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A Model of Multi-Scale Perceptual Organization in Information 
Graphics 

 

Abstract 

 

We propose a new method for assessing the perceptual organization of information graphics, 

based on the premise that the visual structure of an image should match the structure of the data it is 

intended to convey. The core of our method is a new formal model of one type of perceptual structure, 

based on classical machine vision techniques for analyzing an image at multiple resolutions.  The model 

takes as input an arbitrary grayscale image and returns a lattice structure describing the visual 

organization of the image. We show how this model captures several aspects of traditional design 

aesthetics, and we describe a software tool that implements the model to help designers analyze and refine 

visual displays. Our emphasis here is on demonstrating the model’s potential as a design aid rather than as 

a description of human perception, but given its initial promise we propose a variety of ways in which the 

model could be extended and validated. 
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1 Introduction 

The design of information visualization software remains a poorly understood, hit-or-miss 

process. Part of the difficulty is that models for how humans extract information from visual displays 

remain incomplete. Indeed, seemingly minor design variations can have dramatic effects on 

comprehensibility. As a result, creating effective displays often requires expensive user tests, time-

consuming redesigns, and even a certain amount of guesswork. 

Many researchers have recognized these problems and have investigated guidelines and models 

for the perception of information graphics [35]. Much work has been done on the efficacy of different 

visual encodings (e.g. [5, 20]), resulting in useful rules about the use of color, position, area, etc. to 

represent different types of variables. Others, for example [9], have investigated how models of 

preattentive processing can be used in designing visualizations. 

But these lines of research do not address a key element in the efficacy of an information graphic: 

the degree to which its perceptual organization reflects the organization of the nderlying data. Many 

authors have stressed that to design successful information graphics one must take into account the effects 

of perceptual grouping. For instance, [14] contains many examples in which unintentional grouping 

effects lead to confusing displays. It would therefore be useful to have a tool that helped designers assess 

the perceptual organization of their designs  

Some attempts have been made to model perceptual organization in information graphics. Tufte 

provides general guidelines, such as the “Macro/Micro”  principle [33]. But quantitative models suitable 

for software implementation are rare. Several authors have analyzed special classes of displays: [34] 

analyzes alphanumeric screens; [31] investigates standard Visual Basic dialog boxes. The work of [27] on 

deriving perceptual structure in the context of sketch editing is more ambitious, but still requires a 

vectorized version of a graphic as input. Because it is not amenable to the analysis of non-vector-based 

visualizations, it is problematic to apply his method to the output of existing programs.  



In this paper, an extension of the work in [37]  we introduce a formal model of visual 

organization which can be applied to a broad class of information graphics. We present an algorithm that 

takes as input an arbitrary grayscale image, and returns as output an analysis of the image’s organization 

that links perceived structures at different scales. We do not claim that this technique captures all or even 

most of the aspects of human visual perception—that would be far beyond any current system—but we do 

propose it as a potentially helpful new model of a particular aspect of perceptual organization.  

We then describe a prototype software tool that applies this model to help designers see how an 

information graphic may be understood by viewers. We demonstrate the utility of the model by exhibiting 

a variety of examples in which it captures aspects of design aesthetics; we also show how it can be used in 

the redesign of a real-life visualization. Finally, we discuss directions for validating and extending  the 

model. 

2 A Multi-Scale Model of Visual Organization 

2.1 Motivation: Importance of Multiple Scales 

Most information graphics display structure at several different scales. That is, an image will 

contain large-scale organization as well as many smaller details. Our hypothesis is that at all these scales 

the visual structure should reflect the structure of the data being conveyed, with large-scale organization 

reflecting a broad overview or summary, and smaller details reflecting details of the data. As [2] puts it: 

 A graphic should not show only the leaves; it should show the branches as well as the 

entire tree. The eye can then go from detail to totality and discover at once the general structure 

and any exceptions to it.  

This intuition about multiple scales is shared by many visual designers. Typographers, for 

example, routinely speak of a visual hierarchy in text layouts. Figure 1 shows a hand-drawn example of 

such a hierarchy. (We have chosen a piece of text as an example for analysis in the next section since it 

has several natural, unambiguous scales: letter, word, line, and paragraph.)  



Despite the general belief that multi-

scale structure exists and is important, that 

structure can prove surprisingly elusive. Even 

experienced designers will resort to tricks 

such as looking at an image from across a 

room or holding it upside down to get a better 

sense of its organization. In many ways it 

would be helpful to have a mathematical 

model that matched the standard designer’s 

intuition. Such a model could be useful to 

designers, for instance, who could apply it to 

early designs to see if the structure matched 

what they wished to communicate. It could also be helpful in automating some aspects of design—for 

instance, a computer might try to use the model to optimize the correspondence between visual structure 

and data structure.  All of these potential uses rely on a precise model that can implemented 

algorithmically. 

2.1.1 Human and Machine Vision 

Psychologists have long studied perceptual organization and its multi-scale aspects. A full review 

of the psychological literature on this topic is beyond the scope of this paper, but we cite a few reference 

points. Gestalt psychologists, starting with Wertheimer [38], have proposed a number of “ laws”  for how 

the brain groups objects: by proximity, good continuation, and so on. Multi-scale aspects of grouping 

have also been addressed in several lines of research (e.g. [22, 23]). Many of these theories of grouping 

were qualitative, but investigators have worked on creating quantitative or algorithmic models as well. 

Typical examples from this large research area are Kubovy [15], who treats grouping by proximity in dot 

lattices, and the work of Li [17] on neural network simulations of cortical processing. One interesting 

Figure 1. Visual hierarchy, hand-drawn, for a piece of 
text. (The “Dr. Seuss”  image.) 

 

 



system is Logan’s CODE theory of visual attention [19], which has in fact been applied to information 

visualizations [26]. Like many other psychologically-derived models, however, this system requires 

“ features”  constructs as input rather than direct pixel data.The field of machine vision, however, provides 

a different and more immediately fruitful perspective, and is a rich source of pixel-level models. 

Analyzing visual structure has long been recognized as an important component of computer vision (see 

[40]), and modern computer vision frameworks typically are designed to be applied to arbitrary images. 

In this paper we highlight one particular framework, scale space theory, and through a series of examples 

suggest that it is particularly suitable for the analysis of information graphics. A natural future direction 

would be to reconnect this model with psychological work through experimental validation. 

2.2 Limits and Assumptions  

Rather than attempting to model the full range of visual experience, we focus on non-interactive 

motionless grayscale images, and make no attempt to reconstruct a 3D scene. By eliminating from 

consideration color, depth, motion, and interactivity we simplify the domain considerably yet retain 

significant generality, for example encompassing a significant fraction of printed information graphics. 

Furthermore, even within the domain of static grayscale images, we do not attempt to create a complete 

model of visual grouping. Instead, as a first step, we focus on a single type of structure. Obviously it 

would be desirable to have a model that eventually did account for the  many other dimensions of visual 

perception, and in the final section we discuss potential generalizations. 

2.3 Our Model: Mathematical Definition 

We now define our model. First we make precise the idea of “scale.”  Then we define a simple 

method of extracting structure at a given scale. Finally we describe a technique for linking structures 

found at different scales.  



2.3.1 Scale Space 

We base our model on the classical machine vision concept of scale space. Scale space theory 

[10, 13, 18, 40] is a formalism that describes the structure of a signal at many different scales at once.1 

To define scale space precisely, we need some notation. First, we represent the input image as a 

function: 

f: [0,L] × [0,L] → [0,1]. 

That is, we take f to be a function on a square of side L, where a value of 0 corresponds to black, 

1 to white, and values in between correspond to shades of gray. 

Given the function f, we then extend its domain to a 3-dimensional “scale space”  by a special 

family of functions fs where s ≥ 0. First, let Gs be a Gaussian kernel with  “width”  s; more formally, let 

222 2/)(

22

1
),( syx

s e
s

yxG +−=
π

 

 We define then fs by  

fs =f*Gs 

where *  represents convolution. Informally, the function fs  represents the original image having 

been blurred by a factor of s. Figure 2 shows fs for three different values of s. The 3-dimensional space 

formed by the spatial dimensions x,y and the  new scale dimension s is known as scale space, and by 

analyzing the functions fs on this 3-dimensional scale space we can get at important structures in the 

original 2-dimensional image. 

 

                                                      
1 Despite the similar name and notation, scale space in this sense is not directly related to the “space-scale 

diagrams”  of [7], an elegant application of Riemannian geometry to zooming user interface design. 



Figure 3. Difference of Gaussians: fs-f3s/2 ,  s=8,16,44.  
50% gray is zero; dark gray is negative; light gray is positive. 

 

Figure 2. fs for the Dr. Seuss image, where s=8, 16, 44. 

2.3.2 Structure and segmentation  

Having defined scale space we now need a notion of structure or organization at a given scale. 

There are many possible ways to define a structure. We choose to define structure by creating  a 

segmentation of the image at each scale. For a given scale s, we follow [21] and consider the difference-

of-gaussians edge detection function  

gs = fs - f3s/2. 

This function is one of the best studied edge detectors, and has some correspondence to the 

responses of retinal neurons. It is a close approximation of another classical edge detector, the Laplacian 

operator, but numerically more stable. Figure 3 shows the function gs for the Dr. Seuss image at three 

different scales. 

We can then naturally segment the square into regions  where gs ≠ 0. The connected components 

of these regions form the elements of our segmentation. The sign of gs also has significance; it 

corresponds, very roughly, to whether the segment is brighter or darker than its neighbors.  



Why use the difference-of-gaussians edge detector? It has several advantages. First, simplicity: it 

is well-understood and efficient to calculate. Second, unlike several other popular edge detectors (e.g. [4, 

29]), the difference-of-gaussians method has the benefit of immediately producing closed contours, thus 

creating a segmentation without additional steps. Third, the sign of the function gs is useful in creating an 

algorithmic version of the linking step below. Despite these advantages, it is important to note some well-

known drawbacks to this technique: poor localization, rounded corners, and oversensitivity [24]. A 

different edge detector would not, however, fundamentally alter the framework of our model.  

Figure 4 shows the resulting segmentation at scales of 8, 16, and 44. In the top row the edges of 

segments are shown. In the bottom row, each segment has been filled with a single gray tone representing 

the average grayscale value of the pixels in the segment, a technique we call a Gestalt cartoon.  The 

Gestalt cartoon itself is a small but interesting visualization issue: informal tests showed that for complex 

segmentations, users found these Gestalt cartoons easier to interpret than the outline view commonly seen 

in computer vision output. Note how closely the images in the bottom row match the hand-drawn 

diagrams of Figure 1.  

 The Gestalt cartoons do raise some new issues, however. One potential concern is that two 

adjacent segments with similar average values may be difficult to distinguish. In many cases, however, 

this difficulty simply reflects the fact that the visual difference between the two segments is relatively 

unimportant. In situations where drawing attention strongly to all segmentations is necessary, one might 

Figure 4. Algorithmically derived segmentation of the 
Dr. Seuss image for s=8,16,44. Top: edges of segments. Bottom: 

filled segments, or Gestalt cartoons. 



draw a faint outline around each segment. 

Edge detection is not the only way to locate structure at a given scale. Probably the most common 

method—one used in many of the original scale space papers—is to analyze local maxima and minima of 

the function fs [13, 39]. Often this analysis is accompanied by some sort of watershed segmentation [16, 

18]. We tried several variants of this technique but found they produced poor results, possibly due to the 

non-generic nature of typical information graphics. Compared to images of natural scenes, diagrams and 

visualizations have an unusual number of areas of nearly uniform brightness. In many cases we found that 

fs contained ridges, valleys, and plateaus that were almost but not quite level, leading to a proliferation of 

local extrema that did not correspond to useful features in the image. Figure 5 shows an example. On the 

left is a simple graph. On the right are the boundaries of regions found by watershed segmentation for 

local minima (as in [18]) for scale s=16. It is clear that the graph line itself has dissolved into many 

individual segments, because the smoothed function has many almost indistinguishable extrema in the 

area of the main “graph line”  in the image.  This effect, which in no way reflects the visual experience of 

viewing the graph, is why we chose the edge-detection scheme described above. 

 

Figure 5. An image (left), and its boundaries as found by watershed segmentation (right) 

2.3.3 Linking structures at different scales 

As described so far, the model finds structure only at a single scale. But the perceptual structure 

of an image includes not just the structure at one scale, but the relationships between features at different 

scales. In the scale space literature, linking features between scales is often referred to as finding the deep 



structure of an image [13]. In this section we describe a novel method of finding this deep structure that is 

particularly useful for information graphics. 

Consider the segmentations in Figure 6, shown as a series of Gestalt cartoons. It is visually clear 

that the two blobs in the s=11 view correspond to the individual letters of the words “Dr.”  and “Seuss” 

respectively. The final part of our model is a method of making this intuition precise. 

Let S1 and S2 be two image segments found at scales s1≤s2 respectively. We can naturally view S1 

and S2 as embedded within the 3D scale space, i.e. as the sets { s1}  × S1 and { s2}  × S2. We will say S1 is 

linked to S2, denoted by S1 ≤ S2,  if either S1 = S2 or there is a path through scale space from a point on S1 

to a point on S2, such that gs maintains the same sign and s is monotonically increasing. It is easy to verify 

that the relation “≤”  defines a partial order on the set of segments. It is also clear from the definition that 

this partially ordered set breaks into two disconnected components, one that corresponds to the subset of 

segments where gs<0 , which we denote as L- and one we call L+ where gs>0. (It is possible for each of 

these two sets to have many maximal elements.) In some cases, L- and L+ turn out to correspond to 

foreground and background elements. For example, in the Dr. Seuss image, the segments corresponding 

to the text are represented in L- while the whitespace is represented in L+.  

Figure 7 is a visualization of the results of connecting linked segments in L- for the Dr. Seuss 

image.  

The image shows a 3D view of scale space, with four separate planes  highlighted (corresponding 

to s=1,4,7,11). For each plane, we show the segmentation for the corresponding s value, and for each pair 

 
Figure 6. Four scales of Dr. Seuss 

 



of linked segments in adjacent planes we have drawn a line between the segments’  centroids. For 

simplicity, in this diagram we only show L- , the segments with negative gs, since they account for the 

main visual structure. The result is a tree structure on the words that corresponds to the intuitive 

hierarchical division of a phrase into words and words into letters.  

The choice of a 3D display is a visualization exercise in its own right. We tried various 

alternatives, such as abstract graph-theoretic views of the lattice and a layout of 2D thumbnails with 

connections drawn between segments. In these cases, however, users were uniformly confused about the 

connection between the lattice structure and the image.  

For completeness the L- lattice for the entire Dr. Seuss image is shown in Figure 8. Again, the 

structure nicely corresponds to the intuitive hierarchy of paragraphs, lines, words, and letters. 

  

Figure 7. Linked segments in L-  at different scales for part of the Dr. Seuss image. 

 



 
Figure 8. The linked structures in L-  for the entire Dr. Seuss image are shown in orange. 

Although linking structures at different scales by following zero-crossings of various operators is 

common in scale space theory [18], the particular linking described here is unusual, and in fact is a key 

distinguishing feature of our model. Most scale space segmentation algorithms seek a hierarchical 

segmentation of an image, where the partial order is always a tree structure. The segmentation described 

above, however, can produce non-nested segments with non-tree lattices. In the context of scene 

segmentation and object recognition—the conventional applications of scale space theory—this is an 

undesirable property. But as several authors have pointed out [16, 27], a non-tree lattice seems to model 

well the visual experience of certain images. Indeed, given that the goal of many information graphics is 

to portray complex interrelationships, any model that led to pure trees would be of limited applicability. 



 
Figure 9. Image whose structure is not tree-like.  

Left: original image. Right: structure of L-. 

Figure 9 gives an example of an image whose visual structure is not tree-like. The barbell image, 

at a small scale, is one continuous object, at a slightly larger scale breaks into two main parts, and at a 

large scale merges into one object again. 

2.3.4 Possible structures 
 

Since the analysis technique described here produces visual structures that have the form of a 

lattice, a natural question is whether all finite lattice structures can be represented, or realized, by some 

image. That is, how expressive is the system: Given a data set with an arbitrary lattice structure L, is there 

always an image whose visual structrure is L? We do not know the answer, but conjecture that there are 

classes of lattices that are not realizable. Possibly this may be easier to prove when the segmentation is 

performed according to the zeros of the Laplacian operator, which is similar to the difference-of-

gaussians method used here but allows the introduction of mathematical machinery related to the heat 

equation. 

At the same time, it seems likely that many structures are realizable.  For example, all trees are 

realizable via a treemap-like diagram. (To see how this could work, consider only black and white images 

where the black region is the disjoint union of closed connected sets corresponding to “ leaves” . We can 

then show that any “ leaf”  region can be subdivided so as to create a new tree branch of child nodes 

without disturbing the rest of the structure.) Some complex non-tree structures are also realizable. For 



example, Figure 10 shows an image with 3 “ leaf”  nodes that split into many more items, and then merge 

back into 3 “parent”  nodes, each of which is linked to one of the original leaves. This example indicates 

the variety of possible structures; classifying realizable structures completely is an interesting problem for 

future research. 

 

Figure 10. An image (top), with gestalt cartoons at high (top) and low (bottom) resolution.  

2.3.5 Related Methods 

The general concept behind our construction, analyzing a signal at multiple resolutions, is found 

in many fields. One closely related technique of multiscale analysis is the continuous wavelet transform. 

The difference-of-Gaussian operator used in our segmentation step is in fact a close approximation to the 

Mexican Hat wavelet [1].  Statisticians use convolution with Gaussian kernels of varying radii in kernel 

density estimation [28], a non-parametric estimation technique; [16] have applied scale space theory to 

statistical clustering using a watershed-type segmentation technique. A third technique  that is closely 



 

 

Figure 11. Gestalt cartoons showing differentiation of figure and ground in a graph. Left: thin 
grid lines. Right: thick grid lines. 

related is the multiscale pyramid representation [3]. Originally used for image compression, it is 

interesting to note that this structure is now used in at least one sophisticated model of visual perception 

and attention [11].  

3. Results and Applications of the Model 

To test our model, we built a software tool that applies the model to arbitrary input images. The 

tool was used to create all the images in this paper, with the exception of the hand-drawn Figures 1, 13 

and 14. As a demonstration of our model, we apply it to three case studies, and show how it can be used 

in the redesign of a real-life visualization.  

3.1. The Software 

The software tool contains the following  numerical approximation of the model. We represented 

the image functions fs as 2-dimensional arrays of floating-point values (one per pixel in the original 



image), and computed fs for only a few discrete values of s. To perform linking, we looked at each pair of 

successive approximations to fs, and connect any two segments that share a sign and which overlap. Our 

implementation is written in Java, and on a 700 MHz Pentium 3 PC requires up to a minute to perform a 

full structural analysis on a 800 x 600 pixel image at 15 scales. Once the analysis is performed, it is saved 

for viewing as both a series of grayscale images and as a 3D VRML file. We describe the interface of the 

application in more detail in Section 4. 

3.1.1 Questions of scale 
When describing this algorithm, the authors have been frequently asked about “how it scales”  as 

the data displayed grows in complexity. One person specifically asked about a case in which the 

visualization is displaying tens of millions of items. Although this question is natural, it is entirely beside 

the point! Because the algorithm is entirely pixel based, the algorithm scales in direct proportion to the 

number of pixels. For an 800x600 image, therefore, it is impossible to have more than 480,000 visual 

items at any given level, regardless of the number data items. Moreover, because Gaussian blurring 

rapidly removed detail, subsequent levels must have many fewer visual items. Thus the algorithm scales 

efficiently no matter how many data items are purported to be shown—an reminder that screen resolution 

is a key limitation in displaying truly large data sets. 

3.2  A Simple Example: Graphs and Grid Lines 

Our first example shows Gestalt cartoons of two versions of a simple graph (Figure 11). At top 

left is a graph with thin gridlines, at top right is a graph with overpoweringly thick ones. The segmented 

versions at scale s=4 are shown below. In the graph with thick gridlines the graph itself is not segmented 

from the background. This is an interesting indication of both the the strength of our model and one of its 

limitations. A human can segment the graph in the second diagram by using orientation information, 

which our model ignores. Nonetheless, doing so places an additional cognitive burden on the viewer, and 

in fact it is a standard principle of information design that grid lines should be significantly lighter than 

lines representing “ foreground”  data. Thus the model indicates, correctly, that there is a problem with the 



second graph. This situation—where a minor visual change has a large effect on comprehensibility—is 

exactly where it is useful to have a model. 

3.3 A Famous Real-Life Example 

How does the model fare on a real-life example? Figure 12 shows Gestalt cartoons for a complex 

scatterplot, the famous astronomical Hertzprung-Russell diagram. This scatterplot, which displays data on 

stars with temperature on the x-axis and absolute magnitude on the y-axis, plays a central role in 

scientists’  conception of stellar evolution. The HR diagram at the top left of Figure 12 is reproduced 

directly from [32], which contains a detailed discussion of this historically significant information 

graphic.  

The segmentations in the Gestalt cartoons capture the intuitive experience of reading the diagram: 

the small-scale (s=4) view emphasizes the vertical structures, while at s=8 and s=16 the large-scale 

clusters stand out. The areas highlighted for s=16 correspond nicely to the standard organization given by 

human experts. Figure 13 shows how an astronomer structures the diagram. 

 
Figure 12. Original image and gestalt cartoons of the Hertzprung 

Russell diagram. 



The regions labeled A and B in Figure 10 

show another example of how a non-tree structure 

can be an appropriate model. To the left and below 

A there is single large segment, reflecting the 

small-scale structure of a combined dense vertical 

and diagonal cluster. But a larger scale, s=8, that 

segment has broken into two parts, at B, 

corresponding the giants and main sequence regions in Figure 13. Thus in this case our model produces a 

non-tree lattice structure that corresponds to perceived visual organization. This contrasts with many 

clustering methods and with conventional scale-space segmentation techniques, which produce trees only. 

3.4 A Treemap Redesign 

Finally, we discuss how the model can inform the design of a visualization. We take as our 

example the SmartMoney Market Map [36], a treemap visualization [30] that displays data on several 

hundred publicly traded stocks. The first author of this paper, who led the design of the Market Map, has 

on many occasions heard the comment that the borders between regions are not strong enough. His 

intuition, however, was always that they were perfectly fine as is. Since this is exactly the kind of design 

issue where a perceptual model would be useful, we decided to apply our software tool. To make a 

comparison, we created a stylized version of the current Market Map and a redesigned version with 

 

Figure 14. Left: sketch of portion of Market Map. Right: A redesign with stronger 
borders. 

 

 

Figure 13. Human expert partitioning of HR 
diagram. After [6]. 



darker and thicker borders. (See Figure 14.)  

When we fed these images into our model, the results were clear. Figure 13 shows the structure 

derived for the current version. Note that the lattice structure is complex, confusing, and does not follow 

the underlying hierarchy of the data items. At point A in the diagram, for example, two items in different 

groups are spuriously joined. In Figure 14, the lattice structure is far simpler simpler and close to a perfect 

tree. This dramatic result has led to a reconsideration of the original design—exactly what we would want 

from a perceptual model  

 

4. The “ Gestalt Cartoonist”  Application 

In this section we provide a more detailed description of the end-user application for applying our 

scale space model, currently named “The Gestalt Cartoonist.”  The application is written in Java and 

currently runs on Windows and Linux. We will first describe the graphical pieces that make up the 

Figure 15. L+ structure of original map 
design at scales up to s=20. Some flaws: A, two 
items in different groups are spuriously joined; B 

and C, a single group is spuriously separated. 

Figure 16. L+ structure of redesigned 
map. Grouping is almost perfect; only flaw is an 

“orphan”  item at A. 



application, and then provide a sample user experience walkthrough. We believe that the general 

framework may be useful in for other applications aimed at automatically analyzing graphics. 

 

Figure 17. The Gestalt Cartoonist interface. 

4.1 Interface components 
The application is composed from four main components along with an auxiliary module for 3D 

viewing (See Figure 17). The large panel at the right displays a cartoon of the current graphic. On the left 

is a pane with thumbnail views of the analysis of the image at different scales. The previews allow the 

user to quickly view cartoons of the image at a variety of scales, and to select one for closer examination. 

The menus at top allow the user to customize the view and to perform simple input and output. 

Users may analyze an image either by loading a file or pasting an image from the clipboard. (The latter 

feature allows easy analysis of running programs: after capturing a screen dump, a user can simply paste 

the clipboard image into the Gestalt Cartoonist.) The “Filter”  menu allows the user to change between 

different visual filters. The default filter is the difference-of-gaussains segmentation described in Section 

2.3, but the program also enables viewing of simple Gaussian blurs and a laplacian convolution. The 

“Display”  menu allows the user a choice between different views of the processed image. The default is a 

Gestalt Cartoon, but the user can also view raw image data as in Figures 2 through 4. 



The application also allows two special viewing modes. In some cases it is helpful to see the 

Gestalt cartoons for many scales simultaneously. A menu option lets the user choose to make a “contact 

sheet”  image, showing a packed array of cartoons at any set of scales desired. A second menu option lets 

the user create a 3D VRML view of the scale space analysis, viewable in a web browser with a VRML 

2.0 plug-in (e.g. Parallelgraphics’  Cortona plug-in).  

5. Future Directions and Extensions 

The model proposed in this paper is at its core a psychological hypothesis and therefore cries out 

for experimental validation. There are several natural directions to investigate. One tactic would be to 

compare the structures generated by our model with self-reports of users’  perceptions. A more pragmatic 

validation would be to study whether, in using the software tool described here, creators of information 

graphics are able to modify their designs in a way that user studies show are beneficial. 

Two obvious shortcomings of our model are that it applies only to grayscale images and that it 

addresses only one type of grouping mechanism. One of the reasons to choose scale-space analysis as the 

basis for our method is that there is a rich body of research extending the basic idea to more general 

aspects of image structure. Theories that handle color or orientation have been proposed (for example [8, 

12, 25]) and could be applied to our model. Orientation-sensitive models have the potential to address the 

fact that our method often confers insufficient saliency on lines and curves, which can lead to 

unsatisfactory analyses for graphics such as node-and-link diagrams. It may also be advantageous to use a 

more sophisticated segmentation method than the difference-of-gaussians edge detection employed here, 

since in some complicated images the simple segmentation algorithm described here can yield 

counterintuitive results. It  would also be useful to investigate ways of optimizing the numerical algorithm 

to run in an interactive timeframe.  

Another potentially fruitful area of long-term investigation would be using the model to 

automatically optimize information graphics. That is, given a known data structure one could attempt to 

find a method for displaying that structure in an optimal manner according to the model detailed here. 



This could ultimately involve either an algorithm that incrementally improved a representation, to find a 

local optimum, or even some method of mapping a structure directly to a globally optimal visual 

representation. 

5. Conclusion 

We proposed a new technique for modeling multi-scale perceptual organization in information 

graphics. The model is based on a classical machine vision technique, scale space, with a novel method of 

creating links between structures at different scales. We demonstrated how a software implementation of 

this model captures important aspects of design aesthetics for several information graphics, and gave an 

example of how it may be used to give input into questions of design. We believe there is sufficient 

evidence of promise that it is worth extending and validating the model. 
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