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ABSTRACT 
In this paper, we describe a taxonomy of generic graph related 
tasks and an evaluation aiming at assessing the readability of two 
representations of graphs: matrix-based representations and node-
link diagrams. This evaluation bears on seven generic tasks and 
leads to important recommendations with regard to the representa-
tion of graphs according to their size and density. For instance, we 
show that when graphs are bigger than twenty vertices, the ma-
trix-based visualization performs better than node-link diagrams 
on most tasks. Only path finding is consistently in favor of node-
link diagrams throughout the evaluation.  

Additional keywords: Visualization of graphs, adjacency ma-
trices, node-link representation, readability, evaluation. 

Categories and Subject Descriptors: H.5 [Information Inter-
faces and Presentation]: User Interfaces – Evaluation; I3 [Com-
puter Graphics]: Picture/Image Generation – Display Algorithms. 

1 INTRODUCTION 
Node-link diagrams have often been used to represent graphs. In 

the graph drawing community, many publications deal with lay-
out techniques complying with aesthetic rules such as minimizing 
the number of edge-crossings, minimizing the ratio between the 
longest edge and the shortest edge, and revealing symmetries [2]. 
Most works strive to optimize algorithms complying with such 
rules, but they scarcely try and validate them from a cognitive 
point of view. Recently, Purchase et al. tackled this problem 
through on-paper  [13] and online [10, 11] experiments. These 
works involved small handcrafted graphs (graphs with 20 vertices 
and 20 to 30 edges), five aesthetic criteria and eight graph layout 
algorithms. They point out that while some aesthetic criteria taken 
separately may improve the perception of the graph at hand, one 
cannot say that an algorithm brings about such an improvement. 
Moreover, Ware and Purchase set up a study aiming at the valida-
tion of some aesthetic properties put forth in the graph drawing 
community, such as the influence of good continuity on the per-
ception of paths [13]. In the Information Visualization (Infovis) 
community, many node-link variants have been experimented, 
both in 2D and 3D [5, 8]. However, as soon as the size of the 
graph or the link density increases, all these techniques are facing 
occlusion problems due to links overlapping (Figure 1a). Thus, it 
becomes difficult for users to visually explore the graph or inter-
act with its elements.  

Conversely, matrix-based visualizations of graphs eliminate al-
together occlusion problems and provide an outstanding potential, 
despite their lack of familiarity to most users.  In this paper, we 
present an evaluation comparing the two representations in order 
to show their respective advantages with regard to a set of generic 
analysis tasks. 

  
a b 

Figure 1 Two visualizations of the same undirected graph containing 50 vertices and 400 edges. The node-link diagram a) is com-
puted using the “neato” program and the matrix representation b) is computed using our VisAdj program. 
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2 THE MATRIX-BASED VISUALIZATION OF GRAPHS 
The matrix-based visualization of graphs relies from a formal 
standpoint on the fact that a graph may be represented by its con-
nectivity matrix which is a matrix of Booleans whose rows and 
columns represent the vertices of the graph. When dealing with 
directed graphs, columns represent the origin of edges and the 
lines represent their endpoint vertices, although conventions may 
vary. When two vertices are connected, the cell at the intersection 
of the corresponding line and column contains the value “true”. 
Otherwise, it contains the value “false”. Boolean values may be 
replaced with valued attributes associated with the edges that can 
provide a more informative visualization (Figure 1b).  

The matrix-based representation of graphs offers an interesting 
alternative to the traditional node-link diagrams. In [4], Bertin 
shows that it is possible to reveal the underlying structure of a 
network represented by a matrix through successive permutations 
of its lines and columns. In [3], the authors visualize the load dis-
tribution of a telecommunication network using a matrix but most 
of their effort aims at improving the display of a node-link repre-
sentation such as displaying half-links or postponing the display 
of important links to minimize occlusion problems. More re-
cently, in [7], the authors implemented a multi-scale matrix-based 
visualization representing the call graph between software com-
ponents in a big medical imagery application. In [6], we have 
shown that a matrix-based representation can be used to effec-
tively grasp the structure of a co-activity graph and assess the ac-
tivity taking place across time whereas the equivalent node-link 
representation was unusable. This work was specifically applied 
to monitoring constraint-oriented programs.  

3 COMPARISON OF REPRESENTATIONS 
The comparison of two visualization techniques can only be car-
ried out for a set of tasks and a set of graphs. The list of tasks that 
are useful or important with regard to graph exploration is end-
less. Indeed, one can realize this fact by choosing a concrete ex-
ample, like a graph computed from a Web site and enumerating 
all the tasks that one can achieve or wish to achieve on such a 
graph. In order not to venture into this bottomless sink, we tackled 
the problem by considering the most generic tasks of information 
visualization and we adapted them to the visualization of graphs. 
We believe that the readability of a representation must be related 
to the ability of the user to answer some questions about the over-
view. As far as graphs are concerned, some questions may bear on 
their topology while other questions may concern attributes re-
lated to that topology. The most generic questions related to the 
topology of a graph – i.e. the ones independent of the semantics 
of data – bear on its vertices, links, paths and sub-graphs. 
Basic characteristics of vertices: one may be interested in deter-
mining the number of vertices (their cardinality), outliers, a given 
vertex (by its label), and the most connected or least connected 
vertices. 
Basic characteristics of paths: the number of links, the existence 
of a common neighbor, the existence of a path between two 
nodes, the shortest path, the number of neighbors of a given node, 
loops and critical paths. 
Basic characteristics of subgraphs: one may be interested in a 
given subgraph, all the vertices reachable from one or several ver-
tices (connected sets) or a group of vertices strongly connected 
(clusters). 

Therefore, comparing the readability of graph representations 
should, in principle, take all these characteristics into account in 
order to determine the tasks that are more easily performed with a 
matrix-based representation and the ones for which it is more ap-
propriate or more reasonable to use a node-link representation. 

This article presents a comparative evaluation of readability per-
formed on a subset of these generic tasks due to time constraints. 

3.1 Readability of a graph representation 
One can reasonably define the readability of a graphic representa-
tion as the relative ease with which the user finds the information 
he is looking for. Put differently, the more readable a representa-
tion, the faster the user executes the task at hand and the less he 
makes mistakes. If the user answers quickly and correctly, the 
representation is very readable for the task. If the user needs a lot 
of time or if the answer he provides is wrong, then the representa-
tion is not well-suited for that task. 

In our evaluation, we selected the following generic tasks: 
• Task 1: approximate estimation of the number of nodes in 

the graph, referred to as “nodeCount”. 
• Task 2: approximate estimation of the number of links in the 

graph, referred to as “edgeCount”. 
• Task 3: finding the most connected node, referred to as 

“mostConnected”. 
• Task 4: finding a node given its label, referred to as “find-

Node”. 
• Task 5: finding a link between two specified nodes, referred 

to as “findLink”. 
• Task 6: finding a common neighbor between two specified 

nodes, referred to as “findNeighbor”. 
• Task 7: finding a path between two nodes, referred to as 

“findPath”. 
Readability also depends on the concrete graphs, their familiar-

ity to users, their meaning and the layout used to visualize them. 
In our evaluation, we only compared random graphs which are 
meaningless and never familiar to user (e.g. equally unfamiliar), 
focusing only on abstract characteristics of graphs. We choose a 
popular graph layout program called “neato”, part of the Graph-
Viz[1] package to compute the node-link diagram. It could be ar-
gued that another layout program would provide a more readable 
layout according to our tasks. This is certainly true for actual fig-
ures but we believe that the trends would be similar when increas-
ing the size and density of graphs. 

3.2 Preliminary Hypotheses 
The traditional node-link representation suffers from link over-
lapping – interfering with neighborhood finding and link counting 
– and link length – interfering with neighborhood finding. More-
over, some tasks involving sequential search of graph elements, 
such as node finding by name, are increasingly difficult when the 
number of nodes becomes large since, in general, nodes are not 
laid out in a predictive order. Hence, we expect the number of 
nodes and the link density to influence greatly the readability of 
this representation. We define the link density d  in a graph as:  

where l is the number of links and n the number of nodes in the 
graph. This value varies between 0 for a graph without any edge 
to 1 for a fully connected graph. In graph theory, the density of a 
graph is usually taken as the ratio of the number of edges by the 
number of vertices but this definition – although topologically 
meaningful – is not scale invariant since the number of potential 
edges increases in the square of the number of vertices. 

3.3 Predictions 
The matrix-based representation has two main advantages: it ex-
hibits no overlapping and is orderable. We therefore expect tasks 
involving node finding and link finding to be carried out more 
easily. Counting nodes should be equally difficult on both repre-
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sentations, unless nodes become cluttered on node-link diagrams. 
Counting links should be easier on matrices since no occlusion in-
terferes with the task. Finding the most connected node should 
perform better on matrices for dense graphs because, on node-link 
diagrams, links starting or ending at a node are hard to discrimi-
nate from links crossing the node. 

On the other hand, when it comes to building a path between 
two nodes, node-link diagrams should perform better; matrix-
based representations are more complex to apprehend because 
nodes are represented twice (once on both axes of the matrix), 
which forces the eye to move from the line representing a vertex 
to its associated column back and forth, unless a more appropriate 
interaction is provided. Lastly, we believe that node-link diagrams 
are suitable, and therefore preferable to the less intuitive matrix 
representation, when dealing with small sized graphs. 

3.4 Experimental setup 

3.4.1 The data 
In order to test our hypotheses, we experimented with graphs of 
three different sizes (20 vertices, 50 vertices and 100 vertices) 
with three different link densities (0.2, 0.4 and 0.6) for each size, 
that is to say a total of nine different graphs (Table 1). In order to 
avoid any bias introduced by some peculiarity of the chosen data, 
we opted for random undirected graphs generated by the random 
graph server located at the ISPT  [10]. Moreover, in order to elimi-
nate any ambiguity with regard to task 3, which consists in find-
ing the most connected node, we added an extra 10% of links to 
the most connected node in these graphs. When several nodes had 
initially the highest degree, one of them was chosen at random 
and received an additional 10% of links. The distribution of addi-
tional links was also done at random. 

  
The random graph generator we used labels the nodes numeri-

cally according to the order of their creation which, as such, 
makes task 1 amount to finding the greatest numeric label. Con-
sequently, we decided to make this task more relevant by renam-
ing the nodes alphabetically (from A to T on the twenty-node 
graphs, from A1 to F0 on the fifty-node graphs, and from A1 to 
K0 on the one-hundred-node graphs). 

3.4.2 The population 
The population that performed the evaluation consisted of post-
graduate students and confirmed researchers in the fields of com-
puter science. All the subjects knew what a graph was. No further 
knowledge of graph theory was required. The population con-
sisted of 36 subjects, all of whom had previously seen a node-link 
representation of graphs. All the subjects participated voluntarily 
to the evaluation. 

3.4.3 The evaluation program 
We developed an evaluation program that represents the selected 
graphs according to both representation techniques. It then asks 
the user to perform the tasks and records the time to answer.  

In terms of interaction, our program provides picking and selec-
tion mechanisms. On both visualizations, when the mouse goes 
over a node, it is highlighted in green as well as its incident links; 
nodes can also be selected through direct pointing, in which case 
they are highlighted in red as well as their incident links. Like-

wise, when the mouse goes over a link, it is highlighted in green 
as well as its endpoints. (Figure 1) These interactive enhance-
ments were added to help users focus on graph elements after an 
initial testing showing a high level of frustration from users losing 
focus. 

A demonstration made on a set of two graphs allowed us to ex-
plain how the representations should be read and how the various 
tasks could be performed. First, the instructor manipulated the 
system and provided guidelines. Then the user manipulated the 
system in order to make sure that the representations, the tasks 
and the interactions were well understood. At the end of the dem-
onstration, we made sure that the user was ready to start the 
evaluation per se. When necessary, the instructor proposed to re-
peat the demonstration again. At the end, three instructions were 
given: 

The user has to answer as quickly as possible. 
The user has to answer correctly. 
The user is allowed to move to the next question without an-

swering before the answer time elapses in case he felt he was not 
able to answer. 

To avoid memorization biases, the system selects a representa-
tion technique at random – matrix or node-link – and represents 
sequentially all nine graphs, asking the user to execute the seven 
tasks for each graph. Then, the system moves to the second tech-
nique and does the same. By interchanging the representation 
techniques, we make sure that the subjects had the same probabil-
ity to start the evaluation with a series of visualizations belonging 
to either technique. 

Each series was divided into two parts: the first included three 
simple graphs (graphs 1, 2 and 4) and allowed the user to get fa-
miliar with the system; the second included the six remaining 
graphs.  

Furthermore, a learning effect was observed when a user was 
confronted to the matrix representation. We were able to measure 
such an undesirable effect in a series of ten preliminary tests 
where the system selected the graphs from the smallest to the 
largest and from the sparsest to the most connected. In spite of the 
increasing complexity of the displayed graphs, users would tend 
to answer more quickly as their understanding of matrix-based 
representations increased throughout the experiment. To level this 
effect, during the evaluation, our system selects the graphs at ran-
dom within each half-series. In this way, the graphs have an equal 
probability to appear in the beginning, in the middle, or at the end 
of their respective half-series. 

For tasks involving two nodes, (tasks 5, 6 and 7), the system se-
lects both nodes beforehand in order to avoid spending time try-
ing to locate them. Therefore, the time we measure corresponds 
exactly to the time for executing those tasks. Since each evalua-
tion session contains a total of 126 questions (9 graphs x 2 visu-
alization techniques x 7 tasks), we programmed three pauses: a 
ten-minute pause between the two series and a five-minute pause 
between the two halves of each series. Moreover, since the ses-
sions are rather long, (a full hour of manipulation per user), we 
chose to limit the answer time to 45 seconds per question. When 
the time runs out, the system moves automatically to the next 
question and produces an audio feedback in order to notify the 
user. In this case, we consider that the representation is not effec-
tive for that task since the user was not able to provide the answer 
in the allotted time. The audio feedback also incites the user to 
hurry up for next questions. 

3.4.4 Implementation and tuning 
Node-link diagrams were laid out using AT&T’s [1] open source 
graph layout program neato and the java drawing library grappa. 
We made our best effort to tune both representations in order to 
make the best use of them. We made the same interaction tech-

size\density 0.2 0.4 0.6 
20 graph 1 graph 2 graph 3 
50 graph 4 graph 5 graph 6 

100 graph 7 graph 8 graph 9 

Table 1.The nine types of graphs used for our experiment 
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niques available on both visualizations. We paid attention to the 
size of nodes and the readability of their labels on node-link dia-
grams, however large or dense they got. We superimposed the la-
bels of picked or selected nodes on a semi-transparent back-
ground, which eliminates the occlusion problems due to links 
overlapping over these nodes. Given that we are dealing with un-
directed graphs, we did not display any arrows at the extremities 
of the links, which significantly improves the node-link represen-
tation of dense graphs. Dealing with undirected graphs also sim-
plifies the path lookup task on the matrix-based representation 
since links appear twice. We stored the parameters of the tuned 
node-link diagrams in the dot format and used those settings along 
the evaluation. We thus guarantee that the subjects are confronted 
with exactly the same representation for respectively all nine 
graphs. Likewise, we exploited the intrinsic orderability of the 
matrix representation and sorted its lines and columns alphabeti-
cally. The matrix being sorted instantaneously, the matrix-based 
visualizations did not require any preliminary tuning. 

The evaluation was carried out on a Dell workstation having an 
NVIDIA GeForce2 accelerated video card, a dual Pentium III 
1Ghz processor, 512 Mbytes of RAM, under Windows 2000. The 
display was performed in full screen mode on a 21" monitor. Sub-
jects were seated at sixty centimeters from the monitor and exe-
cuted all tasks using the mouse.  

3.5 Results 
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Figure 2 Percentage of correct answers split by task and by size. 
The matrix representation appears in blue and the node-link in 

purple. 
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Figure 3 Percentage of correct answers split by task and by den-
sity. The matrix representation appears in blue and the node-link 

in purple. 

The measurements were analyzed using a graphic qualitative 
method (Box-Plot) and a quantitative method (non parametric test 
of Wilcoxon). The latter makes it possible to compare the central 
position of two samples without prior knowledge of their distribu-
tion (normality for example). This test provides a p-value which is 
a probability. When the p-value is less than 5%, we conclude that 

the two samples have the same median value; otherwise, we con-
clude that the two samples have different median values. 

On the following box-plot diagrams, blue boxes correspond to 
the matrix representation and purple boxes correspond to the 
node-link representation. On the y-coordinates, we represent the 
answer time. For each task, we display the evolution of time for 
the three graph sizes on diagrams labeled (a), and on the ones la-
beled (b) we display the evolution of time for the three chosen 
densities.  

3.5.1 Estimation of the number of nodes (nodeCount) 
On Figure 4a, on the matrix-based representation (x-coordinates 
1, 3 and 5), median answer time and time distribution vary a little 
when size increases, whereas they grow notably on the node-link 
representation (x-coordinates 2, 4 and 6). We therefore conclude 
that with regard to this task, the readability of node-link diagrams 
deteriorates significantly when the size of the graph increases 
whereas the matrix-based representation is less affected by size. 
On Figure 4b, on the matrix-based representation (x-coordinates 
1, 3 and 5), median answer time and time distribution increase a 
little when the density increases; they increase slightly on the 
node-link representation. 

 

a 

 

b 

Figure 4 Distribution of answer time for “nodeCount” (a) split by 
size, (b) split by density 

Moreover, in Figure 2, we note that, with regards to large 
graphs, 96% of the users have answered correctly using the ma-
trix-based representation, against 81% using the node-link repre-
sentation, that is to say a difference of 15%, deemed statistically 
significant according to Wilcoxon’s test. On the matrix-based rep-
resentation, the percentage of correct answers remains stable, 
around 97%, when density varies (Figure 3), which corresponds 
to a statistically significant improvement of 7% compared to the 
node-link representation for low and high densities. 

The readability of the node-link representation is strongly af-
fected when the number of nodes increases, and is slightly af-
fected when link density increases, whereas the readability of ma-
trix-based representations is slightly affected by size variation and 
is not sensitive to density variation. On top of that, using the ma-
trix-based representation, users answer faster when the size and 
density are medium or large. 
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3.5.2 Estimation of the number of links (linkCount) 
Estimating the number of links in the graph seems relatively in-
dependent of size or link density when these parameters take me-
dium or large values. On Figure 5a (x-coordinates 2 and 4), there 
is a gap in answer time between small and medium-sized graphs 
and, on Figure 5b (x-coordinates 2 and 4), between sparse and 
moderately dense graphs. However, there seems to be no differ-
ence between the two techniques for any given size or density. On 
Figure 2, the matrix-based representation records 57% of correct 
answers on large graphs. This figure goes as low as 25% using the 
node-link representation, that is to say a significant discrepancy of 
27 % compared to matrices. The difference recorded with regard 
to small and medium-sized graphs respectively in favor of the 
node-link representation and the matrix-based representation is 
statistically insignificant. Similar conclusions can be drawn with 
regard to link density (Figure 3). 

 

a 

 

b 

Figure 5 Distribution of answer time for “linkCount” (a) split by 
size, (b) split by density 

3.5.3 Finding the most connected node (mostConnected) 
When achieving this task, we note that, with regard to answer 
time, both techniques are sensitive when size increases (Figure 
6a), whereas they are slightly affected when link density increases 
(Figure 6b). We cannot differentiate these methods with regard to 
this task based on answer time only. 

Nevertheless, according to Figure 2, 85% of the users execute 
this task correctly on small graphs using a matrix-based represen-
tation against 63% of correct answers with the node-link represen-
tation. On medium-sized graphs, we have 73% of correct answers 
using a matrix against 52% using node-links. Lastly, on large 
graphs, we record 57% of correct answers using a matrix against 
only 25% of correct answers with node-link diagrams. These dif-
ferences are deemed statistically significant using Wilcoxon’s 
test. Similar conclusions can be reached with regard to density on 
Figure 3. 

 

 

a 

 

b 

Figure 6 Distribution of answer time for “mostConnected” (a) 
split by size, (b) split by density 

3.5.4 Finding a specified node (findNode) 

 

a 

 

b 

Figure 7 Distribution of answer time for “findNode” (a) split by 
size, (b) split by density 

When considering answer time, we can see that the readability of 
node-link diagrams deteriorate quickly when the size of the graph 
increases (Figure 7a) and are moderately affected by link density 
(Figure 7b), whereas the answer time on the matrix-based repre-
sentation deviates a little when the size increases and does not 
seem to be affected at all by link density. The dispersion of an-
swer time is very small using matrix-based representation in both 
cases. When dealing with small graphs, both representations per-
form equally well. The percentage of correct answers (Figure 2) is 
high, almost 98%, using the matrix-based representation, irrespec-
tive of the size of the graph. The percentage of correct answers is 
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equally good using node-link diagrams, except for large graphs 
whose score falls as low as 67%, with a discrepancy of 31% com-
pared to matrix-based representations. Similar conclusions can be 
drawn when link density varies (Figure 3). 

3.5.5 Finding a link between two nodes (findLink) 
Using the node-link representation, the larger the graph the longer 
it takes to look up a link in the graph (Figure 8a); the answer time 
does not vary significantly when link density increases (Figure 
8b). Using matrices, this task is insensitive to size and density 
variation. For large graphs, and for medium and high link density, 
a significant gap is measured in favor of matrix-based representa-
tions. A significant difference is measured in favor of node-link 
diagrams for small graphs. Both representations record excellent 
percentages of correct answers, about 95%, for small and me-
dium-sized graphs (Figure 2). For large graphs, the matrix-based 
representation records 92% of correct answers against 66% with 
the node-link diagrams, that is a discrepancy of 26%. 

 

a 

 

b 

Figure 8 Distribution of answer time for “findLink” (a) split by 
size, (b) split by density 

3.5.6 Finding of a common neighbor (findNeighbor) 
Using the node-link representation, the larger the graph the longer 
it takes to say whether a common neighbor exists (Figure 9a); the 
median answer time is marginally affected when link density in-
creases (Figure 9b). On the matrix-based representation, size 
variation has no impact on answer time, while median answer 
time and value dispersion improve slightly when link density is 
large. 

When dealing with small graphs, node-link diagrams record 
99% of correct answers with a lead of 12% over matrices. Matrix-
based representations take an equivalent lead when dealing with 
large graphs, towering at 96% of correct answers. Both techniques 
record a similar percentage of correct answers on medium-sized 
graphs (Figure 2). When link density varies (Figure 3), both rep-
resentations score about 90% of correct answers. 

 

 

a 

 

b 

Figure 9 Distribution of answer time for “findNeighbor” (a) split 
by size, (b) split by density 

3.5.7 Finding a path between two nodes (findPath) 

 

a 

 

b 

Figure 10 Distribution of answer time for “findPath” (a) split by 
size, (b) split by density 

Finding a path between two nodes proves to be increasingly diffi-
cult using node-link diagrams when the size increases (Figure 
10a), whereas the median answer time increases slightly when 
link density increases (Figure 10b). The matrix-based representa-
tion is much worse for this task except for very dense graphs 
where it outperforms the node-link representation (Figure 10b). 
This fact is confirmed by the percentage of correct answers which 
towers at 95% for the matrix-based representation against 85% for 
node-links when dealing with large link density (Figure 3). On 
small graphs, 99% of the users answer correctly using node-link 
diagrams against 70% only using matrices. On medium-sized 
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graphs, node-link diagrams record 93% of correct answers with a 
lead of 10% over matrices. For large graphs, every other user an-
swers correctly using both representations with a statistically in-
significant lead in favor of matrices. Lastly, this task is clearly in 
favor of node-link diagrams when visualizing sparse graphs. 

4 DISCUSSION 
We expected the readability of node-link diagrams to deteriorate 
when the size of the graph and its link density increase. This hy-
pothesis was confirmed for the seven tasks we selected. Only for 
“findPath” task did node-link diagrams prove superior to matrix-
based representations, although their performance deteriorates on 
large and dense graphs. This conclusion must however be quali-
fied since this task is difficult to carry out visually when the dis-
tance between the extremities is greater than two or three arcs, as 
shown in [13]. 

Another hypothesis concerned the impact of orderability of ma-
trices on node and link finding tasks. “findNode” and “findLink” 
tasks validate this hypothesis for large graphs and for dense 
graphs.  

As far as “linkCount” task is concerned, both visualizations re-
cord a large share of erroneous answers. We account for that – but 
this has yet to be proven through experimentation – that the num-
ber of links is intrinsically difficult to estimate on node-link dia-
grams and that users failed to compute it correctly using matrices. 
Indeed, links are displayed twice because we considered undi-
rected graphs in our study. 

We may also question the extensibility of the results obtained 
in this evaluation to other node-link layout programs than the one 
we chose in our experimentation. However, based on earlier 
works  [11], we can safely assert that, with regard to small graphs, 
the layout program has very little impact on the readability of the 
displayed output and would not change the trends we observed.  

We may further highlight that all the users who took part in the 
experiment were familiar with node-link diagrams whereas none 
had previously heard about the matrix-based representation of 
graphs. Since they were given little training (first, users would 
watch the instructor perform the tasks on a graph, and then they 
would train on one similar graph), we expect users familiar with 
both representations to perform even better with matrices.  

As a first approach, we have split the data by size and by den-
sity in order to measure the effect of these variables on the read-
ability of graph representations. To this end, we have done our 
best effort to isolate those factors and make sure that no other 
considerations would interfere with the tasks. However, further 
analysis of the results is required in order to check for a combined 
effect of size and density of graphs on the readability of their rep-
resentations. It would also be meaningful to break down the re-
sults for each of the nine graphs we studied for a better control 
over the parameters and a finer understanding of the results. For 
instance, finding a path on a node-link diagram representing a 
sparse graph proves all the more difficult than the shortest path 
between the extremities is long. In this case, the density of the 
graph may be a misleading indicator; the length of the shortest 
path may be a better choice and should be taken into account. 
Conversely, in dense graphs, the shortest path is likely to be one 
or two links long, but the visual clutter produced by links on 
node-link diagrams makes this task unfeasible, while matrices 
perform very well.  

In this evaluation, we compare two representations of graphs, a 
matrix-based representation and a node-link representation pro-
duced by a force directed algorithm, against nine random graphs 
and a set of seven exploration tasks. In this context, the recom-
mendations we can derive from this study are: for small graphs, 
node-link diagrams are always more readable and more familiar 
than matrices. For larger graphs, the performance of node-link 

diagrams deteriorates quickly while matrices remain readable 
with a lead of 30% of correct answers, with comparable if not bet-
ter answer time. For more complex tasks such as “findPath”, we 
are convinced that an appropriate interaction is always preferable, 
for example by selecting a node and displaying all the possible 
paths starting from it and ending at a pointed node. On the matrix-
based representation, this path can be displayed using curves con-
necting adjacent links, i.e. connecting the cells representing those 
links. 

5 CONCLUSION 
In this paper, we have listed generic tasks for the visualization of 
graphs and have compared two representations of graphs on a 
subset of these tasks. We have proved theses techniques to be 
complementary: node-link diagrams are well suited for small 
graphs, and matrices are suitable to large or dense graphs. Path re-
lated tasks remain difficult on both representations and require an 
appropriate interaction that helps perform them. 

The matrix-based representation seems therefore under ex-
ploited nowadays, despite its quick layout and its superior read-
ability with regard to many tasks. We think that a wider use of 
this representation will result in a greater familiarity and will con-
sequently improve its readability. We currently use the matrix-
based representation for the real-time monitoring of constraint-
oriented programs where graphs evolve dynamically, both in size 
and activity. The results we are obtaining are quite encouraging. 
We are investigating clustering and aggregation techniques of ma-
trices for the visualization of very large graphs, about tens of 
thousands vertices. 

6 ACKNOWLEDGEMENTS 
We would like to thank Pierre Dragicevic, Véronique Libérati and 
Vanessa Tico for their time and advice. We are grateful to the us-
ers who volunteered and took part in this evaluation and to the 
members of the RNTL OADYMPPAC project. 

REFERENCES 
[1] AT&T Labs Research. Graphviz - open source graph drawing soft-

ware, 2004. 
[2] http://www.research.att.com/sw/tools/graphviz/  
[3] Battista, G.D., Eades, P., Tamassia, R. and Tollis, I.G. Graph Draw-

ing. Prentice Hall, 1999. 
[4] Becker, R.A., Eick, S.G. and Wills, G.J. Visualizing network data. 

IEEE Transaction on Visualizations and Graphics, 1 (1). 16-28. 
[5] Bertin, J. Sémiologie graphique : Les diagrammes - Les réseaux - Les 

cartes. Editions de l'Ecole des Hautes Etudes en Sciences, Paris, 
France, 1967. 

[6] Cohen, R.F., Eades, P., Lin, T. and Ruskey, F., Volume upper bounds 
for 3D graph drawing. in Proceedings of the 1994 conference of the 
Centre for Advanced Studies on Collaborative research, (Toronto, On-
tario, Canada, 1994), IBM Press. 

[7] Ghoniem, M., Jussien, N. and Fekete, J.-D., VISEXP: visualizing con-
straint solver dynamics using explanations. in FLAIRS'04: Seven-
teenth international Florida Artificial Intelligence Research Society 
conference, ( Miami Beach, FL, 2004), AAAI press. 

[8] Ham, F.v., Using Multilevel Call Matrices in Large Software Projects. 
in Proc. IEEE Symp. Information Visualization 2003, (Seattle, WA, 
USA, 2003), IEEE Press, 227-232. 

[9] Herman, I., Melançon, G. and Marshall, M.S. Graph Visualization and 
Navigation in Information Visualization: a Survey. IEEE Transactions 
on Visualization and Computer Graphics, 6 (1). 24-43. 

[10] ISPT, Waseda University. Random Graph Server. 
http://www.ispt.waseda.ac.jp/rgs/index.html 

23



[11] Purchase, H.C., The Effects of Graph Layout. in Proceedings of the 
Australasian Conference on Computer Human Interaction, 1998, p. 
80. 

[12] Purchase, H.C., Carrington, D.A. and Allder, J.-A. Empirical Evalua-
tion of Aesthetics-based Graph Layout. Empirical Software Engineer-
ing, 7 (3). 233-255. 

[13] Purchase, H.C., Cohen, R.F. and James, M.I. An Experimental Study 
of the Basis for Graph Drawing Algorithms. The ACM Journal of Ex-
perimental Algorithmic, Volume 2, Article 4, 1997. 

[14] Ware, C., Purchase, H.C., Colpoys, L. and McGill, M. Cognitive 
measurements of graph aesthetics. Information Visualization, 1 (2). 
103-110. 

 

24




