hand-picked). We selected the specific
cue words for each domain using CueWordList.py. This
generated a bonus and a stigma list for each domain. For a
given domain, we stored the dictionaries as a pickled 
metadictionary with exactly two entries: 'bonus' was a key that 
mapped to a dictionary holding all the bonus words for the 
domain, 'stigma' mapped to a dictionary containing the stigma 



ANLP Class Project Report 12/12/06 5:17 PM

11 of 19

terms. The files containing those serialized metadictionaries are
in [topic]CueWords.pkl, where topic is in [InconvenientTruth, 
InternetExplorer, and Election]. We defined not a specific
threshold value, but aimed to have the dictionaries be 10% of 
the words counted. Therefore, we simply ranked all the words in
a domain by selection ratio, and figured out which single term 
was right on the cusp of the 10% borders (e.g. in a corpus of 
3100 unique terms, we would select out the 310th highest and 
310th lowest terms as ranked by selection ratio. These two
words defined our cutoff ratios.

We believed our domain-specific development sets to be good 
for finding good bonus words and stigma words for that type of 
blog post. For instance "scandal" is an especially charged word,
given the domain of the 2006 American election results. Instead 
of relying on another authoritative list (such as ANEW or 
General Inquirer), we decided it would be a strength to use our 
own development sets to create a list of words. And in our cross
validation trials, the Cue Word scorers benefitted both recall 
and precision.

StigmaCueWordScorer - After creating the list of cue 
words, this scorer counts the number of stigma words in 
each sentence.

We determined that words that showed up 
disproportionately little in the affective sentences of our 
development corpora would indicate lower affect in 
general.

BonusCueWordScorer - After creating the list of cue 
words, this scorer counts the number of bonus words in 
each sentence.

We determined that words that showed up a 
disproportionately high number of times in the affective 
sentences of our development corpora would indicate 
higher affect/charge in general.

CapWordsScorer - Capitalized words, especial ALLCAPS 
PHRASES or key proper nouns such as "Democratic Party", will 
tend to be cues for useful sentence extraction. With the
pseudo-formal styles of most blogs, capitalization is often a 
textual representation of shouting or emphasis. Further,
capitalized words are typically unique named entities that are 
being discussed, which is often revealing of the blogger's 



ANLP Class Project Report 12/12/06 5:17 PM

12 of 19

opinion. This feature scorer implements capitalization weights
using both a simple additive algorithm and the Kupiec 
capitalization scoring method. It defaults to Kupiec mode, which
grants 1 unit of weight to capitalized words that are not 
sentence initial, with additional weight granted to the sentence 
that contains the first occurrence of that particular word in the 
document.

Challenges in scorers:

Slowness of stemming: in the scorers that built a dictionary for
scoring, it would have been useful to normalize words into base 
forms for comparison. Unfortunately, Wordnet's morphy()
reduced scorer performance significantly, which constituted a 
very problematic bottleneck. The Porter Stemmer is much faster,
but did not allow us to normalize to actual words. Non-word
roots could not compared to dictionary words that were 
contained in those aforementioned scorers, which made the 
entire exercise useless.

3.2.2 XML Reader

XML Reader receives an XML either as an input from the Orchestration 
module or reads in a static file (such as a Gold Standard blog 
collection for each of the sample news events). It extracts data about 
the new articles and relevant blogs, and produces a Python data 
structure with the datafields filled with the extracted data.

3.2.3 Simple Classifier

Simple classifier is implemented in SimpleClassifier.py module. It is an 
unsupervised method which does not do any self-training and uses all 
of the available feature scorers to select sentences with the highest 
feature count.

3.2.4 Naive Bayes Classifier

The classifier is used to classify each blog sentence as either a good 
represenative of the opinion of blog or not. It is called from the 
SummarizeTest.py file.

The NaiveBayesClassifier class requires the following input arguments 
to initialize:

training collection data structure, representing a set of blogs 
with manually selected summary sentences



ANLP Class Project Report 12/12/06 5:17 PM

13 of 19

topic to search for the test blogs to evaluate the effectiveness of 
the trained classifier

threshhold is used to adjust the fraction of sentences that 
should be extracted from the full text to serve as summary.

The classifier is implemented in NaiveBayesClassifier.py file. It trains 
itself by assigning the higher weights to the scores which were most 
successful in identifying the correct summary sentences in the Gold 
Standard (the train() method). When the training is complete, it 
attempts to summarize the test set of blogs (the summarize() method) 
and uses the SummaryEvaluator.py in order to analyze how well the 
classifier was able to pick the emotional sentences from the test 
collection.

3.3 Training Corpora

To facilitate training and testing of the classifiers, three training corpora of 
blog posts were developed, ranging from 20 to 30 blog posts each. These
posts pertain to the central theme of their respective corpora, which consists 
of three prominent news events:

U.S. Election of 2006 - the Democratic Party captured majorities in 
the legislative branch. Bloggers of both sides of the political spectrum
weighed in on the aftermath.

"An Inconvenient Truth" - Al Gore's documentary on global warming 
provokes reaction in the blogosphere.

The release of Microsoft Internet Explorer 7 - after years of 
development and much fanfare, Microsoft (an ever-controversial firm 
in the tech world) and its new Internet Explorer faces the amateur 
tech pundits of the WWW.

Each corpus is manually developed by a member of the project team, who 
also makes a qualitative judgment on the valence of the opinion of the 
blogger with respect to the topic on a 1-9 scale, 9 being most favorable and 
1 being least favorable. The team member also selects a number of
sentences which he or she believes is most reflective of the blog's core 
opinion (and thus the targets for automatic extraction). This metadata is
inserted into the markup for use by the evaluator module.

4. Results

4.1 Context

Using the Simple Classifier as the baseline extraction tool and the Naive 



ANLP Class Project Report 12/12/06 5:17 PM

14 of 19

Bayes Classifier as the main extraction tool, we performed cross-validation 
with all feature scorers on the three gold standard corpora. From each
corpus, 20 percent of its blog posts are randomly designated as test posts, 
while the remaining 80 percent are designated training posts. The classifiers
are then trained and tested on the respective posts. The SummaryEvaluator
is then used to compare machine-selected sentences with human-selected 
sentences in the corpora, and precision/recall scores are output.

Because of the random-selection of posts used for cross-validation, we run 
each classifier 5 times and take the average recall and precision ratings for 
comparison.

Finally, we train the classifiers on a training corpus, run it on a separate test 
set of posts on the same subject, and qualitatively assess the accuracy. 

4.2 Result Details

4.2.1 News Event 1: Election 

Election Cross Validation Results 

Classifier Recall Precision

Simple 0.32 0.30

NaiveBayes 0.71 0.79

Sample run:

Al Jazeera (and others) report that Islamic radicals in the

middle-east are praising American voters for "defeating and rejecting

Bush’s failed policies" following yesterday’s midterm elections. This

is all that really needs to be said about yesterday’s big Democrat

victory(s), (UPDATE: but here's more)

But I can’t resist digging deeper. How miserable is your 

political party when you have the enemy of your country 

cheering for your victrory as a sign that they have won 

the "hearts and minds" of Americans? Terrorists are

cheering because Democrats have been championing their 

cause since 2003 and they believe all of the Democrat 

rhetoric and benefit from it. (Is the above photo from Al 

Jazeera or a Democrat rally?) Islamic throat-cutting

fascists know that a Democrat win is a win for Islamic 

throat-cutting fascists. How so? They have been doing this for a

while now. They believed Democrats when they said "this is a war

America cannot win". They believe Democrats when they say America must

get out of Iraq (cut and run) ASAP. They agree with John Kerry and

think our troops are uneducated idiots. They agree with Democrats who



ANLP Class Project Report 12/12/06 5:17 PM

15 of 19

want to let them phone America without the CIA/NSA/FBI etc listening 

in on their calls. They love the fact that Democrats want to give them

a free lawyer and full US citizenship rights if captured while trying 

to kill US troops. They repeat Democrat talking points (almost word

for word) in their speeches when they say that America is the problem 

in the world and should concentrate on our own healthcare system and 

feeding the poor instead of the war on terror in Iraq.

What is this so-called New Direction? If siding with the enemy of

America during a time of war is Democrats idea of a "New Direction"

then "God help us". How can Democrats be proud when their victory is

considered even more of a victory by America’s enemy? (Islamic

throat-cutting fascists) It’s easy to understand why terrorists would

support Democrats, but why would American voters? "Props" go to CNN,

MSNBC, ABC News, CBS News, NBC News, Jon Stewart, David Letterman,

Whoopie Goldberg, Sean Penn, Rosie O'Donnell, The Dixie Chicks, Bill

Mahr, Al Franken, Michael Moore and the NY Times and virtually every

other liberal newspaper.(All of whom are cheering along with the

terrorists) Now, what happens if America doesn’t live-up to Democrats

promises to "cut and run"?

The problem is that liberals in America have eagerly let yourselves be

used as "useful Idiots" in order to bring down Bush.The plan is to 

kill you along with the rest of us when the time comes. Yesterday 

was a victory for all of you useful idiots who claim to be 

smarter than everyone else and a victory for the 

terrorists who played you like idiots against your own 

government. Congratulations on your "victory". One other interesting

note: Democrats and all the news media talking about nothing but

rampant voter fraud and problems with the voting process for days and 

even on election day right up until the time Democrats started 

winning, then suddenly no further mention by anyone anywhere of ANY 

problems with the count. Hmmmmmm Had Democrats lost, we would be

knee-deep in lawyers right now. I'm just sayin'...

EXTRACTED: Terrorists are cheering because Democrats have been championing 

their cause since 2003 and they believe all of the Democrat rhetoric and 

benefit from it. (Is the above photo from Al Jazeera or a Democrat rally?)

Islamic throat-cutting fascists know that a Democrat win is a win for 

Islamic throat-cutting fascists.

EXTRACTED: How miserable is your political party when you have the enemy of 

your country cheering for your victrory as a sign that they have won the 

"hearts and minds" of Americans?

MISSED: Yesterday was a victory for all of you useful idiots who claim to be 

smarter than everyone else and a victory for the terrorists who played you 

like idiots against your own government.

4.2.2 News Event 2: "An Inconvenient Truth" 



ANLP Class Project Report 12/12/06 5:17 PM

16 of 19

Inconv. Truth Corpus Cross 
Validation Results 

Classifier Recall Precision

Simple 0.15 017

NaiveBayes 0.55 0.73

4.2.3 News Event 3: Internet Explorer 

Internet Explorer Corpus Cross 
Validation Results 

Classifier Recall Precision

Simple 0.19 0.40

NaiveBayes 0.38 0.57

4.2.3 Test Set extraction run: Election 

Trying To Savor The Taste... Current mood: relieved Current music:

"Blow Northerne Wind"--The Mediaeval Baebes Trying To Savor The

Taste... But I barely recognize it any more! We all know what triumph

tastes like, but I'm having to get used to not feeling defeated and 

depressed after an election! I was sick as a dog on Wednesday

morning--couldn't sleep Tuesday night, was nauseated half the day.

Dunno what was up! After elections I'd worked, where I had often gone

with less than three hours of sleep several nights running leading up 

to the big day, I would get what Mum called "Campaign Hangovers." The

exhaustion (and usually the grief of the loss) would hit the morning 

after, I'd be dead to the world, often miss school , and usually come 

down with a head cold. Maybe Wednesday was a vicarious campaign

hangover. Maybe I was feeling it sympathetically for all the stalwarts

who still managed to trudge through that ghastly campaign after years 

of heartbreak. I salute them! We did it. My god, we did it. We took

both houses. We got to see Rummy's scuzzy head on the wall! I'd never

have thought it possible. I went to lunch with a colleague Wednesday

who shares my political leanings, and in between talking shop, we 

pondered the election outcome and how Virginia and Montana (still up 

in the air at the time) would play out. As we were leaving the

restaurant, there was a building across the street with a big TV 

screen and ticker on the side (a la Times Square, only about 1/10th 

the size). There it was, the headline: "RUMSFELD TO STEP DOWN!!!" I

couldn't even speak; just squeaked like an idiot and pointed. By the

time we got back to the office, Montana was ours. Last night, Virginia

was projected for us. I've been alternating between fits of

spontaneous, hysterical giggles and wanting to burst into tears of 

sheer relief. Another fellow Democrat at work (there's a surprisingly



ANLP Class Project Report 12/12/06 5:17 PM

17 of 19

large number of liberals at my firm--it might even be 50/50 which is 

unusual for a big office), remarked to me that we were having a "very 

subtle victory party" on Wednesday...which consisted of leaning in 

each other's doorways and hissing, "Didja see? Didja see? We got

Rumsfeld/Montana/Virginia! Allen conceded! This is it! This is it!"

and doing miniature happy-dances in our chairs. Such is politics in

the professional world, I guess. We did it. O Joy, O Rapture, O Bliss.

We actually did it. Well fought, my friends! Well sung and well

danced! And to my Dems who may now consider themselves the

Congressional Leadership...don't blow it. We need this to last until

'08!

The exhaustion (and usually the grief of the loss) would hit the morning 

after, I'd be dead to the world, often miss school , and usually come down 

with a head cold. O Joy, O Rapture, O Bliss. There it was, the headline:

"RUMSFELD TO STEP DOWN!!!" And to my Dems who may now consider themselves

the Congressional Leadership...don't blow it. I've been alternating between

fits of spontaneous, hysterical giggles and wanting to burst into tears of 

sheer relief. Maybe I was feeling it sympathetically for all the stalwarts

who still managed to trudge through that ghastly campaign after years of 

heartbreak.

4.3 Discussion

We hypothesized that identifying highly opinionated statements can be 
approximated by identifying and extracting highly emotional sentences from 
the blog text. Overall, this has proven to be a reasonable hypothesis,
especially in political or politicized domains where the event in question 
generates very charged statements, such as the election of 2006 and "An 
Inconvenient Truth". When bloggers emphasized their particular viewpoints,
they often included some form of emphasis using loaded words, 
capitalization, punctuation, and other features that can be captured by our 
scorers. Instances such as "RUMSFELD TO STEP DOWN!!!" and "I've been
alternating between fits of spontaneous, hysterical giggles and wanting to 
burst into tears of sheer relief" were very prominent examples of this.

This hypothesis has proven less accurate with the Internet Explorer event, 
which while having some emotion, is usually less well-defined, buried under 
sarcastic/bitter musings ("IE7 is clearly a Microsoft Product."), or consist of 
very factual, very frank comparison of technical features (such as IE 7 vs 
Firefox 2). In this latter instance, affect detection was not a very effectual
approximation for opinion.

We also noted a phenomenon in which highly charged sentences were not 
core opinion statements in and of themselves, but serve as cues that 
indicate core opinion statements were in close proximity. In several
instances, the sentences that were clearly opinion-summary statements 
preceded or followed after a very affectively charged sentence. We did not
have enough time to extend our scoring framework to capture this particular 
feature, but this is a very interesting example of an extension to the current 
methodology in order to capture more accurately the desired statements.



ANLP Class Project Report 12/12/06 5:17 PM

18 of 19

The analysis tool generally achieved higher precision than recall for any 
given subject domain, implying that it was reasonably accurate at identifying 
opinion-summary statements but was not sufficiently sensitive to produce 
many of these statements from the general body of text.

Multinomial Naive Bayes classification outperformed the baseline on all 
measures, achieving some ~40 percent higher precision on most corpora, 
despite its assumptions regarding independence of feature probabilities.

5. Project challenges and future work

Challenges:

Full-text extraction from arbitrary HTML blog pages has turned out to be a 
semi-NLP task in of itself. How should we identify the main body of blog
text and extract them out of the sea of tags, navigation headers, irrelevant 
content (such as the "Current Mood" section in Livejournals)? In the
absence of the Semantic Web, NLP techniques may be useful in creating a 
better blog crawler.

Python multi-threaded execution is hobbled by the Global Interpreter Lock, 
which is basically a hack that makes Python thread-safe when it is not 
actually designed for multi-threaded execution. This has a problem where
pure Python programs will not benefit significantly from implementing 
multi-threading, since Python threads will each be waiting sequentially for 
the interpreter lock to be released. In TechnoratiExtractor, our performance
in live feed and blog retrieval is similarly hobbled by the threading abilities 
of Python. If this functionality were to be implemented in C, however,
performance should improve significantly.

Segmentation - currently, sentence segmentation operates on a basis of 
detecting punctuation and capitalization. However, blogs are an informal
writing medium at times, and bloggers do not often use proper 
capitalization, newlines, or even punctuation. To generalize the segmenter
to handle these instances would be another NLP project in of itself, but 
may improve the performance of the NLP analyzer tools when faced with 
these particular corner-case types of blog entries.

Future Work: the Mechanical Pundit

Ultimately, work in opinion detection, extraction, summarization, and affect scoring 
leads to an interesting possibility in building an advocacy agent. The distilled
sentiments, opinions, and assertions of various bloggers can be stored in a 
database, along with metadata that extracts core opinions and evaluate them as 
points or counterpoints. Thus when queried on any topic of controversey, the
agent may 1) inform the user as to the state of the debate, the sentiments involved, 
and arguments being presented, 2) play Devil's advocate in testing out 
arguments, and 3) become a pundit of at least equal caliber to late-night radio talk 



ANLP Class Project Report 12/12/06 5:17 PM

19 of 19

show hosts. An agent such as this may be of some interest academically, but also
as a kind of technology entertainment/art piece for others.

6. References

Bradley, M.M., & Lang, P.J. (1999). Affective norms for English words 
(ANEW): Stimuli, instruction manual and affective ratings. Technical report 
C-1, Gainesville, FL. The Center for Research in Psychophysiology, 
University of Florida. http://www.phhp.ufl.edu/csea/Media.html

General Inquirer - Tag Categories: 
http://www.wjh.harvard.edu/~inquirer/homecat.htm, Spreadsheets: 
http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm

BeautifulSoup.py - an error-tolerant Python HTML parser.
http://www.crummy.com/software/BeautifulSoup/

J. Kupiec, J. Pedersen, F. Chen, A trainable document summarizer, Proc. of 
SIGIR, 1995.

Wikipedia reference on profanity: http://en.wikipedia.org/wiki/Profanity

Threading in Python - http://docs.python.org/api/threads.html

Levin, Beth. Index from Engish Verb Classes And Alternations: A 
Preliminary Investigation. The Univ. of Chicago Press. 
http://www-personal.umich.edu/~jlawler/levin.html


