
Graph Algorithms

nickg@friendster.com

Nick Galbreath

Questions

● Questions

Backtrack, Review, Corrections

● A graph is a set of nodes, with a set of edges.
● A weighted graph is a graph where each edge has a

associated numerical value (think distance)
● A undirected graph is one where the edges are bi-

directional (communative?) Edge (a,b) means at a
you can connect to b, at b you can connect to a

● A directed graph edges are directional. Edge(a, b)
means at b you can not connect to a

●

● I'm focusing on undirected graphs (social networks).

Embedded Adjacentcy Lists
● One can also add the adjacentcy list into the

node itself.
Class Node {

public String key;
public Node[] neighbors;
...other data...

}
● Need a map from a key to the node to get started.

Somehow need the first node.
● Good since, after you have the first node you don't

need to do a map lookup (more expensive)
● More expensive in terms of memory, but only for the

largest graphs is that a problem.

More on Embedded Adj Lists

● Also the Node class will need a method to
add edges to itself.
Class Node {

public String key;
public Node[] neighbors;
...other data...

public void addEdge(Node n);
public void removeEdge(Node n);

}

– Your graph will also need a way of deleting a node.
– Pros and Cons for each way.

“Degree”

● Mathematically, the degree of a node is the
number of adjacent vertices.

● It's the number of friends.
● It's not the “degree of separations”
● That's typically known as “distance” or

“depth”

Graph Traversals

Graph Traversal

● Given a starting point, walk through every
node in the graph once.

● Similar to a java.util.Iterator
● More than one way of doing this
● Two main methods

– Depth-First
– Breadth-First

Depth First

● Depth-First traversals are similar to a letting
a child loose in a maze

● Run as far away from the starting point and
then backtracking up one level when you run
out of options.

Depth-First Rules

● From the text
– Rule 1: If possible, visit an adjacent unvisited

node, mark it as visited and push on the stack
– Rule 2: If you can't follow Rule 1, pop a vertex off

the stack
– Rule 3: If you can't follow Rule 1 or Rule 2 you are

finished.

Depth First Pseudo-Code

stack.push(first node)
path.add(first node);
while (! stack.isEmpty()) {

adj = graph.getAdjacent(stack.peek());
Node v = first unvisted node in adj or null if none;
if (v == null) {

stack.pop(); // backup
} else {

 stack.push(v);
 path.add(v);

}
} // visited contains the “path”

Sample Path DFS
A

B

F

H

C D

G

I

E

1

2

3

2 4

5

6

7

8

Stacks and LinkedList

● java.util.LinkedList can be used as a stack
– addLast == push
– removeLast == pop
– getLast == peek

● Why not use java.util.Stack?
– Stack, Vector and Hashtable are kinda funny and

really shouldn't be used unless you have a good
reason too. (Why? They are synchronized
(slow) and generally more-or-less deprecated
classes.)

– Use ArrayList/LinkedList or HashMap instead.

Checking if Visited

● The Book uses a Node class and special
“ifVisited” boolean flag

● Ok, for “single-threaded” applications
(desktop application)

● Not good for server applications, or
applications with concurrent operations on
the same graph

Checking if Visited 2

● Every time a new node is found, it must be
added somewhere to a data structure so you
can check later.

● Any of the java.util.List types (LinkedList,
ArrayLists) can be used, by using the
“contains()” method. (Maybe slow since it's
a linear search)

● HashSet – fast look up by hashing
● TreeSet – fast look up by using a tree

(sorted elements)

Depth-First?

● Depth first does not necessarily go “deep”
relative to the starting node.

● It's not quite the same thing as “distance
first”

Breadth First

● Breadth-First traversals try to stay as close
to the start node as possible.

● Like ripples in a wave.
●

Rules for BFS

● Rule 1: Visit the next unvisited node (if there
is one) that's adjacent to the current node,
mark it, and insert into the queue

● Rule 2: If rule 1 fails since all adjacent
nodes are already visited, remove a node
from the queue and make it the current
node.

● Rule 3: If rule 2 fails since the queue is
empty, then you are done.

Sample Path BFS
A

B

F

H

C D

G

I

E

1

2

2
3

4

5

6 7

8

PsuedoCode for BFS

Mark top node as visited
queue.insert(top node);
path.add(top node);
while (!queue.isEmpty()) {

Node current = queue.remove();
Node[] adj = graph.getAdjacent(current);
foreach node in adj

if (node is unvisited) {
mark node as visited
queue.insert(node);
path.add(node);

}
}

}

Queues and LinkedLists

● Similar to stacks, queues can also be
represented using the java.util.LinkedList

● “insert” == addLast
● “remove” == removeFirst

Which Traversal to Use?

● Depends on application and on graph data
● Breadth-First is typically easier and faster to

use.

Applications of Traversals

● Graph “connectedness”
● Subgraph extraction
● Minimal Spanning Trees

Graph Connectedness

● I lied. Both types of traversal will visit every
node that is connected to the starting point.

● Comparing the results of traversal with the
number of nodes in a graph will tell you if the
graph is connected or not.

● Who cares?
● It's can be a Big Deal if you every or any

node can not be reached by any others.

Subgraphs

● Minor modifications can limit the traversal to
a certain depth (or degree of seperation) to
the starting point.

● This is your “personal network” or “network”
in Friendster-speak.

●

Minimal Spanning Trees

● Uses a mimimum number of edges to
connect all nodes

● Only one path between two adjacent nodes
● If you use a depth-first search the path

created automatically creates a MST.
● Not Unique!
●

●

● (note: in an unweighted graph, every
spanning tree is minimal)

Minimum Spanning Trees

Weighted Graphs

● Each edge has a “cost” or “distance”
associated with it.

● Frequently the graphs are directed
a-->b, but b --> a

● Many important algorithms includes
– Finding the minimum cost spanning tree
– The shortest or least costly path between two

nodes
– Your book has very detailed descriptions of all of

this.

Weighted Graph Algorithms

● Many of the algorithms in the book are fine
for “small” graphs

● Orbitz, Google and other places do not use
them.

● There is a whole class of “probablistic
algorithms” that do not find the optimal
solution, but find the a solution that's 1%
away from being optimal.

● Way beyond this class. Just an FYI that they
exist.

Traveling Salemen Problem

● The shortest walk on a weighted graph (i.e.
Visit every node with the least cost).

● From a VW advertisment a while back
“What is the shortest distance one needs to travel to
visit all 30 teams in 28 major league cities?”

● A resonable way might be
“Starting in Seattle, go to the closest Major League city
we have not visited yet. and keep doing this until we see
all 28 cities.”

Traveling Saleman 2

Yuck. Certainly not the shortest path

Traveling Salesman 3

This might be the shortest path.

Traveling Salesman Conclusion

● Might be since it's proven that the only way
to know for certain is to try EVERY possible
path.

● This is ugly. Even for small graphs.

● Shameless borrowed from
http://members.cox.net/mathmistakes/travel.htm

Graph Visualization

● Given an arbitrary graph, there is no
canonical “visualization” -- it's not like a tree.

● Visualizations are frequently called
“embeddings”

● Each is specifically designed to show off a
particular property of the graph.

Circular Embeddings

● Shows the adjacent lists visually, but not
much structure beyond that.

Spring Embedding

● Pretend each edge is connected by a
“spring” and use Hooke's Law.

● Compute “minimal energy”
● Nodes with more connections are squished

together
● Less connected nodes

tend to fly away
● Slow!
● See www.touchgraph.com

www.combinatorica.com

Radial Embedding

● Shows off degrees of separation

http://bailando.sims.berkeley.edu/papers/infovis01.htm

Exciting Project!

● webster.com is an online dictionary and
thesaurus.

● Especially interesting is that the words link
to other words – a graph!

● Explore how different words are related by
slurping in their data

● Since the goal is work on graphs and not the
finer points of java.io or java.util.regex
here's some handy functions.

A Simple Graph Interface

import java.util.ArrayList;
public interface Graph {

public getAdjacent(String key, ArrayList list)
public ArrayList setAdjacent(String key)
public int nodes();
public int edges();
public void addNode(String key);
public void deleteNode(String key);
public void addEdge(String key1, String key2);
public String toString(); // dump it to text
public int hashCode();// ??
public boolean equals(); // ??
}

Page Sucker
public static String getWebsterPage(String keyword) throws

IOException {
URL url = new URL(

"http://www.webster.com/cgibin” +
”/thesaurus?book=Thesaurus&va="+ keyword);

StringBuffer buf = new StringBuffer(5000);
BufferedReader is =

new BufferedReader(
new InputStreamReader((InputStream) url.getContent()));

String line;
while ((line = is.readLine()) != null) {

buf.append(line);
buf.append('\n');

}
return buf.toString();

}

Not the best way!

Keyword Extractor
public static final Pattern regex =

 Pattern.compile("va=([a-zA-z]+)");

public static ArrayList getKeywordsFromPage(String page) {
ArrayList list = new ArrayList();
Matcher m = regex.matcher(page);
while (m.find()) {

// group() returns the entire match;
// group(1) return what matched in the parens
list.add(m.group(1));
System.out.println(m.group(1));

}
return list;

}

// need to import java.util.* and java.util.regex.*;

Good Manners

When screwing around with a website, it's a
good idea to sleep for a while between
requests.

public static void sleepSeconds(int n) {
try {

Thread.sleep(n * 1000);
} catch (Exception e) {

// nothing
}

}

Goal

● You need to write a graph implementation
with Strings as the nodes.

● You need to slurp related words from
webster.com using the breadth or depth-first
algorithms

● You should be able to print in some manner
the graph using adjacentcy lists.

● I have no idea what the result will be!

