Outline

- Intro / Background
- Disambiguation
- Books
 - Regex
 - SVM
- Jobs
 - Regex - Term Freq
 - Topic Model
- Social Networks
- Book Contents
- Wrap-up
O’Reilly Media

- Changing the world by spreading the knowledge of innovators
 - The future is here it’s just not evenly distributed (W. Gibson)
- Third largest independent technical book publisher
- Conferences (e.g., Web 2.0, Foo Camp)

O’Reilly Research

- Three basic tasks:
 - Help Editors pick technology book topics
 - Help Retailers stock best selection of books
 - Track technology adoption trends
- Social Network
 - O’Reilly has contacts with many technology leaders, from academia, from finance, and, most importantly, from technology entreprenuers
- Quantitative Analysis
 - Faint signals from data stores: e.g., book sales, on-line jobs, blogs, mail list servers, futures markets
- Telling Stories; making sense out of nonsense
Introduction

Roger Magoulas
- Finance / Computer Science + Haas MBA
- Data Warehouse and Quantitative Analysis Experience
 - audited SIMS 296

Ben Lorica
- Ph.D., UC Santa Barbara - Partial Differential Equations & Probability
- Math Faculty, UC Davis
- Founding Chair of Math and Stats at Cal State Monterey Bay
- Finance, Commerce and Technology Analysis
Why NLP?

- We use simpler methods when appropriate
 - Regex-Based Term Frequency Distribution
- Started with desire to categorize > 10,000 books
 - Too many books for small team
 - Term Frequency Distribution and Regex method too inaccurate
 - Need for fast categorization of Retailer inventory
- Job and Blog data accelerated need
 - Unstructured text to mine for technology trends
 - Large data sets
 - 80mm Jobs
 - 100mm Blogs
 - random samples to manage complexity
 - Fast MPP Database - Greenplum
 - database summary: MySQL, Postgres, XML DBs
- NLP experience
Disambiguation

- Some technology terms are difficult to spot in a technology context:
 - Access
 - Ruby (Rails)
 - Java
 - Subversion
 - Mercurial
 - Python
 - c

- We know we’re looking for technology context:
 - In Books, use brand or prefix / suffix words
 - hand review - needs to be correct
 - In Jobs / Blogs, multiple key technology mentions
 - willing to accept errors
 - job metadata, when available, helps
Book Sales

- Nielsen POS Data - Computer Book 3K
 - Weekly Sales
 - 15K books, 3+ years of data

- Exception and Trend Reporting
 - Treemap/Dashboard Portal
 - Dimensional classifications to make sense of data
 - But making classifications assignments is tedious
 - Classification Tools

- Classification Tools
 - Based on Book Meta Data: Title, Description, Reviews
 - Regex can be good enough
 - Programming Languages, Databases, Certification
 - Domain mostly known, slow changing and often exposed
 - SVM for book topic categorization
Two large Book retailers have asked us to assist them in stocking their Computer/Technical section.

We devised a Retail categorization scheme with two levels
- 19 Shelf Signs
- 80 Shelf Labels

We had to classify a few thousand titles into one of these Retail categories.

Fortunately, we have thousands of titles already classified:
- Training Set: 13K+ titles already categorized
- For each title, we have a rich set of text data from Amazon (title, editorial and reader reviews)
- Some books are difficult to categorize
 - e.g., Beware the Blue E (Firefox)
After trying out Naive Bayes and KNN, we have settled on a specific set of Kernel methods.
- linear and non-linear Support Vector Machines (SVM)

We currently use the libsvm (C++) implementation.

Text are parsed, stemmed, and stop words are removed.

The results for linear SVM serves as a benchmark as we search for optimal Radial Basis Function (RBF) SVM’s.

Some art req’d to set RBF, based on linear SVM results

Keerthi and Lin (2003):
- A linear SVM with parameter C, can be approximated by an RBF SVM with parameters (C_0, σ)

Cross Validation used to check error
- Check SVM for K groups
- Mitigates Over-fitting
Text Classification: Kernel Methods

- Depending on the project, the classifiers we trained were about 65-75% accurate.
 - Since we care strongly about the results, manually check the results.
- The classifiers speed-up a tedious manual inspection task
- Example results
Creating a Taxonomy - IBM BIW Tool

- We trialed a tool for Exploring, Understanding, and Analyzing text.
 - easy to use Java UI; well-suited for analysts/non-programmers.
 - Since UI comes with a lot of features and options, it was difficult to replicate previous work.
 - Underlying data can be stored in a RDBMS

- The tool also comes with a set of classifiers
 - Ideal for building taxonomy and classifying new documents on a regular basis.
 - Reduced dimensionality
 - manual splits
 - meta-data review

- Ultimately abandoned
 - fit w/ ongoing process
 - resource constraints
Book Summary

- Evaluating Alternatives Categorization Schemes
- Integrating Categorization into manual review process
- Key Learnings
 - Classifying books requires manual review of machine learning results
 - Accurate classifications considered a requirement to maintain confidence in analysis and recommendations
 - Machine Learning accompanied by Rule Based algorithms for best results
 - Careful considerations of categories enhances efficacy of machine learning tools
 - Machine learning underperforms in poorly defined categories
 - Challenge to accommodate 800 atomic topic categories with machine learning techniques
 - preliminary results: 47% accuracy w/ linear SVM
 - about same as Rule-based Regex method
 - requires more maintenance
Job Data

- 80mm on-line job postings
- Used for Technology Adoption Trend Analysis
- Research Example
 - Technology term frequency distribution and trends
 - Manual analysis
 - via Lucene search
 - Topic Model
Web Development Frameworks

- Startups: Java Frameworks Share Up; ASP.Net Share Down
- Rapid Growth of Ruby

*Jframework = jsp, struts, swing, hibernate, webworks
Rich Web Interface Development

- **Startups**: AJAX ascendant and appears significantly more frequently
 - Rails making inroads among all Jobs and Startups
- Too few Atlas mentions to graph Startups trends

All Jobs Relative Share: Rich Web Interface

All Jobs Trends: Rich Web Interface (normalized)

Startup Jobs Relative Share: Rich Web Interfaces

Startup Job Trends: Rich Web Interface (normalized)
Startups: Java share increases and growing faster

All Jobs Relative Share: Java / .Net

- Java
- Java & .Net
- .Net

Startup Jobs Relative Share: Java / .Net

- Java
- Java & .Net
- .Net
IDE’s

- Startups: Eclipse gains share
 - Other IDE’s do not appear in startups often enough to chart
Startups: MySQL more popular; Oracle loses more share than SQL Server

- Oracle (all) includes Oracle applications
- Too few DB2 Startup jobs, Postgres results too erratic to graph startup trends
- Flash most significant technology in design jobs
- Flash and User Interface have increased share of Startup Jobs
Job Trends via Lucene Search

- Sample of Job Data with Lucene indexes
- Results presented as Current Share and Time Series
- Disambiguation Issues

O'REILLY RESEARCH

Job Search

Search Query: perl, python, php, java, ruby Show Graph

Tip: You can compare topics by separating with commas.
Database Job Trends via Search

Job Search

Search Query: oracle, "sql server", mysql, Show Graph

Tip: You can compare topics by separating with commas.
Occasionally we have had the need to analyze a large corpus of unstructured text: e.g. job postings or blogs.

We were interested in a technique that would allow us to identify and “measure” the size of subjects in a corpus.

In a recent project, we primarily used term frequency analysis, and confirmed and complemented some of our findings using a topic model.

A topic is a probability distribution over words.

- Topic models assume that documents are mixtures of topics.
- Probabilistic Generative Process: A new document is generated by first choosing a distribution over topics. Each word in the document is selected by choosing a topic from the topic distribution, then selecting a word from the chosen topic.
Topic Model

- Statistical methods are used to invert the Generative Process, and uncover the “latent” topics
- Variational Bayes: An approximate procedure introduced by Blei, Ng, and Jordan.
- MCMC using a Gibbs Sampler: Griffiths and Steyvers

- We used MCMC / Gibbs Sampler
 - Monte Carlo simulation
 - Pick topic count and run until perceived convergence
 - Check results and rerun
 - increase topic count if topics too broad
 - decrease topic count if topics redundant

- Art and Science
 - Knowing how many topics to start with
 - Domain knowledge to judge model topic quality
As an output of the model, each distinct word inside a document gets assigned to an appropriate topic:

- The size of a topic is the count of words assigned to it.
- A job posting is possibly a mixture of words from several topics.

Job Posting #1: Word *Java* is assigned to the topic “Java & Web Development”

Java Web Developer with Austin-based startup … is seeking a *Java* software engineer with 1-2.5 years professional *Java* experience to lead web development initiatives.

Job Posting #2: Word *Java* is assigned to the topic “Open Source Web Development”

Senior PHP developer … By building a scalable and distributable content management cluster, developing state-of-the-art server-side *Java* applications, and forging the frontier of website UI using AJAX and PHP, … is positioned to cause a significant stir on the semantic web later this year. And we are looking to hire senior software professionals including an experienced PHP Software Engineer. Requirements: y 2+ years experience using PHP/MySQL

Job Posting #3: Word *Java* is assigned to the topic “Mobile Apps”

Are you passionate about wireless technology, love mobile devices and are looking to be part of a growing team that delivers cutting edge products to some of the largest players in the telecommunications space? … JOB RESPONSIBILITIES --Design and development of mobile applications for J2ME (*Java*), BREW PalmOS, Windows Mobile and Symbian platforms.
Topic Model

- Text Mining used to gain additional insights and supplement term frequency analysis
- The topic model is a probabilistic model which postulates that a job posting is generated by a mixture of (latent) topics.
 - Startup job postings are generated by first picking topics (from a distribution of topics), then picking words which are prevalent in a topic.
 - Algorithmic technique to identify emerging trends and discover “unknown unknowns” in the data
- Generally, the higher the relative topic size (in parens) for a topic, the more the topic appears in the job postings
 - If the 50 topics in model were equally distributed, topic size (value in parens) would be 2.0%
- Words/technologies associated with a topic are presented in descending order of probability of appearing with the topic
 - The first terms appear more frequently than the later terms
- Descriptive patterns noted in topics and word probabilities
Startup Topics

- **Typology that emerges from semantic analysis**
 - **open source web development (3.7%)**
 - php, mysql, linux, html, javascript, xml, java, perl, apache, css, sql, flash, databases, unix, ajax, python, dhtml, c/c++, video, asp, jsp
 - **microsoft development (2.8%)**
 - .net, c#, windows, sql server, asp.net, c++, xml, visual (studio), java, database, sql, vb.net, win32, javascript
 - **java & web development (2.6%)**
 - java, j2ee, javascript, jsp, ajax, struts, xml, hibernate, tomcat, spring, ruby, servlets, eclipse, css, patterns, mysql, jdbc, rails, swing, ant, jboss, agile, dhtml, linux, apache, oracle, database, web 2.0, ejb
 - **design and web design (2.0%)**
 - flash, html, designer, photoshop, css, graphics, illustrator, usability, adobe, layout, javascript, dreamweaver, dhtml, actionscript, xhtml
 - **databases (1.7%)**
 - database, oracle, sql, performance, modeling, tuning, dba, sql server, java, reporting, relational, intelligence, reports, pl/sql, j2ee, unix, xml, mysql
 - **mobile apps (1.7%)**
 - mobile, wireless, video, (palo alto, phoenix), java, j2me, c++, windows, brew
 - **embedded software and devices (1.7%)**
 - c/c++, linux, windows, firmware, components, kernel
 - **enterprise software (0.9%)**
 - enterprise, crm, supply chain, erp, oracle, sap, peoplesoft, siebel, ariba, asp (hosting),

* relative topic size in (parens)
* words in order of declining probability
- Shows technology distribution by topic
 - no bar, no probability of word in topic
- .Net concentrated in Microsoft Development topic
- Flash for Design; AJaX for Development
- Combining ‘open source web development’ and ‘java and web development’ shows more than double the word occurrence than second ranked ‘microsoft developer’ topic
 - relative rate of 6.3% vs. 2.8%
 - startups appear to be requesting open source development frameworks at double the rate of Microsoft frameworks

- Silo effect noted for Microsoft technologies
 - Microsoft technologies appear in ‘microsoft developer topic’ but very unlikely appear in other topics
 - SQL Server appears in ‘microsoft developer’ and ‘databases’ topics
 - Windows appears in mobile apps and embedded topics
 - Java, Javascript, AJaX, Flash appear in multiple topics

- Java used significantly for Web Development by Startups

- MySQL top database of choice for Web Development
 - MySQL appears with less probability at end of in ‘database topic’

- Flash dominant technology in design topic
 - Javascript and Actionscrip also appear, but less frequently
Social Networks: FOO Camp

- Foo Camp - An experiment in face-to-face Social Networks
 - What can we learn from attendees
 - Collarity search used to seed tags
 - User search behavior clustered to create natural, implicit communities of subject-matter experts
 - Communities and clusters used to generate user tags
 - Compare to use generated Tags
 - The dreaded tag cloud + directed graph
- Trying to figure how to mine social networks for trends
Book Content

- Mark Logic / XQuery
 - Indexed Content

- Content Statistics

We've collected some statistics on our content with the goal of helping you figure out what content best suits your needs. Use the search to do side-by-side comparisons of books or drill down to a specific book to get the details.

Averages

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Count</td>
<td>460</td>
</tr>
<tr>
<td>Word Count</td>
<td>451,166</td>
</tr>
<tr>
<td>Words/Page</td>
<td>979</td>
</tr>
<tr>
<td>Chapters</td>
<td>14</td>
</tr>
<tr>
<td>Sections</td>
<td>124</td>
</tr>
<tr>
<td>Reference</td>
<td>75</td>
</tr>
<tr>
<td>Tables</td>
<td>24</td>
</tr>
<tr>
<td>Figures</td>
<td>92</td>
</tr>
<tr>
<td>Sidebars</td>
<td>15</td>
</tr>
<tr>
<td>Paragraphs</td>
<td>4,109</td>
</tr>
<tr>
<td>Tips</td>
<td>61</td>
</tr>
<tr>
<td>Blocks of Code</td>
<td>183</td>
</tr>
<tr>
<td>Lines of Code</td>
<td>3,732</td>
</tr>
<tr>
<td>Index Terms</td>
<td>1,783</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Count</td>
<td>309,647</td>
</tr>
<tr>
<td>Word Count</td>
<td>303,183,808</td>
</tr>
<tr>
<td>Words/Page</td>
<td>979</td>
</tr>
<tr>
<td>Chapters</td>
<td>9,550</td>
</tr>
<tr>
<td>Sections</td>
<td>83,797</td>
</tr>
<tr>
<td>Reference</td>
<td>50,906</td>
</tr>
<tr>
<td>Tables</td>
<td>16,143</td>
</tr>
<tr>
<td>Figures</td>
<td>62,015</td>
</tr>
<tr>
<td>Sidebars</td>
<td>10,299</td>
</tr>
</tbody>
</table>

Search

Search by book title, isbn, author or use a fielded search like:

- **tag:** replication
- **cat:** perl
- **pubyear:** 2004
- **author:** hunter

Use search features for searching in books containing a specific tag, searching in a specific category, narrowing the search to a specific year, and restricting to books by an author.

Top Tags

- applications
- arrays
- attributes
- authentication
- backups
- browsers
- classes
- clients
- code
- commands
- components
- configuration
- configuring
- controls
- creating
- data
- data types
- databases
- data types
- debugging
- deleting
- directories
- DNS
- documents
- domains
- elements
- email
- encryption
- environment
- variables
- errors
- exceptions
- files
- filesystems
- folders
- formatting
- forms
- functions
- hardware
- headers
- HTML
- HTTP
- images
- installation
- interfaces
- Internet
- Explorer
- IP
- addresses
- Java
- keyboard
- shortcuts
- Linux
- lists
- logging
- memory
- menus
- messages

- methods
- modules
- MySQL
- names
- networking
- networks
- numbers
- objects
- operators
- Oracle
- packages
- parameters
- passwords
- performance
- Perl
- permissions
- printing
- processes
- programs
- properties
- queries
- quick reference
- regular
- expressions
- sample
- code
- scripts
- security
- servers
- SQL
- strings
- tables
- tags
- templates
- text
- threads
- transactions
- troubleshooting
- Unix
- URLs
- users
- variables
- web services
- web sites
- windows
- XML
Summary / Observations

- O’Reilly somewhat unusual in its use of Natural Language Processing / Machine Learning (NLP/ML) are important analysis tools for O’Reilly Research
 - Desire to mine information and trends from structured and unstructured text
- NLP/ML used as recommendation engines to speed up classification
 - 65-75% accurate (SVM)
 - Manual review required
 - Build into taxonomy admin screens
- Combination of supervised and unsupervised NLP/ML techniques will be used to create new taxonomies
- The Web has created large sources of interesting unstructured data
- Organizations housing large volumes of unstructured data are increasingly interested in NLP/ML to help organize and make sense of data, to spot trends, help with search and understand user behavior
- Requires specialized skills to implement
 - Techniques require art and science
- We consider NLP/ML a complement to tagging / folksonomies
References: Kernel Methods

- **SVM vs. other Text Classifiers**

- **RBF and Linear SVM’s**

- **Multi-class SVM’s**