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Introduction
O’Reilly Media

– Changing the world by spreading the knowledge of innovators
• The future is here it’s just not evenly distributed (W. Gibson)

– Third largest independent technical book publisher
– Conferences (e.g., Web 2.0, Foo Camp)

O’Reilly Research
– Three basic tasks:

• Help Editors pick technology book topics
• Help Retailers stock best selection of books
• Track technology adoption trends

– Social Network
• O’Reilly has contacts with many technology leaders, from academia, 

from finance, and, most importantly, from technology entreprenuers

– Quantitative Analysis
• Faint signals from data stores: e.g., book sales, on-line jobs, blogs, 

mail list servers, futures markets
– Telling Stories; making sense out of nonsense



Introduction
Roger Magoulas

– Finance / Computer Science + Haas MBA
– Data Warehouse and Quantitative Analysis Experience

• audited SIMS 296

Ben Lorica
– Ph.D., UC Santa Barbara - Partial Differential Equations & Probability
– Math Faculty, UC Davis
– Founding Chair of Math and Stats at Cal State Monterey Bay
– Finance, Commerce and Technology Analysis



Why NLP?
 We use simpler methods when appropriate

– Regex-Based Term Frequency Distribution
 Started with desire to categorize > 10,000 books 

– Too many books for small team
– Term Frequency Distribution and Regex method too inaccurate
– Need for fast categorization of Retailer inventory

 Job and Blog data accelerated need
– Unstructured text to mine for technology trends
– Large data sets

• 80mm Jobs
• 100mm Blogs
• random samples to manage complexity
• Fast MPP Database - Greenplum

– database summary: MySQL, Postgres, XML DBs

 NLP experience



Disambiguation
 Some technology terms are difficult to spot in a 

technology context:
– Access
– Ruby (Rails)
– Java
– Subversion
– Mercurial
– Python
– c

 We know we’re looking for technology context:
– In Books, use brand or prefix / suffix words

• hand review - needs to be correct
– In Jobs / Blogs, multiple key technology mentions

• willing to accept errors
• job metadata, when available, helps



Book Sales

 Nielsen POS Data - Computer Book 3K
– Weekly Sales
– 15K books, 3+ years of data

 Exception and Trend Reporting
– Treemap/Dasboard Portal
– Dimensional classifications to make sense of data

• But making classifications assignments is tedious
• Classification Tools

 Classification Tools
– Based on Book Meta Data: Title, Description, Reviews
– Regex can be good enough

• Programming Languages, Databases, Certification
• Domain mostly known, slow changing and often exposed

– SVM for book topic categorization
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SVM Retail Book Classification
 Two large Book retailers have asked us to assist them in 

stocking their Computer/Technical section.
 We devised a Retail categorization scheme with two levels

– 19 Shelf Signs
– 80 Shelf Labels

 We had to classify a few thousand titles into one of these 
Retail categories.

 Fortunately, we have thousands of titles already classified:
– Training Set: 13K+ titles already categorized
– For each title, we have a rich set of text data from Amazon (title, 

editorial and reader reviews)
– Some books are difficult to categorize

• e.g., Beware the Blue E (Firefox)
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Text Classification: Kernel Methods
 After trying out Naive Bayes and KNN, we have settled 

on a specific set of Kernel methods.
– linear and non-linear Support Vector Machines (SVM)

 We currently use the libsvm (C++) implementation.
 Text are parsed, stemmed, and stop words are removed.
 The results for linear SVM serves as a benchmark as we 

search for optimal Radial Basis Function (RBF) SVM’s.
 Some art req’d to set RBF, based on linear SVM results
 Keerthi and Lin (2003):

– A linear SVM with parameter C, can be approximated 
by an RBF SVM with parameters 

 Cross Validation used to check error
– Check SVM for K groups
– Mitigates Over-fitting
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Text Classification: Kernel Methods
 Depending on the project, the classifiers we trained were 

about 65-75% accurate.
– Since we care strongly about the results, manually check the 

results.
 The classifiers speed-up a tedious manual inspection task
 Example results
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Creating a Taxonomy - IBM BIW Tool
 We trialed a tool for Exploring, Understanding, and 

Analyzing text.
– easy to use Java UI; well-suited for analysts/non-programmers.
– Since UI comes with a lot of features and options, it was difficult to 

replicate previous work.
– Underlying data can be stored in a RDBMS

 The tool also comes with a set of classifiers 
– Ideal for building taxonomy and classifying new documents 

on a regular basis.
– Reduced dimensionality

• manual splits
• meta-data review

 Ultimately abandoned
– fit w/ ongoing process
– resource constraints



Book Summary
 Evaluating Alternatives Categorization Schemes
 Integrating Categorization into manual review 

process
 Key Learnings

– Classifying books requires manual review of machine 
learning results

– Accurate classifications considered a requirement to 
maintain confidence in analysis and recommendations

– Machine Learning accompanied by Rule Based algorithms 
for best results

– Careful considerations of categories enhances efficacy of 
machine learning tools
• Machine learning underperforms in poorly defined categories

– Challenge to accommodate 800 atomic topic categories with 
machine learning techniques
• preliminary results: 47% accuracy w/ linear SVM
• about same as Rule-based Regex method

– requires more maintenance



Job Data

 80mm on-line job postings
 Used for Technology Adoption Trend Analysis
 Research Example

– Technology term frequency distribution and trends
• Manual analysis
• via Lucene search

– Topic Model



All Jobs Trends: Web Frameworks (normalized)
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Web Development Frameworks
 Startups: Java Frameworks Share Up; ASP.Net Share Down
 Rapid Growth of Ruby
*jframework = jsp, struts, swing, hibernate, webworks

Startup Jobs Trends: Web Frameworks

0

300

600

900

1,200

Ju
n-

05

Ju
l-
05

Au
g-

05

Se
p-

05

O
ct

-0
5

N
ov

-0
5

D
ec

-0
5

Ja
n-

06

Fe
b-

06

M
ar

-0
6

Ap
r-

06

M
ay

-0
6

Ju
n-

06

Ju
l-
06

all postings
php
*jframework
asp.net
rails (ruby)

Startup Jobs Relative Share:
Web Frameworks

php *jframework asp.net rails (ruby)

All Jobs Relative Share: Web Frameworks

php jframework asp.net rails (ruby)



Rich Web Interface Development
 Startups: AJaX ascendant and appears significantly more frequently

– Rails making inroads among all Jobs and Startups
• Too few Atlas mentions to graph Startups trends

All Jobs Relative Share: Rich Web Interface

ajax actionscript rails (ruby) atlas

All Jobs Trends: Rich Web Interface (normalized)
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Startup Job Trends: Rich Web Interface (normalized)
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.Net / Java Development
 Startups: Java share increases and growing faster

Startup Jobs Relative Share:
Java / .Net

Java Java & .Net .Net

Startup Jobs Trends: Java / .Net (normalized) 
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IDE’s
 Startups: Eclipse gains share

– Other IDE’s do not appear in startups often enough to chart

Startup Job Postings: IDEs (normalized) 
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Databases
 Startups: MySQL more popular; Oracle loses more share than SQL Server

– Oracle (all) includes Oracle applications
– Too few DB2 Startup jobs, Postgres results too erratic to graph startup trends

All Job Trends: Databases (normalized) 
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Startup Job Trends: Databases (normalized)
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Design Topics
 Flash most significant technology in design jobs
 Flash and User Interface have increased share of Startup Jobs

Startup Jobs Relative Share: Design

graphic
design

web design flash user
interface

All Jobs Relative Share: Design

graphic
design

web design flash user
interface

Startup Jobs Trends: Design (normalized)
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Job Trends via Lucene Search
 Sample of Job Data with Lucene indexes
 Results presented as Current Share and Time Series
 Disambiguation Issues



Database Job Trends via Search
b
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Unsupervised Learning: Topic Models
 Occasionally we have had the need to analyze a large corpus of 

unstructured text: e.g. job postings or blogs.

 We were interested in a technique that would allow us to identify 
and “measure” the size of subjects in a corpus.

 In a recent project, we primarily used term frequency analysis, 
and confirmed and complemented some of our findings using a 
topic model.

 A topic is a probability distribution over words.
– Topic models assume that documents are mixtures of topics.
– Probabilistic Generative Process: A new document is 

generated by first choosing a distribution over topics. Each 
word in the document is selected by choosing a topic from 
the topic distribution, then selecting a word from the chosen 
topic.
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Topic Model
 Statistical methods are used to invert the Generative 

Process, and uncover the “latent” topics
 Variational Bayes: An approximate procedure introduced 

by Blei, Ng, and Jordan.
 MCMC using a Gibbs Sampler:  Griffiths and Steyvers
 Collapsed Variational Bayes: Teh, Newman, Welling (2006)

 We used MCMC / Gibbs Sampler
– Monte Carlo simulation
– Pick topic count and run until perceived convergence
– Check results and rerun

• increase topic count if topics too broad
• decrease topic count if topics redundant

 Art and Science
– Knowing how many topics to start with
– Domain knowledge to judge model topic quality
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Topic Model: Topic Size and Trends

 As an output of the model, each distinct word inside 
a document gets assigned to an appropriate topic
– The size of a topic is the count of words assigned to it.
– A job posting is possibly a mixture of words from several 

topics.



Topic Model
 Text Mining used to gain additional insights and supplement 

term frequency analysis
 The topic model is a probabilistic model which postulates 

that a job posting is generated by a mixture of (latent) topics.
– Startup job postings are generated by first picking topics (from a 

distribution of topics), then picking words which are prevalent in a 
topic.

– Algorithmic technique to identify emerging trends and discover 
“unknown unknowns” in the data

 Generally, the higher the relative topic size (in parens) for a 
topic, the more the topic appears in the job postings
– If the 50 topics in model were equally distributed, topic 

size (value in parens) would be 2.0%  
 Words/technologies associated with a topic are presented in 

descending order of probability of appearing with the topic
– The first terms appear more frequently than the later terms

 Descriptive patterns noted in topics and word probabilities



Startup Topics
 Typology that emerges from semantic analysis*

– open source web development (3.7%)
• php, mysql, linux, html, javascript, xml, java, perl, apache, css, sql, flash, databases, 

unix, ajax, python, dhtml, c/c++, video, asp, jsp

– microsoft development (2.8%)
• .net, c#, windows, sql server, asp.net, c++, xml, visual (studio), java, database, sql, 

vb.net, win32, javascript

– java & web development (2.6%)
• java, j2ee, javascript, jsp, ajax, struts, xml, hibernate, tomcat, spring, ruby, servlets, 

eclipse, css, patterns, mysql, jdbc, rails, swing, ant, jboss, agile, dhtml, linux, apache, 
oracle, database, web 2.0, ejb

– design and web design (2.0%)
• flash, html, designer, photoshop, css, graphics, illustrator, usability, adobe, layout, 

javascript, dreamweaver, dhtml, actionscript, xhtml

– databases (1.7%)
• database, oracle, sql, performance, modeling, tuning, dba, sql server, java, reporting, 

relational, intelligence, reports, pl/sql, j2ee, unix, xml, mysql

– mobile apps (1.7%)
• mobile, wireless, video, (palo alto, phoenix), java, j2me, c++, windows, brew

– embedded software and devices (1.7%)
• c/c++, linux, windows, firmware, components, kernel

– enterprise software (0.9%)
• enterprise, crm, supply chain, erp, oracle, sap, peoplesoft, siebel, ariba, asp (hosting),

* relative topic size in (parens)
* words in order of declining probability



Startup Topic Model Word Probabilities
 Shows technology distribution by topic

– no bar, no probability of word in topic
 .Net concentrated in Microsoft Development topic
 Flash for Design; AJaX for Development

Conditional Probability:
AJaX / Flashjava

creative agencies

web dev

design

flash

ajax

Conditional Probability:
Java, .Net, C#

sw qa

ms dev

mobile apps

databases

open source web
dev

java

c#

.net

java



Startup Topic Model Results
 Combining ‘open source web development’ and ‘java and web 

development’ shows more than double the word occurrence 
than second ranked ‘microsoft developer’ topic

– relative rate of 6.3% vs. 2.8%
– startups appear to be requesting open source development frameworks at 

double the rate of Microsoft frameworks
 Silo effect noted for Microsoft technologies

– Microsoft technologies appear in ‘microsoft developer topic’ but very 
unlikely appear in other topics

• SQL Server appears in ‘microsoft developer’ and ‘databases’ topics
• Windows appears in mobile apps and embedded topics

– Java, Javascript, AJaX, Flash appear in multiple topics
 Java used significantly for Web Development by Startups
 MySQL top database of choice for Web Development

– MySQL appears with less probability at end of in ‘database topic’
 Flash dominant technology in design topic

– Javascript and Actionscript also appear, but less frequently
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Social Networks: FOO Camp
 Foo Camp - An experiment in face-to-face Social Networks

– What can we learn from attendees
• Collarity search used to seed tags

– User search behavior clustered to create natural, implicit 
communities of subject-matter experts

– Communities and clusters used to generate user tags

• Compare to use generated Tags
• The dreaded tag cloud + directed graph

 Trying to figure how to mine social networks for trends



Book Content
 Mark Logic / XQuery

– Indexed Content




Summary / Observations
• O’Reilly somewhat unusual in its use of Natural Language Processing / 

Machine Learning (NLP/ML) are important analysis tools for O’Reilly 
Research

• Desire to mine information and trends from structured and unstructured 
text

• NLP/ML used as recommendation engines to speed up classification
• 65-75% accurate (SVM)
• Manual review required
• Build into taxonomy admin screens

• Combination of supervised and unsupervised NLP/ML techniques will be 
used to create new taxonomies

• The Web has created large sources of interesting unstructured data
• Organizations housing large volumes of unstructured data are increasingly 

interested in NLP/ML to help organize and make sense of data, to spot trends, 
help with search and understand user behavior

• Requires specialized skills to implement
• Techniques require art and science

• We consider NLP/ML a complement to tagging / folksonomies
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