
Hash Tables and Graphs

Nick Galbreath (“nickg”)

nickg@friendster.com

Friendster

I know you are going to ask anyways!

● Why is the site so slow?
● Are/When we charging?
● Were does the money come from?
● Are we shutting down for 3 months?
● Why do to kill Fakesters?
● It would be really cool if...

Notions of Equality
● Java has two notions of equality for objects

and arrays, (e.g. int[]) reference equality and
data equality.

● For “primitive types” (ints, longs, bytes), only
data equality. 3 == 3 always.

Reference Equality
● Reference equality is when two objects or

arrays refer to the same data in memory.
They are aliases for each other.
– MyData a = new MyData(...);
– MyData b = a;

● This type of equality is tested by “==”
– (a == b) is true in the example above.

● if (a == b) is true, then a and b are actually the
same object. A change in one will result in a
change in the other.

Data Equality
● Data equality for when two different objects

have the same data but different locations in
memory.

● This eqality is tested with method
– boolean equals(Object o)

● If (a.equals(b)) is true then they contain the
same data, but may be different objects.

Sample Class, 1
public class MyData {

private String name;
private int age

public MyData(String value, int age) {
this.name = name;
this.age = age

}
}

Test Output, 1
public static void main(String[] args) {

MyData a = new MyData("Fred", 23);
MyData b = new MyData("Fred", 23);
MyData c = a;

System.out.println("a == b " + (a ==b)); // ref equality
System.out.println("a == c “ + (a ==c)); // ref equality
System.out.println("a.equals(b) ” + (a.equals(b))); // data
equality
System.out.println("a.equals(c) “ + (a.equals(c))); // data
equality

}
a == b false
a == c true
a.equals(b) false Huh???
a.equals(c) true

Equals Default Behavor
● By default, the class Object defines equals to

be the same as reference equality.
● This means equals will return false, on objects

with the same data but with different
references!

● You must define your equals method,
individually testing fields.

● You might not need to test every field.

Sample Class 2
public class MyData {

private String name;
private int age

public MyData(String value, int age) {
this.name = name;
this.age = age

}

public boolean equals(Object o) {
MyData rhs = (MyData)o;
return name.equals(rhs.name) && age == rhs.age;

}
}

Test Harness and Output
public static void main(String[] args) {

MyData a = new MyData("Fred", 23);
MyData b = new MyData("Fred", 23);
MyData c = a;

System.out.println("a == b " + (a ==b));
System.out.println("a == c “ + (a ==c));
System.out.println("a.equals(b) ” + (a.equals(b)));
System.out.println("a.equals(c) “ + (a.equals(c)));

}
a == b false
a == c true
a.equals(b) true // good!
a.equals(c) true

When to Reference Equality

Use Reference Equality (==) when
– All the objects to be tested are already created

and no more are being added.
– Preventing “self-assignment” (e.g. a = a)
– When the program is short-lived
– Preventing “double-counting” when iterating

through a list.
MyData a = from a collection.
MyData other = null
for (Iterator i = collection.iterator(); i.hasNext();

other = (MyData) i.next()) {
if (a != other) { do something; }

}

When to use Data Equality

● Use Data Equality (equals) everywhere else!
– Objects are being created from an external source

and being compared with internal data
● From the database
● From user input
● From a web query string or form
● Any remote source

When the program is long-lived
Server environments
In most cases you won't be wrong to use data

equality. You just might be a bit slower.

Hash Tables Revisited

Hash Tables are the Most Important Data Structure!

You use them all the time!

Java has some tricks you need to know about!

Hash Tables and Hash Sets

● A Set in general, is a collection of unique
objects, no duplicates!

● A Hash Tables is a colllections of mappings
between a key and a value. Keys are
unique and form a set.

● A Hash Set is a special implementation of a
set that uses hashing to quickly find
elements. One way to think of a hash set is
that it's a hash table but the keys and values
are the same.

java.util.HashMap
● Standard “chained” implementation. Java

does not have a native open addressing
version.

● Has a number of “buckets” each of which
has a (singularly linked) list holding data.

● “An Array of Linked Lists” (Question: why
single instead of doublely linked list?)

● When accessing or adding data, HashMap
converts the key into a number by use of
 int hashCode();

● The integer is then turned into a bucket
number (i.e. an array index).

Hash Codes
● hashCode is defined in java.lang.Object which all

objects are derivied from
● It converts the object into a number (int)

such that
– Does it quickly
– Is consistant and deterministic. Two objects with

indentical data (or are “equal”) should produce the
same has code

– Given a collection of objects, the hash code they
produce should be essentially random – no
clumping or repeats.

More Hash Codes
● Java defines a pretty good hash function for

the String class based on the data the string
contains.

● For custom classes you write, Java uses an
internal memory reference for the hash.
Just like the default equals(). Not so good.

● Write your own!
● Easiest way to use the hashCode() of a

internal value (e.g. Name, Key, etc)
public class Foo {

protected String name;
int hashCode() { return name.hashCode(); }

}

More Hash Codes
● If you have a unique integer identifier (user

id, social security number, account number),
you can use that as is.

● Java's HashMap will also scramble further the
result to make it “more random like”

HashMap and Equality
● After a bucket is selected, the corresponding

linked list is searched to see if the object
already exists.

● It's important to make sure your custom
classes define the boolean equals(Object o)

● If you don't, Java uses “reference equality”,
which is ok in some situations, NOT ok in
most server situation.

Example Class, 3
public class MyData {

private String name;
private int age

public MyData(String name, int age) {
this.name = name;
this.age = age

}

public int hashCode() {
return name.hashCode(); // could be fancier but ok

}

public boolean equals(Object o) {
MyData rhs = (MyData)o;
return name.equals(rhs.val) && age == rhs.age;

}
}

Test Harness
public static void main(String[] args) {

HashSet map = new HashSet();
MyData a = new MyData("Fred", 23);
MyData b = new MyData("Fred", 23);
MyData c = new MyData("Fred", 23);
map.add(a);
map.add(b);
System.out.println("Hash Code for a = " + a.hashCode());
System.out.println("Hash Code for b = " + b.hashCode());
System.out.println("Hash Code for c = " + c.hashCode());
System.out.println("Set size = " + map.size());
System.out.println("C Exists? " + map.contains(c));

}

Test Output
Output:

Hash Code for a = 110182
Hash Code for b = 110182
Hash Code for c = 110182
Set size = 1
C Exists? true

● What happens if we remove the
 equals() method? And why?

● What happens if we remove the
hashCode() method? Any why?

● What happens if both equals() and
hashCode() are missing?

HashMap Constructors
● java.util.HashMap has three constructors:

– HashMap();// default 16 buckets, 75% load
– HashMap(int capacity); // default 75% load
– HashMap(int capacity, float load); // you pick

● capacity is the number of buckets
● load is average the number of elements each

bucket can hold
● After that, a resize event happens.
● This happens size() > capacity * load

HashMap Resize Events
● Once the size exceeds the threshold, a

resize event happens:
– The number of buckets is doubled.
– Every element is rehashed

● No big deal for small maps, but every
expensive with large maps (k or M).

● The HashMap default is only 16, with load of
75%. After 12 elements are added a resize
event happens.

● Multiple resizes event can happen when
adding a large data. Can be Slow.

HashMap Summary
● When creating new objects, always

write hashCode()

write equals()

write toString()
● This is a good idea anyways!
● Understand the HashMap/HashSet constructors

and set appropriately, especially when you
know the data set is going to be large. It's
ok to be generous.

Graphs
● An extension or generalization of trees.
● With trees, each node has exactly one

parent.
● With graphs, each node can have many

parents.

What do you use them for?
● Airline routes – for travel sites, and for the

airlines themselves
● Logisitcs – shipping and delivery routes
● Manufacturing – robotic control and circuit

boards – Try to minimize motion, increase
speed.

● Information management and visualization
(words, books, data, websites)

● and... social networks!

Nodes and Vertices
● With trees, a data point is a “node”
● With graphs, a data point is sometimes

called a “vertex”, plural “vertices”
● It's perfectly fine to use “nodes” when talking

about graphs.
● I like nodes better since it's easier to name

methods, and it's faster to type!

Slide adapted from Goodrich & Tamassia

What is a Graph?

Slide adapted from Goodrich & Tamassia

Degree 1
● Nodes degree 1 away can be called
● Adjacent
● Neighbors
● Friends

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Slide adapted from Goodrich & Tamassia

Textbook Representation of
Nodes

● At least from the second edition, page 620:

class Vertex {

public char label; // label, e.g. 'A'
public boolean wasVisited; // huh???

public Vertex(char lab) {
label = lab;
wasVisited = false;

}
}

Bad Bad Bad
● What does “lastVisited” have anything to do

with a node? Is anything in the definition of a
node involve if the node was 'visited' or not?

● It is a temporary variable for use by another
(as of yet unspecified) algorithm.

● Mixing algorithms into the data structure is in
general a bad idea. This is ok, when doing
user iterface, but for servers!

● We will revisit the books choice in a bit,
since it provides a good negative example.

Node Representation
● Let's start over. All a node really needs is a

“key” or sometype of unique identifier. For
simplicity, let's just use a String.

Class Node {
public String key;
... other data here...

public Node(String key, ...other data...) {
this.key = key; //etc.

}
}

● Why is key public? Should we use a method instead?
● Do we need to use a String? Can we use plain Object?

Adjacentcy Lists
● An adjacentcy list is simply a list that

contains what other nodes are neighbors
(friends).

● The map could be as simple as an array.
Nodes[] adjList = {node1, node2, node3}

Adjacentcy Lists with
 Dynamic Storage

● More complicated version can have
dynamic-sized storage.

● ArrayList
● LinkedList

ArrayList adjList = new ArrayList();
foreach neighbor

 adjList.add(the neighbor);
● Remember to cast when retrieving an element in the

list!
Node n = (Node) adjList.get(2); // get second neighbor

Graph Data Structure
● The most common data structure for a graph

is a map from a node or node's key to it's
adjacentcy list.

● Typically a HashMap is used.

Node Abstraction
● Previous we assumed the Node object

contained the key and the data, and the
graph was mapping between a node and it's
adjacentcy list, which was a list of Node
objects.

● Frequenly you don't wan't or can't store all
the information in the actual graph.

● In this case, the graph is a mapping between
the keys to adjacencty list of just keys.

● The map is String to a List of Strings.

Comparison
● Full Node Objects

Node(“Mary”, age=30) mapsTo
{Node(“Fred”, age=10),
 Node(“Alice”, age 22),
 Node(“Bob”, age 43)}

● Pure Keys. Just uses Strings.
“Mary” mapsTo “Fred”, “Alice”, “Bob”

● Sorry this is a terrible slide

Key to Node map

If represent a graph just using keys you need
some way of turning the keys into more
useful data.
– Another map (keys to DataObjects)
– Or in the database

“select * from table where key=Mary”

Embedded Adjacentcy Lists
● One can also add the adjacentcy list into the

node itself.
Class Node {

public String key;
public Node[] neighbors;
...other data...

}
● Maybe ok in some cases, but I don't like

mixing the data structure of the graph in with
the data structure of the node.

Adjacency Matrix
Who's adjacent to who is represented as a big

matrix, with a “1” indicated a connection.
 a b c d e
a 0 0 1 0 1
b 0 0 0 0 0
c 1 0 0 0 0
d 0 0 0 0 0
e 1 0 0 0 0
ex: a is connected to c and e

Center diagonal is normally all zeros.
Normally nodes aren't self-connected.

“Lower triangle” is redundant in undirected
graphs.

More on Matrix
● Typically not as efficient as using plain

adjacency lists.
● Is used or preferred in some algorithms.
● Maybe useful, since the matrix form is

always the same size in memory
reguardless of how connected the graph is.

● If you need to use this form, take a look at
java.util.BitSet.

Graph Abstraction
● Reguardless of what internal representation

you decide on, the user of the graph
shouldn't care.

● What should a graph class do?
– Add or delete an edge
– Add a node
– Get adjacent nodes
– Delete a node (and remove it's edges)
– Report the number of nodes and edges
– Provide a textual representation (toString)
– (bonus: be able to dump and read itself to disk)

A Simple Graph Interface

import java.util.ArrayList;
public interface Graph {

public getAdjacent(String key, ArrayList list)
public ArrayList setAdjacent(String key)
public int nodes();
public int edges();
public void addNode(String key);
public void deleteNode(String key);
public void addEdge(String key1, String key2);
public String toString(); // dump it to text
public int hashCode();// ??
public boolean equals(); // ??
}

