
A Preliminary Empirical Evaluation of the Effectiveness of
a Finite State Automaton Animator

Michael T. Grinder
Computer Science Department

Montana Tech of the University of Montana
Butte, MT 59701
mgrinder@mtech.edu

Abstract

The FSA Simulator is a Java program created to al-
low computer science students to work and experiment
with finite state automata (FSAs). One of its unique
features is the ability to compare the languages of two
FSAs. This FSA comparison feature lets the software
give students feedback about the accuracy of their work
as they do exercises, guiding them toward a correct so-
lution. This paper discusses some preliminary experi-
ments performed to determine the effect of this feedback
mechanism on students’ learning. Two experimental
labs were conducted, the results of which suggest that
this feature improved students’ success rate when doing
exercises, but did not appear to significantly improve
the students’ performance when the comparison feature
was not available.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Infor-
mation Science Education - Computer Science Educa-
tion.

General Terms
Experimentation, Measurement, Theory

Keywords
Visualization, Animation, Theory of Computation,
Evaluation

Permission to make digital or hand copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
require prior specific permission and/or a fee.
SIGCSE ’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM1-58113-648-X/03/0002...$5.00.

1 The FSA Simulator

The FSA Simulator is an animation program for simu-
lating finite state automata. It was developed as a part
of a larger project at the Webworks Laboratory at Mon-
tana State University. The goal of the Webworks Lab-
oratory is to develop web-based educational resources
that include interactive animation software. Webworks’
main focus is to produce such resources for teaching the
theory of computation.

Most of the features of the FSA Simulator are a sub-
set of the features of similar software packages, such
as JFLAP [3] and JCT [6]. Using the FSA Simulator,
users can build FSAs using a graphical state diagram
representation. Once an FSA has been built, users can
test arbitrary strings for acceptance. The FSA Simu-
lator’s unique feature is its ability to load a pre-built
FSA in the background and compare the language of
the background FSA with the language of the FSA that
the user is currently manipulating. If the languages of
the two FSAs differ, the program will display example
strings to illustrate where the differences lie (as depicted
in Figure 1). This feature allows instructors to create
exercises that give students enough feedback to guide
them to a correct solution. More information about the
FSA Simulator’s features and implementation is avail-
able in [4].

2 Goals

The initial inspiration for the FSA comparison feature
was the observation that, even with the help of the FSA
Simulator, students would often build incomplete solu-
tions to exercises without receiving any feedback about
where their solutions were incorrect. Although the stu-
dents had the ability to test their FSAs using strings
from the language, their testing was nearly always per-
functory. The comparison feature allows students to
detect when their solutions are incorrect and receive
hints about where the problem lies. We hoped that
over the course of several exercises, the students would
be able to successfully complete exercises more quickly,

157

Figure 1: The FSA Simulator after doing a comparison operation.

would begin to learn where they were making mistakes
when constructing FSAs, and would learn how avoid
such mistakes as they progressed. We also hoped that
such guided exercises would improve the students’ per-
formance when the comparison feature was not avail-
able.

3 Previous Work

Although studies have shown that narrated animations
help students learn about mechanical processes [5], little
formal evaluation has been done to study the effects of
interactive animation software in CS education. The
most prominent examples of such evaluation within the
CS education community are the studies conducted at
Georgia Tech to evaluate algorithm animation software
(for example, [2]), which produced mixed results.

4 Experiments

4.1 Subjects

Two experiments were performed in the lab sections of
computer science courses offered at Montana State Uni-
versity during the spring semester of 2002. The first
experiment was performed in a first-year course, CS
221. This course is mainly taken by computer science
and computer engineering students during the second
semester of their first year, after having taken an in-
troductory programming class. The second experiment
was performed in a second-year course, CS 223. This
course is usually taken by computer science majors dur-
ing the second semester of their second year. Some com-

puter engineering students also take CS 223 as a pro-
fessional elective. The content of the experimental lab
was not directly related to the content of either course.
Students were not graded on their performance in the
lab, but did receive course credit for attending and par-
ticipating.

Before the students began the lab assignment, they were
asked to fill out a form to provide some demographic in-
formation about themselves. The form asked for each
student’s age, sex, major, year in college, approximate
grade point average, and standardized test scores. Stu-
dents were also asked whether they were familiar with
terms related to the subject of the lab, such as finite
state automaton and regular expression, to determine
whether they had any previous exposure to the topic.
To protect the students’ privacy, the information pro-
vided in these forms was associated only with a number
assigned to the student.

Fifty-two students participated in the first experimen-
tal lab and forty-four students in the second. Three of
the students in Experiment 1 and six of the students
in Experiment 2 were women. All of the women ended
up being in the test groups. Most of the students in
the first lab were male, traditionally-aged, first-year stu-
dents majoring in computer science or computer engi-
neering with little or no experience with topics related
to regular languages. The students in the second ex-
periment had similar demographics, although they had
taken more computer science classes and some of them
were also taking the theory of computation course, CS
350, concurrently with CS 223.

158

4.2 Design

For the first experiment, there were three sections of the
lab, each lasting two hours. Each section was assigned
to be in either the test or control group. The first and
third sections, a total of 28 students, made up the test
group. The second section, with 24 students, was the
control group. The second experiment had two lab sec-
tions. The first section, 17 students, was designated the
control group and the second section, 27 students, was
the test group.

Overall, the demographics of the test and control groups
for both experiments appeared to be equivalent. A more
controlled way of choosing test and control groups would
have been preferable, but was not practical at the time.

4.3 Treatments

The experimental labs were divided into two parts. In
the first part, the students read through a web-based
tutorial drawn from material in the Webworks Labora-
tory’s theory of computation hypertextbook [1]. Exam-
ples in the test groups’ tutorial used the FSA Simulator
as an applet embedded in HTML pages. In place of
the applet, the control groups viewed static images that
conveyed equivalent information.

While they were reading through the tutorial, the stu-
dents completed four exercises. Exercise 1 asked the
students to identify the parts of an FSA, such as the
start and final states. They were also asked to deter-
mine if the automaton accepted specific strings. Exer-
cise 2 asked the students to construct a state diagram
of an FSA from its formal description. For Exercise 3,
the students were asked to construct a finite automaton
that accepted identifiers for a programming language.
In Exercise 4, participants were asked to construct a
finite automaton that accepted floating point literals.

The test groups used the FSA Simulator with the com-
parison feature during all of the exercises. Images of
solutions to the exercises were made available to the
control groups as links from the exercise pages. Both
groups were asked to write down their answers to the
exercises on a paper worksheet.

The second part of the lab was a paper-and-pencil test
with five problems similar to the exercises in the tuto-
rial. Problem 1 of the test was similar to Exercise 1, but
two additional questions were added. Students were also
asked to identify a string that would be accepted and
one that would be rejected by the FSA. For Problem 2,
the students were asked to write a formal description of
the FSA depicted in Problem 1. This was a bad idea,
since the students did not have access to a description
of the formal definition during the test. The answers
to this problem were not graded. Problem 3 asked the

students to draw a state diagram of a finite state au-
tomaton which accepts binary strings that start with 1
and end with 0. Problem 4 was similar to Problem 3.
The language for this problem was binary strings with
at least three 1s. Problem 5 was to create an FSA that
accepted a language consisting of binary strings that do
not contain the substring 110.

All students took the same test without reference to
any of the online materials from the tutorial. The lab
needed to be completed within 110 minutes. If students
were not done with the tutorial within 80 minutes, they
were asked to stop where they were and take the test
during the last 30 minutes.

4.4 Observations

The students in both test groups spent much more time
on the lab than the students in the control groups. It
was observed that some of the test groups’ students en-
countered difficulties while learning the applet’s user in-
terface. Students in the test groups spent more time
working on the exercises than their classmates in the
control groups. This may be attributed, in some cases,
to the extra time needed by the test groups to learn
the applet’s interface. Also, the test groups’ ability to
receive feedback about their solutions may have encour-
aged them to keep working an a solution until it was cor-
rect. Many of the students in the test groups, therefore,
did not have sufficient time to work through all of the
exercises. Nearly a third of Experiment 1’s test group
were not able to begin Exercise 4. Most of the students
in the control groups, on the other hand, completed the
exercises and the test much more quickly. All of the
students in the Experiment 1’s control group completed
the entire lab in less than 90 minutes.

Many of the students in the test groups appeared to en-
joy working with the FSA Simulator applet. The abil-
ity to check the accuracy of solutions and receive hints
when incorrect solutions were submitted made the exer-
cises seem like a puzzle game. A few of the students even
competed with each other to see who could complete the
exercises first. The control groups were much more sub-
dued. The students in these groups asked fewer ques-
tions and appeared to be much less enthusiastic about
the lab.

4.5 Results

The results of labs are summarized in Tables 1 and 2.
Although the test groups tended to do better on most of
the exercises and test problems, the differences between
the test and control groups were often not significant.
The significance of the differences between the test and
control groups for Exercise 1 and Problem 1 were tested
using a one-tailed t-test with Student’s t distribution

159

(α = 0.05). Fisher’s Exact Probability Test (also with
α = 0.05) was used to determine the significance of the
results for Exercises 2-4 and Problems 3-5.

5 Analysis

The original goal of the comparison feature was to guide
students to the successful completion of exercises. The
data from the two experiments appears to demonstrate
that the comparison feature of the applet does improve
students’ peformance on exercises. The data suggests
that the test groups had an advantage over the con-
trol groups when doing the exercises, especially as the
exercises became more difficult. The groups in both ex-
periments seemed to be equally matched on Exercise 1
and Problem 1. In Experiment 1, the test group did
significantly better than the control group on Exercises
3 and 4. The results weren’t quite as pronounced for
Experiment 2, the test group did do significantly better
than the control group on Exercise 4, but the differ-
ence on Exercise 3 did not quite fall into the significant
range.

Although the success rates for the test group were
higher than the control group for Exercises 2-4, they
were lower than original expectations. It may be that
some of the students in the test groups were able to
successfully complete the exercises, but made mistakes
when transferring the state diagrams from the com-
puter screen to their worksheets. Future evaluations
should probably use a completely electronic system for
exercises to prevent such problems. Also, as mentioned
above, the test groups spent much more time complet-
ing the exercises than the control groups. It may be
that some of them could have successfully completed
more of the exercises if they had had more time.

The results from the paper-and-pencil test were not as
encouraging. There were no significant differences be-
tween the test and control groups on any of the test
problems, although Experiment 2’s test group did per-
form quite a bit better than the control group on Prob-
lem 4. It appears that the advantages that the test
groups had when doing the exercises did not necessarily
carry over when the applet was not used. There are sev-
eral possible explanations for this. The students might
not have spent enough time with the simulator to pro-
duce any lasting benefit, the students in the test groups
might not have had enough time to complete the test,
or working with the FSA Simulator might not provide
any measurable benefit over pencil-and-paper exercises.

6 Future Work and Conclusion

Much more work needs to be done in evaluating how use
of the FSA Simulator affects learning. The evaluations
described in this paper were very limited and are not a

sufficient base from which to draw definite conclusions.

The evaluation process needs to be improved to improve
the quality of the results. A larger pool of subjects needs
to be found for the testing, so that the subjects are more
representative of the target student population. Also,
the test instruments need to be more carefully designed
to ensure that they are indeed testing students for the
correct knowledge.

An important follow-up evaluation would be to observe
use of the FSA Simulator throughout a theory of com-
putation course. How would the FSA Simulator affect
learning if students saw it demonstrated during lectures,
used it to complete several homework exercises outside
of class, and then used it while taking an exam? It
would seem that such extensive exposure would have a
strong positive effect on how well students would under-
stand FSAs, but the results of are difficult to predict.

It would also be helpful to do a formal evaluation of stu-
dents’ attitudes toward using the simulator. If it could
be shown that use of the FSA Simulator significantly
increased students’ enthusiasm for the study of the the-
ory of computation, that would be a compelling benefit
even without an accompanying increase in students’ un-
derstanding of the subject.

The results of these preliminary evalutions give a good
basis for much fruitful research in the future. Over time,
we should be able to gain a much firmer grasp of how
to best use technology to improve computer science ed-
ucation.

References

[1] Boroni, C. M., Goosey, F. W., Grinder, M. T., and
Ross, R. J. Engaging students with active learn-
ing resources: Hypertextbooks for the web. In The
Proceedings of the Thirty-second SIGCSE Technical
Symposium on Computer Science Education (March
2001), vol. 33, pp. 65–70.

[2] Byrne, M. D., Catrambone, R., and Stasko, J. T.
Do algorithm animations aid learning? Tech. Rep.
GIT-GVU-96-18, Graphics, Visualization, and Us-
ability Center, Georgia Institute of Technology, At-
lanta, GA, August 1996.

[3] Gramond, E., and Rodger, S. H. Using JFLAP to
interact with theorems in automata theory. In Thir-
tieth SIGCSE Technical Symposium on Computer
Science Education (1999), pp. 336–340.

[4] Grinder, M. T. Animating automata: a cross-
platform program for teaching finite automata. In
Proceedings of the 33rd SIGCSE technical sympo-
sium on Computer science education (2002), ACM
Press, pp. 63–67.

160

Average Standard One-tailed t-value
Experiment Question Group Score Deviation (α = 0.05)

Test 5.1 0.994Exercise 1
Control 5.5 1.504

-1.123
Experiment 1

Test 7.9 1.571Problem 1
Control 8.5 1.641

-1.449

Test 6.7 0.961Exercise 1
Control 6.4 1.176

0.785
Experiment 2

Test 8.8 0.934Problem 1
Control 8.4 0.966

1.431

Table 1: Results for Exercise 1 and Problem 1

Number Percent Fisher Test p-value
Experiment Question Group Correct Correct (α = 0.05)

Test 16 of 28 57%Exercise 2
Control 9 of 24 38%

0.1281

Test 16 of 28 57%Exercise 3
Control 1 of 24 4%

3.425 × 10−5�

Test 10 of 28 36%Exercise 4
Control 0 of 24 0%

8.295 × 10−4�
1

Test 8 of 28 29%Problem 3
Control 6 of 24 25%

0.5111

Test 15 of 28 54%Problem 4
Control 13 of 24 54%

0.6258

Test 1 of 28 4%Problem 5
Control 2 of 24 8%

0.4413

Test 20 of 27 74%Exercise 2
Control 9 of 17 53%

0.1331

Test 17 of 27 63%Exercise 3
Control 6 of 17 35%

0.0692

Test 18 of 27 66%Exercise 4
Control 3 of 17 18%

0.0017�
2

Test 16 of 27 59%Problem 3
Control 11 of 17 65%

0.75

Test 20 of 27 74%Problem 4
Control 8 of 17 47%

0.0683

Test 2 of 27 7%Problem 5
Control 0 of 17 0%

0.371

Table 2: Results for Exercises 2-4 and Problems 3-5 (significant differences are indicated with �)

[5] Mayer, R. E., and Anderson, R. B. The instruc-
tive animation: Helping students build connections
between words and pictures in multimedia learn-
ing. Journal of Educational Psychology 84, 4 (1992),
444–452.

[6] Robinson, M. B., Hamshar, J. A., Novillo, J. E., and
Duchowski, A. T. A java-based tool for reasoning
about models of computation through simulating fi-
nite automata and turing machines. In The proceed-
ings of the thirtieth SIGCSE technical symposium
on Computer science education (1999), ACM Press,
pp. 105–109.

161

