
Text Analysis of Online Dating Profiles

James Fung & Christo Sims
{jgf@eecs, christo@sims}.berkeley.edu
12.13.06

I256: Applied Natural Language Processing
Instructor: Marti Hearst
UC: Berkeley

Introduction

When a user participates in an online matchmaking website, they must create a profile to

describe themselves. The profile provides a way for others to assess whether or not they

may be a good match for their dating goals. Profiles typically consist of one or more

photos of the individual, their answers to a series of multiple choice questions, and a

section of text where they describe themselves and what they’re looking for.

For our final project, we wanted to investigate patterns of language use in this latter

textual portion of these personal profiles. We were curious to see whether NLP

techniques would be able to meaningfully classify profiles based on textual information

alone. Instead of relying on unsupervised clustering, we used the users’ self-reported

information from the multiple choice questions to create classes of profiles for training.

These classes include, but are not limited to: gender, education level, ethnicity, religious

practice, and their desire to have children. This approach allows us to explore the degree

to which text profiles could reveal other characteristics about the individuals. What

follows is a description of our approach and then a report on our findings. We end with a

discussion of why we believe we got the results we did.

Approach

We began by collecting 400 profiles from Yahoo! Personals. We sampled 200 male

profiles and 200 female profiles, all between the ages of 25 and 35 within 50 miles of San

Francisco.

Christo then preprocessed these profiles to extract the text descriptions as well as the

user’s answers to the predetermined questions required by Yahoo! To accomplish this

preprocessing, he modified a Python toolkit for parsing HTML and XML called Beautiful

Soup.1

This parsed data was then passed to a version of the weka.py file distributed for

Assignment 4 modified by James. This file extracts features from parsed data files and

outputs an .arff file that can be read by the Weka toolkit. Our initial version extracted

unigram frequency (TF and TF.IDF) and bigram frequency features from each profile

with headline tokens given extra weight.2 In our first pass at feature selection, the top 200

most frequent words and 200 most frequent bigrams were selected as features. The goal

was to see if a user’s word choice was related to their personality and background.

Additionally, James coded seven “readability” measures describing the complexity of the

writing and ease of comprehension.3 Noting that all of these measures were based off of

ratios of the certain quantities – the number of characters, syllables, words, complex

words, and sentences – he also implemented each of these quantities and selected ratios

as features. The reason for doing so was to see if writing style provided any additional

useful information to the learning algorithm.

1 http://www.crummy.com/software/BeautifulSoup/
2 In Yahoo! Personals, the “headline” is the short line that appears next a users photo in
search result screens and as the title for the user’s page.
3 These seven measures were: Automated Readability Index, the Coleman-Liau Index, the
Flesch-Kincaid Grade Level, the Flesch-Kincaid Reading Ease, the Gunning-Fog Index,
the Linsear Write, and the Simple Measure of Gobbledygook Index.

A few profiles foiled these readability measures with unexpected formatting. Primarily,

they refused to use periods – either because they were writing a list of interests and

personality traits or because declined to use any punctuation – and so it became very

difficult segment the text into sentences, which threw off many of the readability

measures. For these outliers, James’ modified code simply omitted their readability

measures in the features data files.

We used this Python code to produce an .arff file for each of the possible relations we

explored (e.g. gender, education level). We then used Weka to select features and apply

classification algorithms. We primarily used Chi-Squared and Information Gain measures

for filtering. We also tried Subset Evaluation for some of the .arff files, which searches

for a relevant feature subset while minimizing redundancy. In terms of classifiers, we

tried a variety, including Naïve Bayes, Multinomial Naïve Bayes, K-Nearest Neighbors

(KNN), Decision Trees (J48), and a Support Vector Machines (SVM).

This first exploratory pass produced poor results (see the Results section) causing us to

reevaluate our approach. Since we felt some classes had too few instances in many of our

experiments, we decided to expand our corpus and combine classes to address the data

sparsity problem.

To extend the corpus, we scraped an additional 200 male profiles and 200 female

profiles, between the ages of 25 and 35, bringing our total to 800 profiles. To avoid

duplication, we gathered our second batch of profiles from users who live within 50 miles

of Los Angeles. We are aware that this approach could affect our data and tried to take

measures to compensate for any potential bias in the feature selection phase (e.g.

removing features such as “san,” “francisco,” and so forth).

To combine classes, we looked at the distribution of instances and tried to reduce the

number of classes while making the distribution more even. For the Ethnicity

classification, we created three classes: Caucasian, Asian and everyone else. For

Education Level, we grouped them into two classes as follows:

Previous Classes New Classes

Post-Graduate

College Grad
College Grad or above

Some College

High School Grad

Some High School

Some College or below

For the Attends Services classification, we created two classes:

Previous Classes New classes

More than once a week

Weekly

Monthly

At least once a month

Only on holidays

Rarely

Never

Rarely if at all

 We also created one new classification challenge, trying to differentiate between users

from Los Angeles and those from San Francisco.

We also increased the number of features included in the .arff file. Instead of only

extracting the top 200 most frequent words and bigrams, we extracted all words and

bigrams with a frequency count of two or higher. Our strategy was to feed many features

to Weka and then to rely on Weka’s more robust feature selection algorithms to reduce

our number of features. This approach yielded an .arff file with over 20,000 features.

While such a large number of features made for lengthy file loading into Weka, lengthier

feature selection, and pushed Weka’s memory limitation, it provided noticeably better

results for some classification challenges.

Lastly, James implemented some more features to capture the users’ writing style. We

noticed that, although the textual portion allowed the user much flexibility in expressing

themselves in terms of word choice, length, etc., they were limited in formatting options.

Thus, some users put some words in all caps for added emphasis. We handled this by

weighting them in token frequency, must like we did with headline tokens.

Furthermore, some users wrote the entire text portion of their profile in all caps,

presumably to make it stand out in a search. We believe this stylistic choice reflects on

their persona, so we created another feature that measured what percentage of their words

was all caps. If this value was over a 50%, a flag would be set signaling this profile was

in all caps.

Results

While our exploration consisted of many frequent adjustments in methodology, we have

grouped our efforts into two main passes.

First Pass

In our first pass, we used the 400 San Francisco profiles. We passed Weka the top 200

words, the top 200 bigrams, and a series of readability measures as features. The total set

was about 600 features. What follows is a discussion of our results for each classification

problem.

Education Level [James]

During our first pass, education level consisted of five classes. The classes and their

distributions were as follows:

A naïve baseline system can get 47.2% accuracy by always guessing the most common

class, “College Grad.” Weka’s feature selection tools Chi-Squared and Information Gain

identified only a few relevant features. Using these features with a Multinomial Naïve

Bayes classifer, we were just barely able to beat our naïve baseline, scoring 47.4%

accuracy.

Class Instances

Post-Graduate 94

College Grad 175 47.2%

Some College 86

High School Grad 13

Some High School 3

Gender [Christo]

Obviously, the gender distribution was more evenly balanced between categories since

we sampled our profiles to ensure it. Additionally, only having two classes for

classification seemed to help given the small number of total instances, N = 400. Some of

the features that Weka identified as relevant included:

“man” – 2 times as likely in a female profile

“sense” – over 2 times as likely in a female profile

“independent” – over 3 times as likely in a female profile

“loving” – over 3 times as likely in a female profile

“crazy” – over 3 as likely in a male profile

“me laugh” – over 4 times as likely in a female profile

“great sense” – over 6 as likely in a female profile

Based on this, it appears that women are more likely than men to seek someone with a

great sense of humor who makes them laugh, which is not surprising. When used with

various classification algorithms, these features were able to accurately classify about

69% of profiles. While these results beat our naïve baseline, they do not approach the

levels we had hoped for.

Want (more) kids [Christo]

Instances in this collection could be classified into one of three possible categories:

Class Instances

Yes 202 62.3%

Not sure 105

No 17

The naïve baseline in this case would always guess “Yes” with 62.3% accuracy. Note that

there are very few instances of “No” but quite a bit more of “Not sure.” We believe this

is because some users selected the non-committal response in order to not scare off

potential matches, and this is an example of users doctoring their profiles to appear closer

to social expectations. Applying Weka’s Subset Evaluation algorithm to our feature set

only yielded 11 relevant features, including:

“games” – almost 2 times as likely in “not sure” than “yes”

“caring” – over 3 times as likely in “yes” than “not sure”

“far” – over 4 times as likely in “yes” than “not sure”

When this feature set was used with the K-Nearest Neighbor algorithm we were just able

to beat our baseline, scoring 64.8% accuracy.

Other Classification Problems

None of the other potential classifications approached anything close to beating the naïve

baseline. James’ experiments on “Employment Status” and “Political Views” contained

classes which dominated the others, namely “Full-time” for the former (75% of all

instances) and “Liberal” and “Middle of the road” for the latter. “Employment Status”

was even worse in that 61% of users declined to give their income range.

Christo had a similar experience with his experiments. In the case of “Attend Services,”

presumably a measure of how religious someone is, the categories of “Never” and

“Rarely” account for nearly 200 of the 290 of the people who answered the question:

Class Instances

More than once a week 5

Weekly 40

Monthly 22

Only on holidays 26

Rarely 109

Never 90

“Ethinicity” was dominated by 51% Caucasian, 19% Asian, with the next highest

category being under 10% and several categories with only a few instances.

In all of these cases, we could not get a classification algorithm to score a higher

accuracy than could be achieved than guessing the dominant class for each instance.

Second Pass

As explained earlier, in our second pass we increased the number of instances to about

800 and increased the number of features fed to Weka. What follows is a description of

our results for each classification problem.

Education Level [James]

We addressed the data sparsity problem by collapsing the number of classes down to two:

“College Grad” and above and “Some College” and below. This still produced a strongly

biased distribution:

Class Instances

College Grad+ 494 65.7%

Some College- 258

From the full 20,000+ features, we applied filtering to remove the irrelevant features.

Using the Information Gain measure, only 325 were deemed relevant. Most of the highly

ranked ones came from the readability measures, both complexity of writing (e.g.

characters per word) and length (e.g. syllable count). This indicates that a user’s

education does have an impact on how they portray themselves online.

From this reduced feature set, we could then apply a Greedy Stepwise forward search

wrapper feature selection algorithm. When used in conjunction with the Multinomial

Naïve Bayes learning algorithm, we received 69.1% accuracy with over 80% F-measure

on the “College Grad+” class. However, F-measure for “Some College-“ was only

22.7% due to the large number misclassified as “College Grad+.” The confusion matrix

for this experiment:

Classified as

Some College- College Grad+

34 224 Some College-

8 486 College Grad+

This table illustrates the final feature subset of 11 features and their preferred class:

Some College- College Grad+

Characters per word “usually”

Emphasis “enjoy”

“princess” “current”

“honest person” “notice”

“ask me”

“J”

“queen”

Some interesting remarks can be made about these results: First, users with “Some

College” education or less are more likely to use all caps to emphasize words and are

more likely to use the dating meme of wanting to be “treated like a princess/queen.”

Second, these features are not highly discriminative since they have difficulty

overcoming the large a priori probability of “College Grad+.” Third, which sounded

counterintuitive, was that users who use longer words were slightly more likely to be

classified as “Some College” or lower despite the mean being lower in that class. We

believe this is because the Multinomial Naïve Bayes learning algorithm used does a

binary binning to determine the presence or absence of a feature and loses information in

the process.

For a comparison, we used the same features with a linear kernel SVM and improved

performance to 69.7%. This is startling because the wrapper algorithm selected features

to optimize the performance of Multinomial Naïve Bayes. We attempted to perform a

similar wrapper feature selection around the SVM but could not due to computational

limitations. Looking at the feature usage in the SVM, however, a high character-to-word

ratio was now more likely to be classified as “College Grad+.”

Gender [Christo]

Our gender classification improved dramatically when we increased the number of

instances as well as the number of features. The Information Gain feature selection

measure in Weka identified 670 attributes as relevant. We then passed these features to a

Multinomial Naïve Bayes classifier and got the following results:

Accuracy: 85.2%
Men F-Measure: 0.857
Women F-Measure: 0.848

Classified as

Man seeking a Woman Woman seeking a Man

348 53 Man seeking a Woman

63 324 Woman seeking a Man

Interestingly, some of the most important tokens were: “children” (almost 7 times more

likely in female profiles), “loving,” “me laugh,” “man,” “honest,” “guy,” “original,”

“ladies,” “women,” “sweet,” “herself,” “older,” “values,” and “gal.” Most of these were

more common in female profiles than in male.

In comparison, when the number of features was cut to the top 1800 unigrams and

bigrams, the same attribute selection and classification algorithms yielded only 65.7%

accuracy. This implies that there are a large number of features relevant to the

classification problem outside just the most common ones.

Want (more) kids [Christo]

For the “Want (more) kids” classification, we wanted to beat a naïve baseline of about

62%. When all 20,000+ features were fed to Weka’s Subset Evaluation feature selection

algorithm, a subset of 34 features was returned. This feature set was then passed to a

variety of classification algorithms. The best performing was KNN, with very similar

results were achieved using the SVM classifier:

Accuracy: 70.5%

Classified as

Yes Not sure No

408 1 0 Yes

160 46 0 Not sure

31 0 5 No

Some of the relevant features included: “positive person,” “affection,” “caring,”

“realize,” and “lasting relationship,” which are not surprising coming from someone who

desires a family.

Ethnicity [Christo]

In addition to passing more instances and a larger number of features into Weka, we also

collapsed several of the ethnic categories into a single category, resulting in three classes

total: Caucasian, Asian, and everything else. Doing so gave us the following distribution

of instances:

Class Instances

Caucasian 357 45.9%

Asian 117

Everyone else 303

The Information Gain feature selection measure identified 226 relevant attributes. When

passed to a Multinomial Naïve Bayes classifier, we achieved 67.5% accuracy. Using

SVM we achieved 63.19% accuracy.

Some of the most important features, according to the Information Gain measure, were:

“lived,” word count, “camping” (more popular for “Caucasians”), number of characters,

number of syllables, number of complex words, “weekend,” “wine” (3 times more likely

in “Caucasian” than “Asian” and over 4 times more probable in “Caucasian” than the

“Everyone else” category), “Chinese,” “coast” (much higher for “Caucasian”), “decided,”

and “job” (more likely in Caucasian).

Los Angeles vs. San Francisco [Christo]

For fun, we also tried to see if NLP techniques could distinguish between LA and SF

profiles. Obviously, certain features would be dead giveaways (such as “san,”

“francisco,” “bay,” “los,” “angeles,” etc.) so these were removed. Using Information

Gain measure (220 attributes identified as relevant) and a Multinomial Naïve Bayes

classifier, we were able to achieve 78% accuracy:

Classified as

SF LA

258 137 San Francisco

36 357 Los Angeles

Attends Services [Chirsto]

Since most profiles attend services either “rarely” or “never” we decided to group the six

categories into two: those who attend at least once a month, and those who attend at most

only for holidays. Doing so still produced a skewed distribution of instances with 73.7%

being in the category that rarely attends services. Information Gain identified 338

relevant features. We then passed these features to a variety of classification algorithms.

KNN was unable to beat the naïve baseline so it was discarded. Both Multinomial Naïve

Bayes and SVM were able to beat the naïve baseline, but not by much:

Supper Vector Machine
Accuracy: 80.2%

Classified as

At least monthly Rarely if ever

50 108 At least monthly

11 432 Rarely if ever

Multinomial Naïve Bayes
Accuracy: 74.5%

Classified as

At least monthly Rarely if ever

146 12 At least monthly

141 302 Rarely if ever

The SVM achieved higher accuracy ratings but was biased towards the dominant class,

those who attend service rarely if ever. The Multinomial Naïve Bayes classifier had lower

overall accuracy but scored a higher F-Measure for those who attend service at least

monthly.

Political Views [James]

These experiments were scrubbed because Weka consistently ran out of memory when

trying to perform them. Although it appears that our experiments benefited from a larger

number of token features, our tools had a hard time handling all that data.

Discussion

As with our results section, we break our discussion into the two passes we made.

First Pass

We attribute our disappointing results in our first pass to one or more of five possibilities:

Explanation One: Too Small Of A Training Corpus

One likely reason for our poor results is that our training corpus (N=400) is too small.

This is particularly true when the instances are split over a large number of classes (e.g.

Ethnicity) or when the distribution is skewed towards one or two categories. Without a

larger training set, patterns within a minority class may not emerge. This was our

motivation for scraping an additional 400 profiles for the second pass.

Explanation Two: Not Enough Token-Based Features Provided to Weka

Related to our small sample size explanation is the possibility that we didn’t pass Weka

enough token-based features. We selected our unigram and bigram tokens based on their

frequency of occurrence. In problems where the distribution of instances is biased

towards one category, it is also likely that the 200 most frequent unigram and bigram

features reflect that category. If this were true, then minority categories could have few, if

any, token-based features in the .arff file. We saw this in the outlier case of a profile that

attends services more than once a week:

“I go to church I am very sincere in my faith and my striving to become more Like

Jesus. By know means am I perfect, however, NEW MERCIES EVERYDAY! … I

am a very real and straight forward person, however, HUMBLE to God's word and

voice in my life. Always looking to HIM for my direction and HE is my SOURCE”

Why couldn’t Weka pick up on the use of tokens such as “faith,” “Jesus,” “mercies,” and

“God?” None of these tokens made the cut initially imposed by our Python code, so for

the second pass we cast a wider net and then used filtering to reduce the feature set.

Explanation Three: The Features Provided Were Only Weakly Relevant

From among the features we tried, none were highly discriminative. The classes we are

trying to predict have great variety and flexibility in how the express themselves within

their profile. At best, a feature may isolate a handful of instances characteristic of a

subset within a particular class. However, we are hard-pressed to think of what features

would perform better. Thus, it appears that, to achieve performance significantly better

than the naïve baseline, we need a large number of these weakly relevant features. In the

case of the readability measures, they are fairly correlated and using many of these leads

to redundancy. Therefore, for our second pass, we implemented additional stylistic

features to provide a different source of information to the learning algorithm.

Explanation Four: People All Write Similarly in Online Profiles

Related to the above, based on our own inductive observations of the profile text, it

appears that users tend to write about the same topics and at a similar level of complexity

to not deviant too far from the expected social norm. This would also explain why many

features are only weakly relevant. In terms of readability measures, it is possible that

profile text is generally presented at the same complexity, regardless of the educational

background (or any other characteristic) of the author. In the context of dating profiles,

there might be a normative level of complexity at which everyone strives to write.

Similarly, different classes of people might not trend towards different word choice in

their profile text. Again, there might be normative expectations to talk about certain

subjects in certain ways – norms that cut across things like gender, ethnicity, and

education level.

Explanation Five: Weka’s Feature Selection is Not Accurate

One issue while running information theoretic measures, such as Information Gain, on

continuous-valued features is how to estimate its probability distribution function from

samples. The usual method is to quantize the instances into bins and carry out the

analysis as if it were a discrete-valued variable. However, we have reason to believe that

Weka uses a very simplistic equal-sized binning, which is not very robust in the data

sparse scenario that we have. For instance, term frequency features often only have a

handful of profiles with one instance of a token and the vast majority having zero.

However, Weka fails to treat this as two integer bins and appears to create many empty

floating point bins in between. Similarly, for classes with few instances, many bins are

also empty. This would explain why many features registered zero information gain

during the first pass experiments when an eyeball analysis showed many features were

relevant, if only weakly.

Second Pass

In our second pass we achieved higher accuracy ratings in many of the classification

scenarios. When the number of features inputted to Weka was reduced, our classification

algorithms suffered. This suggests that relevant tokens are not necessarily the ones that

occur most commonly in the corpus. Using Term-Frequency or even TF.IDF to rank

features in Python was not always helpful. Instead, we found it necessary to feed Weka

any possible token feature and then rely on its feature selection tools to determine

relevance, though this is computationally more intensive.

Increasing the number of instances also likely helped our results, especially in cases

where the minority categories were too small to provide adequate training data. Similarly,

collapsing categories seemed to help, although the boundaries between certain categories

are not necessarily so rigid. For example, the boundary for “Attends services” could be

drawn in many places – should those who only attend monthly be grouped with those

who rarely, if ever, attend? When those who attend more than once a week were kept as

their own category, the list of relevant features contained terms like “God,” “spirituality,”

and so forth. These features were not as discriminative when the “More than once a

week” class was watered down with instances from other classes.

Despite our better performance with more instances and more features, our results were

not always ideal. Why couldn’t we score higher accuracy ratings? We have couple

theories:

First, the classification problem is not an easy one. We believe many people tend to

portray themselves as one or more canonical, desirable personas, such as an active,

vibrant twenty-something. As such, appearing too educated may be a handicap, which

may be why the mean of the readability measures is only slightly correlated with the

class. Furthermore, the textual portion of the profile gives the user much flexibility in

terms of word choice in expressing themselves. Thus, specific words appear

infrequently, leading to data sparsity and limiting the discriminative ability of individual

tokens.

Second, the number of training examples in the corpus is small, especially for

classification problems with more than two classes. Minority classes, especially, have

too few instances to reliably model. Furthermore, even in the case of classification

problems with only two classes, if one class dominates the other, the weakly relevant

features will have a difficult time overcoming the strong prior probability. Thus, it is not

too surprising that the problem where we made the most improvement relative to the

naïve baseline was gender, where we had two classes of almost equal size.

Conclusion

The results of our exploratory experiments show that it is possible to extract information

out of a user’s textual portion of their profile with regard to their personality. After all,

this is precisely the profile author’s goal. However, it appears that humans are better

adapted to interpret this information than computers.

The frequency of certain terms has been shown to be related to the user’s class, even to

the degree that it reinforces certain social stereotypes. Likewise, unsurprisingly the

readability of a user’s text is slightly correlated with their education level. However,

individual features are only weakly relevant, either because they are so sparse (as in the

case of token frequency) or their intraclass variance is large relative to the intraclass

variance (as in the case of readability measures). This actually should not be too

surprising as humans are complex and highly diverse creatures, and to capture that

diversity with only a handful of variables would be astonishing.

What this means for natural language processing of personal profiles is that, since there

are no strongly relevant features, to produce an accurate model we need many weakly

relevant features, but with minimal redundancy. For token frequency features, we noted

that it is not necessarily the most common tokens which are more relevant, so in future

we suggest using a large battery of potential tokens and filtering out irrelevant ones.

Furthermore, though the readability measures gave a different perspective of the user

than token frequency features, between themselves they were fairly correlated so that

only one or two sufficiently represented all the discriminative information between them.

Thus one avenue of future work could be to increase the diversity of features by breadth

rather than depth in an attempt to bring in different aspects of the user.

A side effect of the low discriminative ability of all features is that it is difficult to

overcome issues with the corpus, namely the sparsity of training data for minority classes

and the inability of weakly relevant feature to overcome large a priori probability. We

showed that performance improves when the same features and methodology are applied

to binary classification problems with more balanced distributions, but that is expected.

Future experiments will benefit from a larger corpus.

Finally, although Weka was a convenient tool in that already implemented many feature

selection and learning algorithms, we have come to suspect what goes on under the hood,

especially how and when it bins continuously-valued variables.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

