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ABSTRACT 
This article presents the InfoVis Toolkit, designed to support the 
creation, extension and integration of advanced 2D Information 
Visualization components into interactive Java Swing 
applications.  The InfoVis Toolkit provides specific data 
structures to achieve a fast action/feedback loop required by 
dynamic queries.  It comes with a large set of components such as 
range sliders and tailored control panels required to control and 
configure the visualizations.  These components are integrated 
into a coherent framework that simplifies the management of rich 
data structures and the design and extension of visualizations.  
Supported data structures currently include tables, trees and 
graphs.  Supported visualizations include scatter plots, time series, 
parallel coordinates, treemaps, icicle trees, node-link diagrams for 
trees and graphs and adjacency matrices for graphs.  All 
visualizations can use fisheye lenses and dynamic labeling.  The 
InfoVis Toolkit supports hardware acceleration when available 
through Agile2D, an implementation of the Java Graphics API 
based on OpenGL, achieving speedups of 10 to 200 times. 
 The article also shows how new visualizations can be added 
and extended to become components, enriching visualizations as 
well as general applications.  
 
CR Categories: I.3.6 [Methodology and Techniques] Graphics 
data structures and data types; H.5 [User Interfaces] Graphical 
User Interface, Benchmarking; C.4 [Performance of Systems]: 
Design Studies. 
Keywords: Information Visualization, Toolkit, Graphics, 
Integration. 

1.  INTRODUCTION 

In recent years, Information Visualization has become popular 
outside its research community, both in industry and research.  It 
is recognized as an important medium for communication, 
exploration and analysis in Data Mining, biology, sociology or 
cartography, to name a few. 
 Despite its well understood potential, information visualization 
applications are difficult to implement.  They require a set of 
components – such as range sliders or fisheye lenses – and 
mechanisms – such as dynamic queries – that are not available or 
not well supported by traditional GUI toolkits.  The literature on 
Information Visualization is large and resources describing the 
concrete implementation of key components are sometimes hard 
to find. 
 This article describes the InfoVis Toolkit: a coherent software 
architecture and a set of Java-based components designed to 
support the creation of information visualization applications and 
components for a large set of data structures.  Its key features are: 
• Generic data structures suited to visualization 
• Specific algorithms to visualize these data structures 
• Mechanisms and components to perform direct manipulation 

on the visualizations 
• Mechanisms and components to select, filter and perform 

well-known generic information visualization tasks 
• Components to perform labeling and spatial deformation. 
 
 To paraphrase Alan Kay, a good toolkit should be designed so 
that simple things become simple to do and complex things 
become possible. The article describes some simple applications 
which have been simple to do. The toolkit is also used for 
complex applications such as [16]. Another important point raised 
by Brian Gaines [15] is the ability to replicate novel ideas as a 
mandatory step towards the evolution of a science. Every year, 
new information visualization ideas are presented but their 
replication and integration into existing applications is very 

   
Figure 1: Examples of Scatter Plot, Treemap and Graph Visualizations Built with the InfoVis Toolkit 
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difficult and sometimes never happens. Currently, there is no 
integrated toolkit facilitating the quick replication and integration 
of novel information visualization techniques, slowing down the 
development of the domain.  
 This article describes the general framework of the toolkit and 
some of its specific parts followed by a survey of existing tools 
compared to the InfoVis Toolkit.  The last section demonstrates 
how new visualizations can be created and recent visualization 
techniques integrated into InfoVis.  The conclusion then outlines 
areas of future work. 

2.  THE INFOVIS TOOLKIT 
The InfoVis Toolkit is a Java library and software architecture 
relying on the Swing GUI and organized around five main parts: 
tables, columns, visualizations, components and input/ output.  
Figure 2 details the parts described below. 

The InfoVis toolkit provides a unified underlying data structure 
based on tables. Representing data structures with tables improves 
the memory footprint and performance, compared to ad-hoc data 
structures used by other specialized InfoVis applications.  Any 
data structure can easily be implemented on top of tables and still 
expose a high-level Object Oriented interface for ease of 
programming. 
 Layout algorithms are encapsulated into Visualization 
components that map data structures into visual shapes. 
Visualizations natively support dynamic labeling and fisheye 
views. 
 Using this unified framework, a large number of interactive 
components required by information visualization are made 
generic and reusable across all the concrete data types and 
visualizations.  These components are: dynamic queries and 
filters, selection, sorting and visual attributes manipulation. 
 The InfoVis Toolkit currently supports three concrete data 
structures: tables, trees and graphs.  For each data structure, it 
supports several visualizations: time series, parallel coordinates 
and scatter plots for tables, node-link diagrams and treemaps for 
trees, node-link diagrams and adjacency matrices for graphs. 
 We have also added experimental support for accelerated 
graphics based on the OpenGL API to allow for richer graphics 

attributes and faster rendering. 

2.1  Tables and Columns 
A table is a list of named columns plus metadata and user data.  A 
column manages rows of elements of homogeneous type, i.e. 
integers, floating points or strings.  The elements are indexed so 
columns are usually implemented with primitive arrays.  Some 
rows can be undefined.  This mechanism is important because in 
real data sets, values may be missing.  Allowing undefined 
elements is also very useful for representing general data 
structures.  
 For columns containing Java Objects and derived types, 
undefined rows contain the null value.  For scalar types, an 
associative structure keeps track of undefined rows.  This 
implementation is fast and efficient for dense columns, where 
most rows are defined.  For sparse attributes – such as an XML 
structure encoded as a tree where each element may have a set of 
attributes – we provide sparse column implementations also based 
on associative structures.  Even for these associative structures, 
using integers as keys is much faster than using objects. 
 Columns also support the following features: 
• they contain metadata, e.g. to express that an integer column 

contains categorical or numeral values; 
• they can trigger notifications when their content is modified.  

Since columns are often modified in large chunks, 
notification can be deferred; 

• they support formatting for input and output so, for example, 
dates can be stored in columns of “long integers” data types 
and still appear as dates when read or displayed.  This is 
important because scalar attributes are more space and time 
efficient than the equivalent complex objects. 

 A data set is stored as a table where each row represents a 
record and each column an attribute.  This is natural for tabular 
data sets, but we also represent trees and graphs with this data 
structure.  Trees and graphs are implemented as wrappers on top 
of tables with topological information represented by internal 
columns.  By convention, an internal column is a normal column 
with a special prefix in front of its name.  It can contain internal 
information, e.g. topological or data synthesized from other 
columns.  These columns are not saved to files by data writers and 
not available for dynamic queries, with some exceptions. 
 Representing the topology of a tree consists in adding a 
“parent”, “first child” and “next sibling” column [18].  More 
columns are created on demand if performance requires so, for 
instance for the degree of nodes (number of children), the sorted 
children list or the children depth.  Since these attributes are 
synthesized from the basic topological structure and should be 
recomputed when the topology changes, they are not created by 
default.  The toolkit supports a synchronization mechanism to 
trigger the re-computation of synthesized columns when their 
dependencies are changed.  This re-computation occurs rarely in 
real situations since the data sets are usually not modified once 
they have been loaded.  With this synchronization mechanism, 
any synthesized value can be turned into a column and handled 
like any other attribute value for dynamic queries or more general 
filtering. 
 Internal columns are also used for selection and dynamic 
filtering.  Selection is managed through a column of boolean 
values (a row is selected when its column value is true) whereas 
dynamic filtering uses a column of bit sets (see section 2.3.)  
Boolean columns implement the Java ListSelectionModel 
interface and Tables implement the TableModel interface, 
enabling their integration into standard Java components. 
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Figure 2: Internal structure of the InfoVis Toolkit.  Squares 
represent data structures whereas ellipses represent 

functions. 
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 As shown in Figure 3, creating and manipulating a tree based 
on a table is still done using an object-oriented programming 
style. 

 

2.2  Visualizations 
Visualizations transform a set of semantic attributes stored in 
table columns into visual representations.  They also perform 
filtering, zooming, navigation and picking.  Each Visualization 
exposes a list of visual attributes that can be associated with 
columns.  It then maintains an internal column of graphic shapes 
that are filtered before being rendered.  Visualizations are 
redisplayed when at least one of the columns it refers to is 
modified.  Furthermore, when a visual attribute used to compute 
the shapes is modified, the shapes are invalidated and recomputed 
for the next rendering.  This mechanism unifies all the column 
changes, either due to a change in attribute values, in selection or 
during dynamic queries.  No attempt is made to optimize dynamic 
queries at this level. 
 Standard visual attributes include color, size, label, 
transparency and sorting order.  Selecting, filtering and sorting are 
also associated with columns in a similar way.  Creating 
coordinated visualizations only requires several visualizations to 
refer to the same table and share their selection and filtering visual 
columns.  For creating un-coordinated visualizations, different 
selection and filter columns should be associated with the 
visualizations. 
 Specific visualizations can add more visual attributes or add 
constraints to them.  Scatter plots add x-axis and y-axis visual 
attributes. 
 Visualizations can be stacked. For example, node-link 
visualizations are composed of two layers: one for the nodes and 
one for the link underneath. Different visual attributes can then be 
assigned to links and to nodes.  This mechanism is also used for 
Excentric Labels, implemented as a visualization layer on top of 
all the visualizations. 
 Visualizations use several sub-components to manage colors, 
permutations, redisplay, labeling and spatial deformation. 
 COLORS Mapping from abstract attributes to color is done 
through a color visualization: an interface that returns a color 
from a table row.  Currently, we support four types of mapping for 
columns categorized as sequential, categorical, differential and 
explicit.  The first three are described by Brewer [8] whereas the 
fourth simply means that the column directly contains a color 
specification.  These categories can be explicitly stated in the 
column’s “valueCategory” metadata or guessed from the column 
type and range.  When a column is specified for the color visual 
attribute, its color visualization is returned by a Color 
Visualization Factory.  Factories are used in several places in the 

InfoVis Toolkit.  They are meant to be extended and modified by 
programmers; they allow a loose coupling between related 
components – like columns and their color visualizations.  
Globally changing color management in all the visualizations of 
the toolkit only requires the corresponding factory object to be 
modified. 
PERMUTATIONS. Permutations are used both for sorting and deep 
filtering.  They specify an order for table rows with the capability 
of filtering out a row by not specifying it in the order, hiding it 
from the visualization.  Permutations also maintain the reverse 
mapping, from a row number to its index, and the count of visible 
rows.  For tables, nothing more is required to manage 
permutations of rows.  For trees, an updated view of the tree 
topology has to be maintained by the tree visualization with the 
children list sorted and filtered according to the permutation.  For 
graph visualizations, we maintain permutations for the vertices 
and for the edges.  Node-link diagram layouts are usually 
sensitive to the vertices and edges order.  Matrix visualization 
requires two vertices permutations for the row and column order.  
The graph visualizations also need to maintain a modified graph 
topology with the vertices and edges sorted and filtered according 
to the vertices and edges permutations. 
REDISPLAY. Redisplay is split between layout and rendering.  
Most of the time, a layout can be reused several times.  Consider a 
user exploring a visualization: the first redisplay computes the 
layout.  Then, the user explores the display, looking at labels 
through Tooltips or Excentric Labels.  These dynamic labels 
require some picking to be computed, the picking reuses the 
computed layout.  Selection only causes a redisplay without re-
layout.  In general, filtering only changes the set of redisplayed 
items, not their layout.  This may seem odd for treemaps or 
graphs.  We could recompute the layout each time an item is 
filtered, but that would usually change the display dramatically, 
making it hard or impossible to follow the changes from one 
frame to the next.  Instead, just like in the Treemap4 program, we 
“grey out” filtered items interactively and offer a “remove 
filtered” option to erase them afterwards through the permutation.  
Only this last command requires a re-computation of the layout.  
Some dynamic filters do trigger a re-layout, in particular the 
filtering of the X or Y axis column of scatter plots.  
 The complexity of layout algorithms is linear for all table and 
tree visualizations (we are not aware of the need for more 
complex algorithms.)  For graphs, only the matrix visualization is 
linear with the number of edges.  All other graph layout 
algorithms are more complex and cannot be computed in 
interactive time for more than a few hundred items.  This is also 
why we do not perform a layout when filtering a tree or a graph.  
When the user triggers a “hide filtered” or “hide selected” button, 
the items are hidden (removed from the permutation) and the 
layout is performed without them, which may take a couple of 
seconds for complex graphs. 
RENDERING Visualizations maintain a column of shapes and 
repaint them when required.  The rendering of items relies on 
shapes but also on color computation and optionally fisheye 
lenses.  By default, the rendering iterates over each non-filtered 
rows in permutation order, computing the color with the color 
visualization component.  The shape is painted, as well as a 
border – usually black for non-selected items and red for selected 
ones.  We have also implemented the smooth-shading techniques 
used in MillionVis [14]. 

Tree tree = new DefaultTree(); 
IntColumn date = new IntColumn(“date”); 
date.setFormat(new UTCDateFormat()); 
StringColumn name = new StringColumn(“name”); 
tree.addColumn(date); 
tree.addColumn(name); 
int n1 = tree.addNode(Tree.ROOT); 
name.setValue(n1, “Root”); 
date.setValue(n1, “13/Mar/2004 11:23:30”); 
int n2 = tree.addNode(n1); 
… 

Figure 3: Example of tree creation and initialization 
using the Infovis Toolkit

 
Figure 4: Smooth-shaded rendering or items. 
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The basic visualization allows for smooth shaded rendering 
where, instead of outlining items and drawing them with a flat 
color, items are shaded slightly so that they are distinguishable, 
even if they overlap (Figure 4.)  However, using smooth shading 
(using GradientPaint objects) is very expensive in Java.  
 We experimented with native OpenGL graphics from Java, but 
gave up because it forced us to maintain two different 
implementations of each visualization to remain compatible with 
Java components.  Instead, we have used Agile2D, an 
encapsulation of Graphics2D based on OpenGL, to get better 
rendering performance.  Despite its merits, Agile2D support is 
still experimental because the current implementation of Java and 
Swing is not designed to support alternate Graphics2D 
implementations.  This leads to performance issue due to the lack 
of software double-buffer support, forcing to redraw everything 
even for a slight change.  However, the potentials are very 
promising, especially for visual attributes such as transparency or 
gradient that are very expensive in native Java, as described in 
[11].  
LABELING Visualizations optionally support tool tips or dynamic 
labeling [13].  They use the visualization’s picking mechanism to 
compute the labels under the pointer.  Two methods are provided 
for picking: one returns the topmost item under a position and the 
second returns a list of items intersecting a rectangle. 

SPATIAL DEFORMATIONS Spatial deformations can be applied by 
the rendering after the shapes have been computed by the layout.  
The toolkit currently supports a subset of Carpendale’s [9] 
deformations within an extensible framework.  We use a Fisheye 
object that transforms a Java shape into its deformation through 

the lens.  Our implementation checks whether a specified shape 
intersects the lens and, if not, returns it without further processing.  
If it does, we iterate over its outline, applying the lens 
deformation to each of the control vertices.  This method alone 
produces bad results even for simple shapes (Figure 5b.)  Instead, 
we further subdivide the shape’s outline into small segments 
(Figure 5c).  First, we subdivide curved segments into small line 
segments using a flatness tolerance of 1/maxScale where 
maxScale is the maximum scale of the fisheye lens. This alone is 
not enough since long straight line – having a null flatness – need 
to be subdivided too. This subdivision is adaptive: on portions 
outside the lens and inside the focus, only the endpoints are 
transformed. In the compression area the lines are subdivided into 
segments of at most 1/3 the size of the compression region (Figure 
5c.) 
 We also tried a regular grid-sampling on a view-aligned grid, 
with a default grid value of 4 pixels.  This subdivision is not 
adaptive but behaves in a predictable manner, with worse 
performance than the adaptive algorithm, even with a small 
tolerance.  We also provide interactive controls for users to 
choose the tolerance if they wish to trade speed for quality. 

2.3  Dynamic Queries 
Dynamic Queries are split into two parts: managing the filter 
column related to one or several visualizations and managing the 
Java/Swing component for the actual interaction. Filtering 
performance should allow for smooth interaction so performance 
is important. Dynamic queries are generally composed of 
primitive filtering expressions combined by an “and” conjunction 
[2].  To perform this operation as quickly as possible, dynamic 
queries rely on a column of bit sets.  Each expression is allocated 
one bit.  For each row, this bit is set when the expression returns 
true (the row is filtered.)  When all the filters have been applied, 
only the rows with no bit set are displayed.  When a dynamic filter 
is applied, only its bit is recomputed for all the rows so updating 
is always in time linear with the number of rows (if the filter time 
is constant, which is true for all our filters). 

Tanin et al. [25] describe two optimizations to dynamic queries 
that are implemented by several visualization systems (including 
Spotfire and Treemap4).  First, they note that sliders are displayed 
using a specified number of pixels and no more slider positions 
can be perceived so they pre-compute, for each pixel position of 
the sliders, the set of items that are affected by the slider going 
though this pixel (it can increase or decrease depending on 
whether the slider goes one way or the other.)  Using this 
technique, a second optimization is then applied: not all items are 
redisplayed when the slider moves.  When new items are added, 
they are simply displayed on top of the others.  When they are 
removed, the items are drawn using the background color.  
Nothing is done to show the items underneath in scatter plots, as 
seen in Figure 6.  This is considered as acceptable since this 
rendering is only transient, during the dynamic query. 
 We do not perform these optimizations for three reasons: they 
require a complicated implementation with intricate inter-
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Figure 5: Subdivision of Shapes through a fisheye; 
a) is the non-deformed visualization, 
b) is the non-subdivided deformation, 

c) is the correctly subdivided deformation. 

    
Figure 6: Optimizations of dynamic queries lead to 

incorrect display, all overlapping items being erased 
when some items are filtered out  
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dependencies between all the sliders to correctly compute the 
delta items; we do not want to deal with transient states during 
redisplay; finally, we want to provide sub-pixel precision when 
interacting with range-sliders.  This is a very important issue 
when visualizing large data sets: if the precision of the sliders 
were related to their sizes, sliders would compete for screen real-
estate with the visualization itself.  Therefore, our range-sliders 
offer sub-pixel resolution: by moving the pointer away from the 
slider on the orthogonal direction, we increase the resolution and 
therefore the virtual length of the slider.  There are many other 
ways described in the literature to avoid this pixel resolution 
problem [19] [1] and we felt using the optimization of Tanin et al. 
would limit the toolkit.  The filtering speed is approximately 
3,000,000 items per second.  The limiting factor to achieve a 
100ms interaction loop is therefore the rendering, which limits to 
10,000 the maximal number of visible items for smooth 
interaction.   

2.4  COMPONENTS 
The information visualization literature describes a very large and 
rich set of interaction components, such as range sliders (or 
double edge sliders), alpha sliders and others visualization sliders.  
Moreover, visualizations can themselves be tailored into 
components for specific interaction tasks, blurring the limit 
between information visualization components and traditional 
interactive components or widgets.  For example, a tree selection 
component in a toolkit is an interactive visualization using a 
specific representation and interaction.  There is no reason why 
only one type of visualization should be provided.  Similarly, a 
data slider is simply a slider with a visualization overlaid on top 
of it.  Based on these observations, we designed the InfoVis 
toolkit visualizations so they can be used as components or within 
components. 
 In addition to the visualization components, the InfoVis toolkit 
provides several components to support interactive manipulations.  
By default, each visualization comes with a control panel 
organized in a tab group to interactively manipulate or configure 
the visualization (Figure 7.)  The coupling between the 
visualizations and their panels is done through factories to allow 
programmers to substitute their own panels, components and 
interaction modes.  Predefined components include range sliders 
and color visualization selectors.  More components can be added 
as Swing components or InfoVis embedded components.  Sliders 
or range sliders can then visualize interesting features such as text 
paragraph marks, code indentation depth and distribution of data.  
Tree selection components can be implemented using any tree 
visualization. 

 

3.  RELATED WORK 
Implementing information visualization might look simple using a 
GUI toolkit: create a data structure for holding the data and use a 
component to render it on screen; then, add selection and dynamic 
queries.  Toolkits such as Java Swing already have data structures 
for tables and trees as well as components to display and interact 
with them.  However, these toolkits offer no support for dynamic 
queries, mapping of data attributes to visual attributes, dynamic 
labeling, spatial deformation, loading and saving from various 
formats, etc.  Creating all these components from scratch is very 
long, tedious and frequently difficult. 
 Still, most InfoVis projects and products are created from 
scratch and several research centers have developed different 
applications for specific data structures and visualizations, all 
supporting a different subset of the useful components.  
Supporting all the components is long, difficult, and requires a 
global consistency hard to achieve when crafting a proof of 
concept. 
 Solutions exist to avoid starting from scratch.  Among the 
toolkits related to Information Visualization, the most popular are 
PAD++ and Jazz [5] [6], GGobi [23], XML Toolkit[7], Polaris 
[22] and GeoVista studio [24].  PAD++ and more recently Jazz 
are scene graph management toolkits designed to build zoomable 
user interfaces (ZUIs).  They have been successfully used for 
creating InfoVis applications such as PhotoMesa [4] and 
SpaceTree [17].  These applications demonstrate new 
presentations and navigations, however, they do not offer the 
filtering and visual attribute management required to fully support 
information visualization techniques such as dynamic queries, 
dynamic labeling or spatial deformations. 
 GGobi and Polaris are specialized for visualization of tabular 
data structures. Polaris seems the closest system to InfoVis but is 
written in C++/OpenGL and organizes its in-memory database as 
tuples instead of columns. One important feature of Polaris is its 
ability to balance the rendering load among several visualizations 
to allow for real-time monitoring. This capability could be 
implemented in InfoVis but is not currently supported. Since 
Polaris is not available in source form, it is difficult to compare it 
in more details with InfoVis. 
 The XML Toolkit is a collection of information visualization 
algorithms rather than a full toolkit. It relies on the standard Java 
data structures interfaces such as TreeModel or TableModel 
which are not optimized in space or time but are well documented. 
 GeoVista studio is a large library of component based on the 
Java Beans protocol [10] to connect and configure the 
components using a visual programming interface. It can be 
considered as a high-level mechanism to choose and configure 
visualization components such as those provided by the InfoVis 
Toolkit. Indeed, it currently uses some of its interactive 
components such as the Excentric Labels. 
 Scientific visualization toolkits, such as the Visualization 
Toolkit [20] or IBM OpenDX [26], have a similar goal as the 
InfoVis Toolkit but for a different domain.  They do not provide 
extended support for 2D visualizations, dynamic queries, generic 
data structures, labeling, space deformation etc. 
 Commercial information visualization applications, such as 
SpotFire [3] usually come with a development toolkit to 
customize them.  However, the level of customization they 
provide is limited.  For example, it does not allow replacing all the 
range sliders by another kind of component or adding Excentric 
Labeling [13].  Doing so is very important when designing novel 
information visualization components and requires deep access 
into the toolkit/application.  
 The InfoVis Toolkit has been inspired by several systems, 

 
Figure 7: Control panels for treemap visualization 
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mainly Treemap4 (www.cs.umd.edu/hcil/treemap), SpaceTree 
[17] and MillionVis[14]. 
Assessing the quality of a toolkit is a difficult task. Shneiderman 
and Fekete [21] describe six criteria to qualify software tools for 
HCI. We list them here and apply them to the InfoVis Toolkit: 
1. Part of the application built using the tool: data structures, 

presentation part and interaction part. 
2. Learning time: long (weeks) 
3. Building time: short (hours) 
4. Methodology imposed or advised: create specific data 

structures first, then apply or create visualizations, then new 
interactions if required and finally specific control panels if 
needed. 

5. Communication with other subsystems: integration of a rich 
and extendable set of input/output formats. Use of standard 
Java/Swing mechanisms for notifications (Listeners, Models 
and Events). 

6. Extensibility and Modularity: very extensible but with design 
limits such as no 3D support for example. 

The next section provides more concrete examples of extensions 
and applications of the InfoVis Toolkit. 

4. EXAMPLES OF EXTENSIONS 
The InfoVis Toolkit user is the application programmer. We 
describe five examples to let her/him assess the potentials of the 
toolkit: 
1. implementing parallel coordinates 
2. turning the standard tree layout into a radial tree layout 
3. visualization of graphs as treemaps with links 
4. implementation of the EdgeLens technique 
5. visualizing an image repository as a treemap with thumbnails 
 All of the examples are in the InfoVis Toolkit distribution.  
We asked undergraduate students to implement the Parallel 
Coordinates visualization using either the InfoVis Toolkit or a 
toolkit they freely chose.  The InfoVis Toolkit implementation 
required 96 lines of code (Figure 8). Most student groups using 
InfoVis added interaction techniques to manipulate the axes 
because they felt doing only the visualization was not enough. 
Other groups have chosen different languages such as Tcl/Tk or 
Java without the InfoVis Toolkit. It took 600 to 6000 lines of code 
then to implement the visualization with fair results but much less 
functionalities in term of dynamic queries, input/output etc.  It 
took one day of work to implement this visualization for an 
undergraduate student staring with the InfoVis Toolkit. His code 
is now distributed with the toolkit. 

4.1 Radial Trees 
Implementing radial trees (Figure 9) from standard (Cartesian) 
trees requires 37 lines of Java and took one day to an 
undergraduate student, most of this time being spent on recalling 
his trigonometric skills. 

4.2 Visualization of Graphs as Treemaps with Links 
In [12], we describe a technique for visualizing a graph as a 
treemap with overlaid links. To implement this technique using 
the InfoVis Toolkit, we had to overlay a set of links to a treemap. 
Since visualizations can be stacked, this is supported natively by 
the toolkit. A second aspect of our technique consists in avoiding 
arrows by using the bias of curvature for expressing the 
orientation of a link. We use a quadratic Bézier curve biased 
towards the starting point (Figure 10).  The LinkVisualization 
class computes the link shapes using a LinkShaper object.   

Parallel Coordinates 

 
Implementing the new subclass of LinkShaper takes about 50 
lines.  The reading of a Web site, extracting its tree structure and 
links rely on components already provided by the Toolkit such as 
the HTMLGraphReader so this part of code also requires around 
50 lines. Finally, there are many possible choices in term of 
interaction. We have implemented three of them: static display of 
all of the links, dynamic display of the links starting or ending at 

public class ParallelCoordinatesVisualization 
  extends TimeSeriesVisualization { 
public ParallelCoordinatesVisualization(Table table) { 
  super(table); 
} 
public void paintBackground(Graphics2D graphics, 

Rectangle2D bounds) { 
  super.paintBackground(graphics, bounds); 
  double sx = bounds.getWidth()/(columns.size()-1); 
  graphics.setColor(Color.BLACK); 
  for (int i = 0; i < columns.size(); i++) { 
    int x = (int)(sx * i + bounds.getX()); 
    graphics.drawLine(x, (int) bounds.getY(), 
    x, (int) bounds.getHeight()); 
  } 
} 
public void computeShapes(Rectangle2D bounds) { 
  double sx = bounds.getWidth()/(columns.size()-1); 
  for (RowIterator iter = iterator(); iter.hasNext();) { 
    int i = iter.nextRow(); 
    GeneralPath p = new GeneralPath(); 
    for (int col = 0; col < columns.size(); col++) { 
 NumberColumn n = getNumberColumnAt(col); 
 double min = n.getDoubleMin(); 
 double max = n.getDoubleMax(); 
 double diff = (max - min); 
 double sy = bounds.getHeight() / diff; 
 float x = (float) (sx * col + bounds.getX()); 
 float h = (float) (sy * (n.getDoubleAt(i) + min));
 float y = 

(float)(bounds.getY()+bounds.getHeight()-h); 
 if (col == 0) { 
   p.moveTo(x, y); 
 } else { 
   p.lineTo(x, y); 
 } 
    } 
    setShapeAt(i, p); 
  } 
} 
} 

Figure 8: Implementation of Parallel Coordinates 

 
Figure 9: Radial tree visualization 
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selected items and dynamic display of links starting or ending at 
the item under the pointer.  The implementation of each of these 
interactions roughly requires one to ten lines of code. 
 Finally, all of these interactions modes can be useful so a 
control panel is added to let users configure the interaction style. 

 

4.3 EdgeLens 
In [27], Wong and Carpendale present a dynamic visualization 
technique to improve the readability of node-link representations 
by pushing edges away from the pointer.  They use a modified 
version of Fisheyes transformations to deform links dynamically 
as the user moves his pointer around a graph. 
 We have implemented this technique in the InfoVis Toolkit by 
restricting the Fisheyes lens to only deform the link layer and not 
the other layers, as shown in Figure 11, requiring 1 line of code. 

The original article proposes two methods for bending the links: 

locally and globally. We only implemented the local bending 
because the global bending mechanism requires a modification of 
the standard Fisheyes technique that we haven’t implemented but 
would be much simpler than the current implementation. 

4.4 Image Thumbnails in Treemaps 
We have created of subclass of the treemap visualization to show 
image thumbnails when representing a file-system hierarchy 
containing images (Figure 12). The source code is 200 lines long, 
mostly due to the computation and cacheing of image thumbnails 
(40 lines are for the visualization, 160 for the management of 
images). 
 This representation is a simplification of PhotoMesa [4] which 
adds more treemaps techniques such as “bubble maps” and 
“quantum visualization”.  They can be implemented as Treemap 
algorithms and added to the application when everything else 
works.  This will probably be one of the exercises for next year’s 
class on Information Visualization. 

5. CONCLUSION AND FUTURE WORK 
This article described the InfoVis Toolkit, a toolkit that supports 
the development and extension of 2D Information Visualization 
components and applications using Java and Swing. Its key 
features are: 
• Generic data structures suited to visualization 
• Specific algorithms to visualize these data structures 
• Mechanisms and components to perform direct manipulation 

on the visualizations 
• Mechanisms and components to select, filter and perform 

well-known generic tasks of information visualization 
• Components to perform labeling and spatial deformation. 
 
 InfoVis brings together several ideas from different domains 
and assembles them in a consistent framework, supporting the 
creation of new visualization techniques, thanks to optimized data 
structures and components to fit them together.  It also supports 
the creation of new interaction components – such as new space 
deformation techniques or new sliders – that can easily replace 
existing ones for interacting on visualizations.  It finally allows 
information visualization techniques to be easily integrated into 
any interactive application, bridging the gap between the 
information visualization community and the communities that 
need it. 
 The InfoVis Toolkit consists of approximately 30,000 lines of 
Java and a 300K Jar file.  It is currently licensed under the QPL 
and available at: http://www.lri.fr/~fekete/InfovisToolkit.  It is 
used by several research projects in domains including biology, 
cartography and trace analysis. 
A major concern with the InfoVis toolkit is offering performance 

 
Figure 11: "EdgeLens" in InfoVis

 
Figure 12: Visualization of a file-system hierarchy 

containing images in a Treemap 

 
Figure 10: Visualization of the InfoVis Toolkit HTML 

manual as a treemap with overlaid links. 
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without losing flexibility and modularity.  We will improve the 
Agile2D system to offer new abstractions while keeping with the 
Java2D compatibility as much as possible.  We also hope Sun will 
allow better integration for non-native implementations of 
Graphics2D.  By relying more on OpenGL, we expect to offer 
richer visual attributes to visualizations, including management of 
the third dimension with its related capabilities such as lighting, 
fog, depth clipping and stereovision to name a few.  These 
capabilities do not require any 3D navigation to be usable. 
 In the near future, we also plan to implement mechanisms to 
support animation and continuous monitoring for time-oriented 
visualizations. 
 We look forward to continuing the development of the InfoVis 
Toolkit and expect the Information visualization community will 
provide visualization components and useful feedback. 
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