
Arc Diagrams: Visualizing Structure in Strings

Martin Wattenberg
IBM Research

One Rogers Street
Cambridge MA 02142
mwatten@us.ibm.com

Abstract

This paper introduces a new visualization method, the
arc diagram, which is capable of representing complex
patterns of repetition in string data. Arc diagrams
improve over previous methods such as dotplots because
they scale efficiently for strings that contain many
instances of the same subsequence. This paper describes
design and implementation issues related to arc diagrams
and shows how they may be applied to visualize such
diverse data as music, text, and compiled code.

Keywords: string, sequence, visualization, arc diagram,
music, text, code

1. Introduction

From text to DNA to melodies, many data sets come in
the form of a string, or sequence of symbols. Just as with
quantitative data, it is often desirable to perform graphical
exploratory analysis on a string to find important
structural features.

One way to reveal a string’s structure is to exploit the
fact that sequences often contain significant repeated
subsequences. Melodies, for instance, are usually based
on combinations of smaller repeated musical passages;
text has repeated words and phrases. A natural way to
visualize structure is to use these repeated units as
signposts.

Several existing methods use repetition to visualize
string structure, but each has significant drawbacks for
complex strings. In this paper we introduce the arc
diagram, a new visualization method for representing
sequence structure by highlighting repeated subsequences.
We describe how arc diagrams can find patterns in text,
compiled code and, most fruitfully, in musical
compositions.

2. Existing methods for string visualization

Many methods have been proposed to display string
structure visually. The H-Curve and W-Curve [HR83,
W93] transform sequences into curves in 3D space.
Although such curves are capable of showing fine detail,

they can be hard to interpret and it can be difficult to spot
smaller repeated substrings. The "Chaos Game"
representation of a sequence [J90], in effect a 2D
histogram depicting the frequencies of various motifs, is
efficient for showing which small substrings are
frequently repeated, but can run into difficulties
distinguishing long subsequences with similar beginnings.
Moreover, chaos game representations remove much
ordering information, making them unsuitable for
domains where ordering matters.

Another method, popular in analyzing DNA
sequences, is the dotplot [CH92]. A dotplot is a visual
auto-correlation matrix; in its simplest form, a string of n
symbols a1a2…an is represented by an n x n image in
which the pixel at coordinates (i,j) is colored black if ai=aj
and white otherwise. This image often provides a good
picture of the string’s structure, with repeated
subsequences showing up clearly as diagonal lines. In
many respects dotplots are an excellent visualization
method: They can handle very large data sets, are resistant
to noise, and can show both small and large-scale
structures. However, the matrix-style presentation of a
dotplot means that if a substring is repeated n times, it
will give rise to n2 corresponding visual features. As a
result, dotplots can be confusing when applied to strings
with frequently repeated substrings.

One non-visual method of describing a long string is to
summarize it by describing which subsequences are
repeated. For instance, musicians have long described the
global structure of musical compositions by summaries
such as "AABB" (meaning a subsequence, denoted by A,
is repeated and then followed by a different subsequence,
B, that is also repeated.) This simple symbolic notation is
easy to understand and provides a broad overview of the
data, but obliterates smaller details.

It is natural to seek a visual analogue of this notation.
Music theorists, starting with Heinrich Schenker, have
used a system of hand-drawn arcs to indicate structural
units (see, for example, [S69]). However Schenkerian
diagrams, which are intrinsically subjective and manual,
are unsuitable for automation or for showing features on
multiple scales. One commercial software package,
TimeSketch [T02], uses half-disks to delineate different

sections of a piece, coloring related passages with the
same color to indicate musical form. The TimeSketch
software requires human definition of related passages,
and because it uses color for differentiation does not scale
well for sequences that have many different related
passages.

3a. The arc diagram

This paper introduces the arc diagram. An arc diagram
generalizes the musical AABB notation by using a
pattern-matching algorithm to find repeated substrings,
and then representing them visually as translucent arcs.
Unlike a TimeSketch diagram, an arc diagram can be
constructed automatically and can represent the structure
of a sequence with many different repeated subsequences
and multiple scales of repetition. Unlike a dotplot, it can
efficiently represent sequences where individual
subsequences are repeated many times.

An arc diagram is built around the idea of visualizing only
a subset of all possible pairs of matching substrings. By
choosing to highlight just the subsequences essential to
understanding the string’s structure, the method can
convey all critical structure while avoiding the quadratic
scaling problem of a dotplot. We now define these
“essential” substring pairs for a given string S.

Definition 1. A maximal matching pair is a pair of
substrings of S, X and Y, which are:

1. Identical. X and Y consist of the same sequence
of symbols.

2. Non-overlapping. X and Y do not intersect.
3. Consecutive. X occurs before Y, and there is no

substring Z, identical to X and Y, whose
beginning falls between the beginning of X and
the beginning of Y.

4. Maximal. There do not exist longer identical
non-overlapping subsequences X’ and Y’ with X’
containing X and Y’ containing Y’.

For example, in the sequence “123a123”, the two “123”
substrings form a maximal matching pair, but the two
“12” substrings do not.

It is tempting to base a visualization method on maximal
matching pairs alone, but an awkward situation arises
when a pattern is repeated many times in immediate
succession. For instance in the string 10101010, the only
maximal matching pair consists of the first and last
“1010” substrings, implying that the string has two main
structural components. In a sense, this division into two
large substrings is spurious; it would be more accurate to
describe the string as composed of four small repeated

units. This is the motivation for the following two
definitions.

Definition 2. A repetition region R is a substring R of S
such that R is made up of a string P repeated two or more
times in immediate succession. Each repetition of P is
called a fundamental substring for R.

For example, in the string ABC010101, the substring
“010101” is a repetition region. Each of the “01”
substrings is a fundamental substring.

The next definition specifies the precise set of substrings
that will be used to construct an arc diagram.

Definition 3. An essential matching pair is a pair of
substrings of S, X and Y, which are:

1. A maximal matching pair not contained in any
repetition region,

2. Or, a maximal matching pair contained in the
same fundamental substring of any repetition
region that contains it,

3. Or, two consecutive fundamental substrings for a
repetition region.

We are now ready to define the arc diagram for a string S
of length N. First, define a mapping from the string to the
x-axis, with the position of the mth symbol at the point
(m/N,0). Under this mapping, a substring T of S
corresponds to an interval on the x-axis. Now, for each
essential matching pair (X,Y) in the string, connect the
corresponding intervals on the line with a thick semi-
circular arc (Figure 1). Precisely, the interior semi-circle
connects the end of the interval for X with the beginning
of the interval for Y, and the exterior semi-circle connects
the beginning of the interval for X with the end of the
interval for Y. The height of the resulting arc is thus
proportional to the distance between the two substrings.

Figure 1. Connecting an essential matching pair

The arc makes it obvious where the repeated
subsequences are. (By comparison, imagine finding this
repetition without the arc as a cue; it would be laborious.)

Because of the “consecutive” condition of Definition 1, if
a particular subsequence is repeated more than once, the
diagram connects only consecutive repetitions with an
arc. (See Figure 2.) The fact that only consecutive pairs
are connected rather than every possible pair is what
allows arc diagrams to scale more efficiently than
dotplots: when a subsequence is repeated n times, an arc
diagram will contain n-1 arcs, while a dotplot would
display n2 diagonal lines. (See section 3b for an example.)

Figure 2. A substring repeated three times

As a simple example of visualizing strings with repetition
regions, take the sequence 1010101010101010. Here the
only essential matching pairs are those that satisfy part 3
of Definition 3—that is, they are the fundamental
substrings of the form “10”. The diagram for this
sequence would look like the picture in Figure 3.

Figure 3. Immediate repetition

Most sequences will contain several different repeated
subsequences, including overlapping sequences at
multiple scales. To make a diagram for such a sequence,
we overlay all the appropriate arcs with a degree of
translucency so no match is completely obscured. For
instance the sequence abcd111110000011111abcd
produces the diagram in Figure 4:

Figure 4. Repetition of different substrings

In Figure 4 we begin to see how a pattern of matches can
provide a bird's-eye view of the sequence's structure. It is
visually obvious that at the macro level the sequence is
symmetric. The translucency further reveals a highly
repetitive substructure, without interfering with macro-
level interpretation. This technique is similar to that used
in Jerding and Stasko’s Information Mural [JS95].

A long sequence made from a small set of symbols will
always contain many small repeated sequences, which
may be of no significance. Worse, the arcs connecting
these small sequences may obscure significant large-scale
repetitions. Figure 5 shows an example where too many
small repeated subsequences cause an uninformative
jumble.

Figure 5. Too much detail

One way of reducing this complexity is to filter by
subsequence length, displaying only repeated
subsequences that are longer than a given limit. For
instance, Figure 6 shows the same sequence but this time
set to filter out repeated subsequences of fewer than 10
symbols. The result is a simple diagram that highlights a
single repeated region of 15 symbols—the kind of large-
scale repetition that is unlikely to occur by chance.

Figure 6. Displaying only large-scale repetition

3b. Comparison with a dotplot

As mentioned above, the reason we do not connect every
possible matching subsequence is so that the resulting
diagram scales efficiently from a visual perspective. To
see how this works, consider two visualizations of the
same string, a dotplot (Figure 7) and an arc diagram
(Figure 8). The string visualized contains many
repetitions of two substrings, which results in
considerable visual clutter in the dotplot. Two other
substrings are each repeated once, a feature that is
difficult to spot in the dotplot. The arc diagram, however,
shows all the repeated structures clearly.

Figure 7. Dotplot of a synthetic sequence

F
Figure 8. Arc diagram, same sequence as Fig. 8

3c. Implementation

The program used to create the arc diagrams in this paper
is written in Java, runs efficiently on a low-end (266 Mhz
Pentium II) machine, and can create diagrams of
sequences of several thousand symbols within seconds.
To enumerate repeated patterns, a suffix tree is
constructed and traversed twice. In the first pass,
repetition regions are identified and in the second pass
potential matching substring pairs are tested to see
whether they are essential according to the criteria of
Definition 3. The arc diagram code has also been used in
an online applet, "The Shape of Song" [W01], that allows
users to create arc diagrams for any MIDI format music
file available on the web.

4. Applications to music

One of the most promising applications of arc diagrams is
to reveal structure in musical compositions. An example
of a musical arc diagram is shown in Figure 9, which
represents the first line of the song Mary Had a Little
Lamb.

Figure 9. Arc diagram for music

Each arc connects two matching passages, where a
"match" means that they contain the same sequence of
pitches. The diagram shows repeated subsequences of
three or more notes. To clarify the connection between the
visualization and the song, I have displayed the score
beneath the arcs.

Figure 10. Arc Diagram of Für Elise

Figure 10 visualizes Beethoven's Für Elise. (In this
and subsequent diagrams, the source sequences are too
long to display legibly.) Again, matches are based on
equality of pitch; where chords occur we consider only
the top note. Despite this extremely limited definition of
musical similarity, the resulting matching diagram reveals
an intricate and beautiful structure. The picture shows
how the piece begins and ends with the same passage,
while a longer version of that passage repeats throughout
at increasing intervals. Equally illuminating is the long
stretch in the second half of the piece where that passage
is not repeated at all and the structure looks distinctly
different, which corresponds well to what you hear when
you listen to the music.

Figure 11. Toreador, Carmen

Not all pieces show as much large-scale repetition as
Fur Elise. For instance, the "Toreador" song from Carmen
(Figure 11) looks completely different. Instead of a few
long passages repeated over and over again, it contains
many repeated smaller phrases.

Figure 12. Minuet in G Major, Bach

As a final example, consider Bach's Minuet in G Major
(Figure 12). The arc diagram shows that the piece divides
into two main parts, each made of a long passage played
twice: what a musician would call an "AABB" structure.
AABB is, in fact, the classic structure of a minuet, which
shows that the matching algorithm is picking out
structures that correspond to conventional musical
analysis. The pictorial representation, however, provides
much more detailed information than the simple "AABB"
notation. For instance, you can see that the A and B
passages are loosely related, as shown by the bundle of
thin arcs connecting the two halves of the piece. And the
fact that the two main arcs overlap shows that the end of
the A passage is the same as B's beginning.

For musical compositions it is natural to consider the
sequence of differences between successive notes as well
as the notes themselves. Figure 16 (at the end of the
paper) shows two arc diagrams for Für Elise, juxtaposed:
the top is a large version of Figure 10 and the bottom,
flipped diagram shows additional matching substrings
based on intervals between successive notes.

5. Finding structure in text and compiled
code

Arc diagrams are well suited to the analysis of highly
structured data such as musical compositions, but they
also can be effective in exploring other less well-
structured data. Three examples we consider are compiled
computer code, a web page, and a nucleotide sequence
from DNA.

To see how matching diagrams can find. structure in
sequences that might otherwise be difficult to decipher,
consider Figure 13, which shows the bytecode for the
main Java class of the diagram-generating application
itself:

Figure 13. Java class file (bytecode)

The diagram clearly shows that the file has two main
sections. This reflects the important piece of structural
information that Java class files are divided into two main
sections: the constant pool and the executable code.
Moreover, the diagram shows that the initial section (the
constant pool) takes up significantly more memory than
the code itself. Thus the diagram provides both structural
and quantitative information that would be difficult to
discern from a standard "hex-dump" text view of the file.

When arc diagrams are applied to textual data, they can
also produce useful results. For example, an arc diagram
of a short HTML file resulted in the picture in Figure 14.

Figure 14. HTML page

The page was organized into three basic sections, a fact
which was delineated clearly by wide arcs. (These
correspond to the HTML code for images and tables.) At
the same time, the finer-grained detail is also revealing.
For instance, the diagram shows that the last section of
text has many connections to previous parts of the page,
with especially strong connections to the beginning; this
indicates that the introduction and conclusion of the text
contained similar phrases and themes.

Finally, it is natural to apply matching diagrams to DNA
nucleotide sequences. One potential pitfall is that DNA is
noisy data in the sense that exact repetition on a large
scale is uncommon due to mutations. In some situations,

however, this is not a problem. For example, there is
significant interest in understanding patterns in upstream
transcription regions (UTRs), i.e. the subsequences of
DNA that precede regions that code for genes. The
distribution of certain small (typically around 7 base
pairs) subsequences called motifs in a gene’s UTR is
thought to play a key role in regulating that gene [C00].

Figure 15 shows an arc diagram for a UTR of length 500
for a particular yeast gene (identifier YGL123C in [S02]),
filtered to show repeated patterns of 7 or more symbols.
Although not as dramatic as the music diagrams, this
picture does contain interesting information. For example,
it shows that one special region of the UTR (from roughly
200 steps before the end to 100 steps before the end)
contains at least one instance of most of the repeated
patterns. This is potentially related to a recent finding
[H00] that many regulatory motifs are more likely to
appear in this same restricted region.

Figure 15. DNA sequence

6. Summary and directions for future work

Arc diagrams are a promising new method for
visualizing sequences. They are well suited to displaying
structure in sequences that contain complex patterns of
repetition. We have shown examples of their potential
use in domains ranging from text to DNA, although
analysis of musical form is perhaps the most promising
application.

Many areas remain for future exploration. One key
direction of exploration is the best way to add
interactivity to the diagrams. The visualizations described
in this paper are static; an interactive version could be
more powerful. One natural extension would be to add
sliders to control the level of detail, allowing the user to
specify how large a subsequence would need to be in
order for an arc to be drawn. In addition, users could be
allowed to drill down for details. For example, if the user
pointed at a particular arc, the subsequence corresponding
to that arc could be drawn on screen. If the underlying
sequence were a musical composition, that particular
passage could be played.

Another area for future investigation is the use of
alternative pattern matching algorithms. Instead of
drawing arcs between substrings that are identical, one

could choose a more flexible criterion. For example, when
diagramming a fugue the criterion for a match might
include transpositions and inversions as well as identical
repetition. In addition, by using "fuzzy" matching
techniques, it might be possible to make the method more
useful for noisy data, such as DNA sequences.

A final area to explore is the incorporation of
additional variables into the visualization. One might use
different hues to indicate substrings that match according
to different criteria. Another technique for adding
information would be to incorporate a notion of intensity
(e.g., corresponding to volume in a musical composition)
and draw arcs with a translucency factor corresponding to
the intensity.

7. References

[C00] Cooper, Geoffrey. The Cell: A Molecular
Approach, 2nd ed. Sinauer Assoc. 2000.

[CH92] Church, K.W., and Helfman, J.I. "Dotplot: A
Program for Exploring Self-Similarity in Millions of
Lines of Text and Code", Proceedings of the 24th
Symposium on the Interface, Computing Science and
Statistics V24, pp. 58-67, March, 1992.

[H00] Hughes, Jason et al., “Computational identification
of cis-regulatory elements associated with groups of
functionally related genes in Saccharomyces cerevisiae.”
Journal of Molecular Biology (2000) 296: 1205-124.

[HR83] E. Hamori and J. Ruskin, "H-Curves, a novel
method of representation of nucleotide sequences
especially suited for long DNA sequences," Journal of
Biological Chemistry, 258 (2):1381-1327, 1983.

[J90] H. J. Jeffrey. "Chaos game representation of gene
structure." Nucleic Acids Research, 18(8):2163-2170,
1990.

[JS95] D. Jerding and J. Stasko. "The Information Mural:
A technique for displaying and navigating large
information spaces." IEEE Visualization `95 Symposium
on Information Visualization, pp 43-50.

[S69] Schenker, Heinrich, Five graphic music analyses,
New York: Dover, 1969

[S02] Saccharomyces genome database, http://genome-
www.stanford.edu/Saccharomyces/ (2002)

[T02] "TimeSketch." ECS Media. www.ecsmedia.com
2002

[W01] M. Wattenberg, "The Shape of Song."
http://www.turbulence.org/works/Song (2001)

[W93] D. Wu, J. Roberge, D. J. Cork, B. G. Nguyen and
T. Grace, "Computer visualization of long genomic
sequences." IEEE Visualization '93, pp. 308-315.

Figure 16. Für Elise, exact (top) and modulated (bottom) matches

	Arc Diagrams: Visualizing Structure in Strings

