

Speed-dependent Automatic Zooming
for Browsing Large Documents

Takeo Igarashi
Computer Science Department,

Brown University
119 Waterman Street,

Providence, RI 02912, USA
+1-401-863-7651,

takeo@cs.brown.edu

Ken Hinckley
Microsoft Research
One Microsoft Way,

Redmond,
WA 98052-6399, USA

+1-425-703-9065
kenh@microsoft.com

ABSTRACT
We propose a navigation technique for browsing large
documents that integrates rate-based scrolling with
automatic zooming. The view automatically zooms out
when the user scrolls rapidly so that the perceptual scrolling
speed in screen space remains constant. As a result, the user
can efficiently and smoothly navigate through a large
document without becoming disoriented by extremely fast
visual flow. By incorporating semantic zooming techniques,
the user can smoothly access a global overview of the
document during rate-based scrolling. We implemented
several prototype systems, including a web browser, map
viewer, image browser, and dictionary viewer. An informal
usability study suggests that for a document browsing task,
most subjects prefer automatic zooming and the technique
exhibits approximately equal performance time to scroll
bars , suggesting that automatic zooming is a helpful
alternative to traditional scrolling when the zoomed out view
provides appropriate visual cues.

KEYWORDS: Navigation, zooming, scrolling, rate control,
web browser.

INTRODUCTION
Navigation techniques provide a way to access vast
information spaces through limited screen space. Scrolling
(or panning) and zooming are fundamental techniques for
freely moving around two-dimensional continuous space.
Scrolling allows the user to move to different locations,
while zooming allows the user to view a target at different
scales. Scrolling and zooming are commonly used in
computing systems, but current interfaces still have some
fundamental limitations.

With typical scrolling interfaces, it is difficult to browse a
large document efficiently. Using the traditional scroll bar,
the user must move back and forth between the document
and the scroll bar. This can increase the operational time and
may cause significant attentional overhead. In addition, in a
long document, small movement of the handle can cause a
sudden jump to a distant location, resulting in disorientation
and confusion. An alternative approach is a rate-based
scrolling interface [22] that maps displacement of the input
device to the velocity of scrolling. The Microsoft
IntelliMouse™ provides a wheel for scrolling but can also
map the mouse position to velocity, and the IBM ScrollPoint
II™ mouse [2] maps the force exerted on a small joystick to
velocity. An advantage of these devices is that the user does
not have to move the mouse cursor to the scroll bar. A

Figure 1: The problem of rate-based scrolling. The user
becomes disoriented when the document scrolls too fast.
(This mocked up blur was generated using Photoshop™)

problem with rate mappings is that there is an upper limit for
usable scrolling speed, because exceedingly fast scrolling
causes disorientation (Figure 1). As a result, the user is
forced to wait until the document slowly scrolls to a distant
location.

Speed-dependent automatic zooming is a new navigation
technique that unifies rate-based scrolling and zooming to
overcome these limitations. The user controls the scrolling
speed only, and the system automatically adjusts the zoom
level so that the speed of visual flow across the screen
remains constant. Using this technique, the user can
smoothly locate a distant target in a large document without
having to manually interweave zooming and scrolling, and
without becoming disoriented by extreme visual flow.

We tested the idea on several prototype applications,
including a web browser, a map viewer, an image browser, a
dictionary viewer, and a sound editor. The Web browser
with semantic zooming (Figure 6) was particularly
appealing to test users . An informal usability study with the
web browser and map viewer showed that for the web
browsing task, automatic zooming was preferred by most
subjects, and it exhibited approximately equal performance
time to scroll bars, even though the test users were much
more familiar with scroll bars. The map navigation interface
was not as successful. Overall, we feel that automatic
zooming shows promise and represents a novel approach
that ties together zooming user interfaces with rate-based
scrolling techniques.

RELATED WORK
Several techniques have been proposed to improve the
manipulation of scroll bars [1][14]. They allow the user to
control scrolling speed while dragging the knob, enabling
fine positioning in large documents. LensBar [13] combines
these techniques with interactive filtering and semantic
zooming, and also provides explicit control of zooming via
horizontal motion of the mouse cursor.

Zoomable user interfaces, such as Pad [16] and Pad++ [3],
use continuous zooming as a central navigation tool. The
objects are spatially organized in an infinite
two-dimensional information space, and the user accesses a
target object using panning and zooming operations. A
notable problem with the original zoomable interfaces is that
they require explicit control of both panning and zooming,
and it is sometimes difficult for the user to coordinate them.
The user can get lost in the infinite information space [10].
Our automatic zooming interface is an attempt to smoothly
integrate continuous zooming with traditional scrolling
interfaces by introducing constraints between scale and
speed.

Information visualization techniques, such as Fisheye Views
[6], Perspective Wall [12], and the Document Lens [18]
address the problem of information overload by distorting

the view of documents. The focused area is magnified, while
the non-focused areas are squashed but remain in spatial
context. The user specifies the next focal point by clicking or
panning. Our goal is to improve accessibility to large
information by extending navigational techniques which use
distortion-free layout.

For three-dimensional navigation, Depth Modulated Flying
[20] improves traditional flying techniques by automatically
adjusting flying velocity based on depth information. The
system sets the velocity proportional to the distance to
visible objects. The camera moves fast in a zoomed-out view,
ensuring that the time to reach the target is proportional to
the perceptual distance to the target in the current view. With
point of view navigation [11] the user navigates by clicking
on a target position on the screen, which causes the camera
to fly to the target. The time to reach the target is
proportional to the logarithm of the distance to the target, so
that navigation speed becomes scale independent: for
example, it always takes the same amount of time to halve
the distance to the target, regardless of the current scale.

The particular input device used can also influence the
effectiveness of rate control. An experiment on 6 DOF input
control [21] showed that rate control is more effective with
isometric or elastic devices, because of their self-centering
nature. It is also reported that an isometric rate-control
joystick [2] can surpass a traditional scroll bar and a mouse
with a finger wheel [22]. Another possibility is to change the
rate of scrolling or panning in response to tilt, as
demonstrated by Rekimoto [17] as well as Harrison et al. [9].

SPEED-DEPENDENT AUTOMATIC ZOOMING
In this section we introduce the speed dependent automatic
zooming interface. First we describe the concept, then we
give a detailed description of the interactive behavior.

Concept
The design concept of automatic zooming is to adjust zoom
level automatically to prevent extreme visual flow during
rate-based scrolling. That is, the system automatically
zooms out when the scrolling speed increases, and zooms
back in when the scrolling speed decreases. This is
consistent with our observation that users move slowly when
focusing on details, but quickly when focusing on the global
overview. The corresponding mathematical concept is to
adjust the scale based on the following equation:

scale = constant / speed (1)

However, if the speed is smaller than a predefined threshold,
then scale=1. This relationship ensures that perceived
scrolling speed on the screen (the visual flow of the
document across the screen) remains constant regardless of
the actual scrolling speed in the information space.

The goal is to provide automatic zooming so that the user
can move to a target position quickly without becoming
annoyed or disoriented by extreme visual flow. In addition,
it should also provide a smooth transition between the
magnified local view and a global overview during typical
navigation tasks. The user zooms out to a global overview,
identifies the target, and then can zoom in on it efficiently
without having to manually change the document
magnification factor.

The efficiency of the navigation using automatic zooming
can be explained by the smooth curve-shaped pan -zoom
trajectory in Figure 2, which is a space-scale diagram [8]. In
traditional manual zooming interfaces, the user has to
interleave zooming and scrolling (or panning); thus the
resulting pan-zoom trajectory forms a zigzag line. In the
automatic zooming interface, the zoom level changes
smoothly according to the scrolling speed, and thus results in
a smooth curve in the space-scale diagram.

p q
v

xy

p q
v

xy

a) Manual zooming/panning. b) Automatic zooming.

Figure 2: Space-scale diagram [8] of the pan-zoom
trajectory. An efficient pan-zoom trajectory results
from speed dependent automatic zooming. (v=scale,
xy=space, p=initial position, q=target position)

Implementation Issues
The concept presented above is a simple design intuition, but
we have found that a straightforward implementation of the
idea causes several problems in actual operation . This
section describes some implementation issues of the
interactive behavior that are necessary for an effective
realization of the concept.

The first problem we observed in our initial implementation
was that the change in zoom level caused by mouse
movement appeared unintuitive. We initially set the
scrolling speed proportional to mouse movement, and then
calculated the scale based on equation (1). However , as the
user increases the speed, this formula causes a sudden drop
in scale at first, and then slow convergence afterwards. The
problem is illustrated in Figure 3. To achieve perceptually
constant scale change, we set the scale exponential to the
mouse movement based on the following equation.

scale = s0(dy-d0)(d1-d0) (2)

(dy indicates the mouse movement. s0, d0, and d1 are
predefined constants, representing the minimum scale,
mouse movement when the zooming starts, and the
maximum mouse movement, respectively.)

1

0 dy

scale

speed

v0

speed = C * dy

scale = v0 / speed

Figure 3: The original mapping from mouse position to
speed and scale. A sudden drop in scale (shaded
area) occurs when the user first starts moving the
mouse. dy is mouse movement. v0 and C are
predefined constants.

After calculating the scale based on this equation, we then
calculate the scrolling speed based on equation (1) (Figure 4).
Although this approach breaks the straightforward relation
between the speed and the mouse position, it results in more
natural interaction than the initial implementation.

1

0 dy

scale

speed

s0

d0 d1

speed = v0/scale

scale = s0(dy-d0)/(d1-d0)

v0

Figure 4: Revised mapping from mouse position to
speed and scale. Scale changes at constant rate.
d0,d1,v0, and s0 are predefined constants.

Another significant implementation problem is that the
document appears to “swell” suddenly if the user reverses
the scrolling direction because the rate necessarily crosses
zero (hence zooming in) when the rate changes signs. A
similar problem occurs when the user stops scrolling by
releasing the mouse button: the rate drops to zero and causes
the document to instantaneously zoom in to full size.

To prevent these problems, we introduced delay to the
zooming-in process. The document zooms in slowly when
the user reverses the mouse direction, temporar ily breaking
the basic equation (1). That is, a maximum limit is imposed
on the rate of change of the scale (Figure 5). Note that no
delay is needed for the zooming-out process, nor would it be
desired: high speed scrolling with slow zooming-out could
cause extreme visual flow across the screen, which is
precisely what the auto-zooming technique is intended to
eliminate. Therefore, delay is only needed during special
cases (reversing directions and cessation of scrolling) when
zooming in may be an undesired side-effect of the
scale=constant/speed relationship.

0

1

mouse
position

scale

time

scale with delay

scale without delay

turn

release

Figure 5: In a straightforward implementation, the
zoom can change very suddenly (dotted line, bottom
figure) in response to the mouse position (top figure).
With zoom-in delay, the zoom level changes slowly
(solid line, bottom figure) in response to the mouse
position during the zoom-in process to prevent
sudden, undesired zooming of the document.

EXAMPLE APPLICATIONS
We implemented several example application systems to
explore the automatic zooming technique and to clarify its
strengths and limitations.

Web Browser
Existing scrolling techniques do not work well for browsing
long documents with 1000 or more lines. When using scroll
bars, the handle becomes too small to grab, and a small
movement of the handle causes a sudden jump to a distant
location. When using rate-based scrolling, the user must
patiently wait until the document slowly scrolls to a distant
location because fast scrolling causes visual disorientation.

We implemented a prototype web browser incorporating
automatic zooming to address this problem. Rate -based
scrolling with automatic zooming allows users to scroll very
fast without causing disorientation, and it also provides a
smooth transition to a high-level overview of the document.
The user can zoom out to see the overview, and zoom in to a
target sentence by controlling only the scrolling speed. Our
preliminary implementation experience and usability testing

of this approach suggests that it can significantly enhance
the browsing experience for such documents.

In our prototype automatic zooming browser (Figure 6a),
when the user presses the mouse button, a pink slider
appears. The document starts to scroll when the user moves
the mouse while holding the button (Figure 6b). The distance
between the initial position and the current mouse position
specifies the scroll speed. As the speed increases, headings
of the document become more salient (Figure 6c, 6d) to give
a better overview of the document structure (semantic
zooming [16]). When the user releases the mouse button, an
animated transition gradually returns the document to the
original base scale.

a) Static view b) Scrolling slowly

c) Scrolling fast d) Scrolling very fast

Figure 6. Scrolling a long document using speed
dependent automatic zooming. The document
automatically zooms out when the user scrolls fast.
The speed of visual flow across the screen is held
constant. Section headings and images become
salient in the zoomed-out view to guide navigation.

The key to success of automatic zooming in this application
is the semantic zooming feature, which prov ides context
information during the scrolling operation. Various browsers
provide zooming options, but scale typically changes only
discretely, and it requires tedious manual operation. In

addition, zooming typically scales the entire document
uniformly, and it is difficult to locate a target in the
minimized view. The semantic overview of our technique is
similar to the “outline” view of word processing programs,
but we provide a smoo th t rans i t i on among the different
views for efficient navigation, which we believe is crucial to
its effectiveness.

Our prototype browser is written in Java™. It contains a
basic HTML parser, and the system uses the section
headings and images detected by the parser as landmarks for
semantic zooming. To improve performance, plain texts are
rendered as simple horizontal lines in the zoomed-out view.
A limitation of the current implementation is that it uses the
fonts (of discrete sizes) available on the system. We tested
advanced zoomable UI toolkits [3,4], but the performance
was unsatisfactory. System-level support for continuously
scalable texts is desired for optimal use of the automatic
zooming interface.

We believe this technique would work well for other
applications that typically require scrolling through long
documents, such as a word processor or source code editor,
but we have not yet implemented these.

Map Viewer
Map viewing is a good example of an application that
requires multi-scale interaction. A map typically covers a
much wider area than is visible on a single screen. The user
has to pan and zoom repeatedly to reach the target view.

Figure 7: Map navigation using automatic zooming.
The original view is on the left. When the user starts
moving, the view starts to zoom out (center). The right
image shows the user moving at top speed , with the
view fully zoomed-out . The speed of visual flow
across the screen remains constant.

In our prototype system, the user navigates through the space
by dragging the mouse. The relative position between the
point where the dragging operation started and the current
mouse position specifies the direction and the speed of
camera motion. As the user moves faster, the view
automatically zooms out. The view returns to the original
scale when the user releases the mouse button.

We also tested a joystick for this example. The more the user
tilts the stick, the faster he moves, and the smaller the view
gets. Joysticks may be more suitable for rate-based scrolling
because of their self-centering effect [22]. One problem we
observed with joystick input is that first-time users tend to

tilt the stick as far as it will go, which causes sudden
speed-up and zoom-out. Users had to learn that subtle
control of the stick is required for successful navigation.

The current prototype implementation uses an artificially
synthesized map based on Perlin’s noise function [15] to test
the idea with minimum implementation effort , as well as to
achieve high performance. Although this prototype allows
the user to experience zooming and panning in a multi-scale
environment, an implementation using real map data would
be necessary to obtain further insights. High frame-rate
interaction is possible, however, as shown in [3]. It may be
possible to use the constrained relationship between scale
and speed for performance tuning.

Similar techniques may be applicable to other applications,
such as car navigation systems, CAD systems , image editors,
and spreadsheets. In a car navigation system, for example,
the scale (detail level) of the map could be set based on the
actual speed at which the car is moving – a high-level
overview for expressway driving, or a detailed map for city
street driving. Spreadsheets also seem well suited to
automatic zooming because the sheet is usually larger than
the screen and the user tends to visit specific cells
repeatedly.

Image Browser
We implemented automatic zooming for browsing a
collection of images, such as a collection of personal digital
photographs taken using a digital camera [5]. The images are
aligned horizontally, and the user scrolls the list of images to
browse them. The user controls the scrolling speed, and the
view automatically zooms out when scrolling fast (Figure 8).

a) Static view b) Scrolling slowly

c) Scrolling fast d) Scrolling very fast

Figure 8. Image browsing with automatic zooming.
The speed of visual flow across the screen remains
constant.

Although this implementation is much better than simple
scrolling, we felt that automatic zooming was much less
effective for this application than for the Web Browser or
Map Navigation examples described above. The Image
Browser is different from the previous examples because
abstraction may not be available here. In the Web Browser
example, individual lines of text disappear, and the title
headings serve as landmarks. In Map Navigation example,
narrow streets fade away in the zoomed-out view, and
highways and the coastline appear as landmarks. But in the
Image Browser, it is typically useless to represent a set of
images by a representative single image, and each image
must be distinguishable. In other words, spatial abstraction is
difficult to apply because the order of images is not
important. As the result of this difference, with our current
implementation the view cannot zoom out too much and thus
the maximum scrolling speed is limited.

Automatic zooming does improve the simple scrolling
interface, but a static array of thumbnails seems superior for
browsing many independent images and for locating a target
image among them. Automatic zooming might become more
appropriate if the screen resolution and the screen refreshing
rate could be significantly improved in the future, but with
present systems we cannot recommend it for browsing a
collection of images.

Dictionary
Zooming is a natural operation for spatial information, but it
is also applicable to non-spatial, symbolic information [6].
In these cases, the zooming-out effect is achieved by
thinning out less-important items. As an example of
non-spatial information, we tested a dictionary viewer with
automatic zooming. Words are listed in alphabetical order,
and they can be scrolled vertically across the screen. As the
user scrolls faster, the list starts to skip words (Figure 9).

a) static view b) scrolling slowly c) scrolling fast

Figure 9. Searching for a word in a dictionary using
automatic zooming. The words start to be skipped as
the user increases the scrolling speed. The scrolling
speed of visible words is always constant.

The result was not very promising. It is confusing to see the
words appear and disappear during scrolling. It is very
difficult to locate the target word in the zoom-out view
because the user has to constantly figure out the alphabetical
order between the visible words and the target word. For
example, when searching for “bear”, the user has to steer

between “bavarian” and “befogging” in the zoomed-out
view, which causes significant cognitive overhead.

Sound Editor
We also tested a sound editor with automatic zooming. We
expected that automatic zooming would be useful because
editing an audio stream involves frequent zooming and
panning operations. However, the continuously
transforming waveform was just confusing. The lack of
appropriate visual landmarks makes it difficult to use
automatic zooming for this application. It might be useful to
add visual labels to the audio stream using simple voice
recognition techniques.

USABILITY STUDY
We performed a preliminary usability study to clarify the
strengths and limitations of automatic zooming for the Web
Browser and Map Navigation tasks. The main goal of this
informal study was to obtain insights about the new interface
by observing users’ reactions. One of the authors sat next to
each subject throughout the experiment and had brief
conversations to discuss issues which arose during the study.
Although our study is not intended as a formal experiment,
we did take quantitative measures to obtain some initial
insight about user performance.

Seven test users participated in the study . All had moderate
experience with computers. Table 1 shows a profile of the
subjects. For each task (Web Browser and Map Navigation),
users were first shown the interface, and then performed a
set of practice tasks.

Table 1: Subject profile. “Computer skill” indicates the
subjects’ own evaluation on their computer skill.
“Game play” indicates subjects’ answer to the
question of “how often do you play video games?”.

Sex Age Computer skill Game play

1 f Middle Average Sometimes
2 m Middle Good Seldom

3 m Senior Average Seldom

4 f Senior Average Not at all

5 f Young Good Almost everyday

6 m Middle Average Sometimes

7 f Young Good Frequently

Web Browser
The first task requires the user to find specific images in a
long web document (Alice's Adventures in Wonderland),
using either the standard scroll bar interface or our automatic
zooming technique (using a standard mouse for both
interfaces). Order of presentation was counterbalanced. A
target image is presented with the corresponding section title,
and the next image appears when the user clicks the target

image in the document. Figure 10 shows a snapshot of the
screen. A predefined sequence of 20 images appears for all
subjects. We used the same sequence in both conditions, but
with reversed order to minimize learning effects (the order
was balanced across the subjects).

Figure 10: Snapshot from the user study (Web
browser). Target image and section name is
presented at the right. The user must scroll the
document (left) and then click on the target image.

The resulting task completion times were approximately
equal (Figure 11). This result is quite striking considering
the significant difference between the two interfaces and the
years of prior experience that participants had with scroll
bars . In the scroll bar condition, it was difficult to find the
target because an overview was not provided, but the user
could jump to the target instantly if he successfully guessed
the approximate target location. In contrast, users were
forced to gradually approach to the target in the automatic
zooming interface.

0

1 0 0

2 0 0

3 0 0

4 0 0

1 2 3 4 5 6 7 A v g

a u t o z o o m
s c r o l l b a r

Subjects

T i m e (s)

Figure 11: Task completion time (Web Browser). The
performance was approximately equal.

Our main concern prior to the experiment was that automatic

zooming might be too difficult to control for general users,
but the subjects in our study appeared to control the
automatic zooming interface fluently. The more dexterous
subjects, especially frequent video game players, exhibited
better performance using automatic zooming. In a subjective
questionnaire, six out of seven subjects indicated preference
for automatic zooming, but subject #2 preferred the standard
scroll bar (Figure 12). Some subjects reported that with
automatic zooming, the constant flow of the text made them
dizzy.

Manual

Automatic

60 3

of subjects

Figure 12: Subjective evaluation (Web Browser). Most
users preferred automatic zooming.

This user study focused on finding visually distinctive
targets. The results might have differed if different targets,
such as particular sentences of text, were used as targets
since they may not be recognizable when zoomed out.
Simple text -based search might be preferred to find a
specific sentence in an unfamiliar document. We designed
our study based on the assumption that, in familiar
documents, users gradually establish visual keys around
known targets, and use the visual keys for navigation even
when the target itself is not visually distinctive.

As a final note, the literature strongly suggests that
rate-based scrolling can benefit from an isometric input
[18][22], such as the miniature joystick found on the IBM
ScrollPoint II mouse, as opposed to the mouse position input
which we are currently using. As such, we expect that
implementing automatic zooming with an isometric input
device may help to improve its overall performance,
although we have not yet tried this.

Map Navigation
The second task required subjects to visit targets in a
two-dimensional map application using a joystick. Subjects
navigated through the map using a traditional
panning/zooming interface in one condition, and our
automatic zooming interface in the other. In the traditional
panning/zooming condition, the user used a zoom-in button
and a zoom-out button on the joystick. The joystick buttons
were not used in the automatic zooming condition.

A screen snapshot of the Map Navigation task is shown in
Figure 13. A global radar is provided at the right-bottom
corner. It indicates the location of the next target as a white
dot and the current view as a red rectangle. As the user
zooms out, the rectangle grows in the global radar. As soon
as the user visit s the target (that is, brings the target to the
center of the screen), the next target appears. A predefined

sequence of 20 targets was used for all subjects. The same
sequence was used in both conditions, but with reversed
order (the order was balanced across the subjects).

Figure 13: Snapshot from the user study (map viewer).
The user navigates though the map using a joystick.
The white circle indicates the target position. The
global radar is presented at the right-bottom corner.

Figure 14 shows the task completion time for the map
navigation task. The results were mixed compared with the
previous Web Browser task. The Map Navigation task is
more difficult than browsing a document, causing a range of
strategies that differed widely among subjects. An efficient
strategy is to zoom out until the target appears on the screen,
move to the target, and then zoom in. However, some
subjects slowly moved to the target without zooming out,
which took a very long time. This same tendency was
observed in both the traditional pan/zoom interface and the
automatic zooming interface.

0

100

200

300

400

500

1 2 3 4 5 6 7 Avg

auto

manual

Subjects

Time (s)

Figure 14: Task completion time (Map Navigation).
The result was diverse.

The subjects’ qualitative evaluations were also mixed. Four
subjects (#2,4,5,6) preferred automatic zooming, while the
other three preferred manual zooming (Figure 15). One
subject disliked manual zooming because he had to control
two different input streams, while another subject liked
manual zooming because of the separate control. Several
users confessed that they found automatic zooming more
challenging and thus more fun to use. One user disliked
manual zooming because she kept confusing the zoom in
and zoom out buttons. These results suggest that for the Map
Navigation task, automatic zooming may not be an optimal
solution for everyone, but it can attract some users.

Manual
Automatic

60 3

of subjects

Figure 15: Subjective evaluation (Map Navigation).
Users’ preference was divided.

We observed that some subjects often found it difficult to
stop at the target position correctly when using automatic
zooming. They started to circle around the target. This can
be explained as follows. When the user passes the target, he
tries to go back by pulling the joystick backwards. This
“going back” operation decreases the flying speed
temporarily, and thus the view zooms in. As the view zooms
in, the target appears to move away in screen space. This
makes the user speed up too much, and he again passes the
target. We had already implemented delay in the zoom-in
process as described previously, but it was not enough. One
solution to this problem would be to decrease the scroll and
zoom speed in general to make it easier for users to control.
However, as other users like d the high-speed setting, we feel
that the automatic zooming interface must either adapt to the
user’s skill, or provide a customizable setting for the speed.

DISCUSSIONS
This section discusses potential target domain s for
speed-dependent automatic zooming interfaces and
discusses the tradeoffs associated with the technique. Table
2, at the end of this section, summarize s these tradeoffs.
What is interesting about automatic zooming is that it
provides a different set of design trade-offs than traditional
scrolling, while exhibiting similar performance -- in essence
offering new design options for appropriate applications
which require navigation of large information spaces.

The automatic zooming technique is designed for an
information space of intermediate size. If the size is small
enough, standard scroll bars or a set of thumbnails listed on
the screen works well. On the other hand, a significantly
large information space can only be navigated using search
or indexing. Our technique covers the intermediate size
between the two extremes. For example, documents of a few

pages can be efficiently browsed by standard scrolling,
books of one hundred pages can be effectively navigated
with automatic zooming, and finding a particular sentence in
a collection of books would require search or an index.

From our prototype implementations, we observed that the
automatic zooming interface seems to works well for
spatially organized info rmation, such as a map. Web pages
are also spatial in that the order of sentences, titles, and
figures is essential. Landmarks in these documents provide a
cue to find the desired target location in the zoomed-out
view. On the other hand, automatic zooming seems difficult
to apply to symbolic information such as a dictionary. Here ,
the spatial arrangement is not essential, and landmarks
provided by the words themselves do not seem sufficient to
help the user locate the target.

Our expectation is that users could benefit from the
automatic zooming interface the most when they move
among specific targets repeatedly. Frequent visits allow the
user to memorize the spatial relationship among targets and
landmarks, and the user can jump to a target without
wandering around. We observed that the user's hand
gradually learns an efficient speed control pattern to move to
a specific target. However, the dynamic interaction of the
automatic zooming can confuse first time users. Standard
scrolling, zooming, and search might be the best solution for
them.

We also expect that our automatic zooming interface will
work best with self-centering, absolute input devices as
opposed to spatial, relative pointing devices such as a
standard mouse; the mechanical status of a self-centering
device is directly associated with the scrolling speed.
Controlling speed using a mouse can be difficult because the
user has to rely on the visual feedback on the display. In
previous work, self-centering joysticks have been found
effective for rate-based scrolling [22].

As we observed in our user study, the automatic zooming
interface is preferred by expert users with good hand-eye
coordination. They liked the efficient control enabled by it,
but its dynamic behavior may intimidate more novice or less
dexterous users. Although the basic mechanism is easy to
understand, it takes a while to become fluent with the
interaction. Automatic zooming is useful for expert users
because it can yield high performance with a certain amount
of initial practice.

Table 2: Target domains for the speed dependent
automatic zooming interface.

 Appropriate
Domain

Less Appropriate
Domain

Size Intermediate Small or huge

Type Spatial Symbolic, abstract

Frequency Repetitive visit One-time visit

Input
device

Self-centering,
absolute devices

Relative pointing
devices

User Experts Novices

FUTURE DIRECTIONS
We plan to test automatic zooming in some other application
domains, such as program code editors, spreadsheets, video
browsing, and 3D navigation. A challenge is to design
appropriate transitions from the static view to a global
overview without confusing users.

Further research is required to improve the interactive
behavior of the technique. We especially need to find a way
to incorporate adaptation or customization mechanism to
adjust various parameters to individual users.

Simple scaling causes a blank area to appear around the
document in the zoomed-out view. We are considering the
use of some distortion-oriented presentations in combination
with automatic zooming for more efficient use of screen real
estate.

We are also interested in testing automatic zooming on
handheld devices, as the limited screen real estate makes
standard scroll bars less effective, and many of these devices
also include self-centering scrolling mechanisms which
would provide an appropriate input.

CONCLUSION
We have described a new spatial navigation technique for
browsing large documents that combines rate-based
scrolling with continuous zooming. The basic idea is to
automatically shrink the document when the user scrolls fast,
thus maintaining constant perceptual scrolling speed and
presentation of the global overview of the document. We
also discussed various implementation issues which are
essential to the interactive behavior. We implemented
several prototype applications, including web browsing,
map navigation, image browsing, a dictionary, and audio
browsing. Our informal usability study showed that for the
document browsing task, most users preferred automatic
zooming to the traditional scroll bar. Dexterous users
especially preferred and benefited from automatic zooming.

In general, our technique seems to work best for visually
distinct data where a zoomed out view can provide
appropriate scrolling cues. We believe that the idea of

speed-dependent automatic zooming not only improves
current rate-based scrolling interfaces, but also presents a
novel interaction technique which may find application in
multi-scale and 3D navigation tasks of future interactive
systems.

REFERENCES
1. Ahlberg, C. Shneiderman, B., The alphaslider: a

compact and rapid selector, CHI'94 conference
proceedings, pp.365-371,1994.

2. Barrett, R.C., Sleker, E.J., Rutledge, J.D., Olyha, R.S.
The Negative Inertia: A dynamic pointing function,
CHI’95 conference companion, pp. 316-317, 1995.

3. Bederson, B., Hollan, J., Perlin, K., Meyer, J., Bacon, D.,
and Furnas, G., Pad++: A Zoomable Graphical
Sketchpad for Exploring Alternate Interface Physics.
Journal of Visual Languages and Computing, 7, pp.
3-31, 1996.

4. Bederson, B. B., & McAlister, B., Jazz: An Extensible
2D+Zooming Graphics Toolkit in Java. Tech Report
HCIL-99-07, CS-TR-4015, UMIACS-TR-99-24,
University of Maryland, 1999.

5. Combs, T., Bederson, B. Does Zooming Improve Image
Browsing? Proceedings of Digital Library (DL 99), pp.
130 – 137, 1999.

6. Furnas, G.W. Generalized Fisheye Views, Proceedings
of CHI'86, pp. 16-23, 1986.

7. Furnas, G.W. Effective View Navigation. Proceedings
of CHI'97, pp. 367-374, 1997.

8. Furnas, G.W., Bederson, B.B. Space-Scale Diagrams:
Understanding Multiscale Interfaces. Proceedings of
CHI’95, pp. 234-241, 1995.

9. Harrison, B., et al., Squeeze Me, Hold Me, Tilt Me! An
Exploration of Manipulative User Interfaces,
Proceedings of CHI’98, pp. 17-24, 1998.

10. Jul, S., Furnas, G., Critical Zones in Desert Fog: Aids to
Multiscale Navigation, Proceedings of UIST ’98, pp.
97-106, 1998.

11. Mackinlay, J.D., Card, C.K., Robertson, G.G., Rapid
Controlled Movement Through a Virtual 3D Workspace,
SIGGRAPH 90, pp. 171-176, 1990.

12. Mackinlay, J.D., Robertson, G.G., Card, C.K. The
Perspective Wall: Detail and Context Smoothly
Integrated. Proceedings of CHI’91, pp. 173-179, 1991.

13. Masui,T. LensBar - Visualization for Browsing and
Filtering Large Lists of Data. In Proceedings of
InfoVis'98, pp.113-120, 1998.

14. Masui,T., Kashiwagi,K., Borden,G.R., Elastic graphical
interfaces for precise data manipulation. CHI'95
Conference Companion, pp. 143-144, 1995

15. Perlin, K., An Image Synthesizer, Computer Graphics,
Vol. 19 No. 3, 1985.

16. Perlin, K., Fox,D. Pad: An Alternative Approach to the
Computer Interface, SIGGRAPH 93, pp. 57-64, 1993.

17. Rekimoto, J., Tilting Operations for Small Screen
Interfaces, Proceedings of UIST’96, pp. 167-168, 1996.

18. Robertson, G.G., Mackinlay, J.D., The Document Lens,
Proceedings of UIST’93, pp. 101-108, 1993.

19. Robinett, W., Holloway, R., Implementation of Flying,
Scaling and Grabbing in Virtual Worlds, 1992
Symposium on Interactive 3D Graphics, 1992.

20. Ware, C., Fleet, D., Context Sensitive Flying Interface,
1997 Symposium on Interactive 3D Graphics, pp.
127-130, 1997.

21. Zhai, S., Milgram, P., Drascic, D., An Evaluation of
four 6 degree-of-freedom input techniques, Proceeding
of INTERACHI’93, pp. 155-161, 1993.

22. Zhai, S., Smith, B.A., Selker, T., Improving Browsing
Performance: A Study of Four Input Devices for
Scrolling and Pointing Tasks, INTERACT'97, pp.
286-292, 1997.

