
Geobarra.org: A system for browsing and

contextualizing data from the American Recovery

and Reinvestment Act of 2009

Ben Cohen, Michael Lissner, Connor Riley

May 10, 2010

Contents

1 Introduction 2

2 Process 4

3 System Description 6

4 Technologies Used 8
4.1 Django . 8
4.2 SQLite . 8
4.3 Ruby and Python . 8
4.4 Mercurial . 8
4.5 cartographer.js . 8
4.6 jQuery . 9

4.6.1 Flot . 9
4.6.2 TableSorter . 9

4.7 JSON . 9

5 Appendix I 10

1

1 Introduction

This project was completed by Ben Cohen, Michael Lissner and Connor Ri-
ley as part of the requirements for the Information Visualization class at
the UC Berkeley School of Information. The goal of this assignment was to
“apply the theories and techniques of visualization...to a real-world prod-
uct.” At the outset of this project, we discussed a number of ideas varying
from a visualization of traffic on BitTorrent sites to train times of the local
public transportation system. Ultimately, we decided to explore new and
useful visualizations of the information that is being made available as part
of the American Recovery and Reinvestment act of 2009 (ARRA). Although
the project was initially inspired by the Sunlight Foundation’s Design for
America contest,1 we chose to pursue this project in depth for a number
of other reasons as well. First, the data provided about the Recovery Act
is large, complicated, messy and diverse, and so is a challenging candidate
for our analytical skills. By choosing this project, we were able to demon-
strate our ability to work with large datasets, a task that is difficult for both
computers and humans – several times during this project, custom software
had to be written for the sole purpose of processing the data, and even with
custom software written, many operations we have done on the data have
been time-consuming.

A second reason we chose this project is the considerable public bene-
fit that is created through additional analysis of this data. ARRA was a
landmark bill in American history, by some measures allocating as much as
$787B,2 and the current state of analysis of the bill is not commensurate
with that level of spending. In our review of information visualizations that
already analyze this data, we discovered that, first, there are few substantial
attempts to build solid analyses of this data, and second, of the few analyses
that we discovered, each has a shortcoming in its final product. As an ex-
ample, on the recovery.gov site, it is possible to view a map of every location
in the United States where recovery money has been spent. Unfortunately
though, this results in too many dots to be completely relevant, and filtering
options are not available.

1http://sunlightlabs.com/contests/designforamerica/
2Obama signs $787bn stimulus plan, in: BBC, Feb. 2009, url: http://news.bbc.co.

uk/2/hi/business/7895078.stm.

2

http://news.bbc.co.uk/2/hi/business/7895078.stm
http://news.bbc.co.uk/2/hi/business/7895078.stm

Figure 1 — A map view from the recovery.gov website

A second visualization is available from propublica.org, however while
their visualizations are well-designed and aesthetically appealing, they are
largely static, leaving the user with a desire for more flexibility.

Figure 2 — Propublica’s map of spending

3

In our project, Geobarra.org, we have made a dynamic and aesthetically
pleasing visualization that can be used to query and analyze the data both
numerically and geographically. We have used open-source web technologies
to build our visualization, and users can start to explore the data either by
choosing a geographic region, or by choosing a government agency that they
find interesting, such as the Department of Homeland Security, or of Urban
Development.

In building this project, we used an iterative design process. Because the
Recovery data is so diverse and complicated, it was challenging to decide
which parts of the data we would analyze. After interviewing an ISchool
professor that has been working extensively with the Recovery Act data,
Raymond Yee, we came to the conclusion that the people using this visu-
alization would have two main goals. First, they would like to see how the
Recovery money is being spent generally, and second, they would like the
ability to hone in on locations relevant to them, and see how the money is be-
ing spent there. This is similar to Ben Schniederman’s mantra: ”Overview
first, zoom and filter, then details-on-demand.”3 By using a brushed and
linked interface of a choropleth, bar graphs and a table with data, we have
enabled users to browse the data geographically or by filters. Once that is
done, they can zoom into particular pieces of data in the table below, where
they can see relevant details about an allocation.

2 Process

As mentioned previously, we used an iterative process while working on this
project. A challenge we encountered, and which we mentioned previously,
was the complicated nature of the published Recovery Act data. The data
itself has 98 distinct fields which are explained in a PDF document. Each
row of data has several unique IDs, some of which do not have meaning
in isolation. As a result, the first step of our process was to attempt to
understand the data, and, where unique IDs mapped to more meaningful
data in other sources, we completed JOIN operations on the data, pulling
various sources together into the same source. For example, each row of data
in the Recovery database has a TAS number, which corresponds to a sin-
gle account in the Treasury Accounting System. Although these numbers
correspond to specific departments within the government, those depart-
ments are not listed in the data, and must be located elsewhere. Finding

3Benjamin B. Bederson/Ben Shneiderman: The craft of information visualization, 2003,
p. 436.

4

those numbers is not trivial, and we has to process those we did find into
machine-readable format.

A second data manipulation that we had to complete for our project
was mapping the locations of the allocations. In the Recovery data, the zip
code of the allocation is provided, but the county was not. Thus, we needed
another source of data in order to map and compute at that level. For this,
we used the Geonames database, which provides information about every
zip code, county, and state in the United States.4

Another tool that was invaluable to our understanding of the data was
developed by Raymond Yee for his investigation of the data. Because the
data is only available in a CSV file, he wrote a program that converted
it to a sqlite3 database, and created a web query tool that can be used to
query that database.5 He graciously shared both of these tools with us. The
program was eventually used to convert the data into a valid datamodel in
the Django web framework.

After we had a grasp on what data was available for us to work with,
we began sketching paper prototypes of the system. These were invaluable
to us, as they allowed us to finally conceptualize the kinds of data we would
need, and the tools that would be required to manipulate that data. From
our paper prototypes, we created a high resolution image of how we wanted
our final design to appear. Our final version is quite similar to this image.
All of these sketches and images can be found in Appendix I.

After agreeing on on the overall design of the system, we divided the tasks
into building the map, building the bar graphs, pulling it all together, and
handing the backend issues and configuration. For the map, we have used
the cartographer.js6 library, the latest version of which contains the polylines
for every county in the United States which we created for Geobarra.org.7

For the bar graphs, we used the Flot jQuery-based charting library,8 and for
the backend and data processing, we used Apache, MySQL, Django, python,
ruby and Mercurial.

After finishing our respective parts, we regrouped to determine how best
to combine our disparate pieces. At this point, we had U.S. Census, Recovery
and Geonames data in our database, had a functional map with county
and state-level granularity, and had Javascript-based bar graphs that would
dynamically update according to various triggers. In order to combine these

4http://geonames.org
5http://people.ischool.berkeley.edu/ rdhyee/s10/day15/search.html
6http://cartographer.visualmotive.com/
7http://code.google.com/p/cartographerjs/issues/detail?id=2c8
8http://code.google.com/p/flot/

5

pieces, we linked the map with the bar graph, and created an API on the
database using Django views and queries.

With this functioning, we completed a final round of user testing. This
round of testing consisted of interviews with three users, and click map
testing using an online testing service, http://fivesecondtest.com, with an
additional five users. The goal of this testing was to answer three questions:
does the tool meet user needs better than existing tools, are there clear calls
to action, and are the visualizations clear. For comparison, we tested users’
ability to perform tasks with a ProPublica visualization of the Department
of Transportation funding.9

Users found the combination of map and bar chart useful in understand-
ing the funding information and comparing their local regions to the national
funding. However, some users found it difficult to sort information about
individual awards in the table compared to ProPublica. From the click map
testing, we found that users needed more labeling of axes and units on the
bar chart. Users also wanted a key for the choropleth, although when asked,
all users correctly interpreted the colors used.

Most users could not identify a clear call to action when first encoun-
tering the site. After exploring the site, users understood that inputs and
outputs were coincident, but most users were uncomfortable exploring ini-
tially.

In response to user testing, we are implementing axis labels, a key on the
choropleth, and introductory text explaining how to explore the site. Since
users enjoyed exploring the data once the controls were clear, we are pleased
with the coincident inputs and outputs, and don’t see a need for introducing
additional control elements beyond the initial explanatory text.

3 System Description

The final version of Geobarra.org is quite similar to our original high-resolution
prototype. It has bar graphs on the left, a map on the right, and a table
of data on the bottom. Each of these views is brushed and linked with the
others in a manner such that changes to one view also change the others.
We have also used the jQuery tablesorter plugin to allow the table to show
a given number of rows, and to make it sortable on one or more fields (hold
shift and click).10

9http://www.propublica.org/special/states-transpo-funding-rate-416
10http://tablesorter.com/docs/

6

Our current data architecture uses a combination of cached JSON data
and queried JSON data. For data that is small and does not change, such
as the mapping of TAS codes to Department names, we have used cached
JSON data. For larger data that requires queries, we have used Django
to make an API that returns JSON data. The API accepts the following
queries:

geobarra.org/stateToTasAndSum/$state/: Queries to this URL with
two letter abbreviations in the last field return the a list of dictionaries
containing TAS codes and their total amounts in a given state.

geobarra.org/stateAndAgencyToTasAndSum/$state/$agency/: Queries
to this URL with a state abbreviation and an agency name return a
dictionary containing TAS codes and their total amount for an agency.

geobarra.org/allTasAndSum/: Queries to this URL return all TAS codes
and their sums for the entire United States.

geobarra.org/countyToAwards/(.*)/: Given a county name, this URL
returns a list of awards.

geobarra.org/countyAndTasToAwards/(.*)/(.*)/: Given a county and
a TAS code, this URL returns the details for that county and award.

For our choropleth, as was previously mentioned, we used the relatively
new cartographer.js mapping library. It uses the Raphael Javascript li-
brary11 as its backend, and allows for the efficient creation of choropleth
overlays onto Google maps. When we initially approached the cartogra-
pher.js library, it had polylines for all of the States in America, but lacked
county-level polylines. As part of our project, we have created these county-
level polylines, and we have given them to the cartographer.js project for
future developers to use. They have been recently included in version 0.4 of
the library.12

11http://raphaeljs.com/
12To see the actual changes to the code, visit:

http://code.google.com/p/cartographerjs/source/detail?r=9

7

4 Technologies Used

4.1 Django

Django13 is ”a high-level Python Web framework that encourages rapid de-
velopment and clean, pragmatic design.” We used Django as the application
framework to process requests from the client, perform queries over the
dataset, and return JSON to the client.

4.2 SQLite

We used this lightweight database during the application development phase
to gain a deeper understanding of the Recovery data, and determine which
queries were possible given the government data set, and which queries would
require additional data.

4.3 Ruby and Python

Processing data from multiple sources (ProPublica, recovery.gov, the De-
partment of the Treasury, Geonames) required us to scrape data from the
web, convert PDF files to CSV, and many other tasks that were best auto-
mated by simple scripts in Ruby and Python.

4.4 Mercurial

We chose Mercurial as our version control system in order to help us manage
a large amount of data and files in a central location.

4.5 cartographer.js

cartographer.js handles all of our mapping functions. The library allows us
to instantiate a Google map and add graphical overlays to create a choro-
pleth. Originally, the library only supported shapes for US states. We
personally compiled the GPolyline shapes for all US counties, which have
been incorporated into the cartographer.js project.

In our application, we attach click handlers to all map elements, so that
when users click on a state, the map and chart can both be redrawn, showing
the county shapes for the state and the state data on the chart. The map
is also automatically redrawn to show all states when a user zooms out.

13http://djangoproject.com

8

4.6 jQuery

The jQuery library for JavaScript lets us take advantage of several shortcuts
for user interaction with the different pieces of the visualization. jQuery’s
support for AJAX queries makes it very simple to call the various Django
queries and use the JSON data in the query response.

4.6.1 Flot

Flot is a robust jQuery charting library. Flot allows us to chart several data
series side-by-side, as well as capture the relevant data points when users
click and hover over the graph. In our application, interaction with the chart
is handled through a single method, which is called whenever the user clicks
on the map or changes the options for the displayed agencies.

4.6.2 TableSorter

The TableSorter jQuery library automatically handles user interaction with
our data table. The library take an HTMl table element and makes each col-
umn header into a control element for sorting the column. It handles text,
numbers, monetary units, and percentages with no customization. Addi-
tionally, the library handles table paging, letting users browse through the
table without scrolling up and down the page.

4.7 JSON

We use JSON data extensively, both as the response format from server
queries and as static variables for some of the chart elements. JSON is
easy to generate with Python, and jQuery includes several shortcuts for
requesting and processing JSON data.

9

5 Appendix I

Figure 3 — Our first paper prototype, demonstrating the data we would
place into bar graphs.

Figure 4 — Our second paper prototype, demonstrating the data we
would display with a choropleth.

10

Figure 5 — Our third prototype, combining the the first two and including
tabular data.

Figure 6 — The interactive prototype on which we performed our user
tests.

11

	Introduction
	Process
	System Description
	Technologies Used
	Django
	SQLite
	Ruby and Python
	Mercurial
	cartographer.js
	jQuery
	Flot
	TableSorter

	JSON

	Appendix I

