
The InfoVis Toolkit

Jean-Daniel Fekete1
INRIA Futurs/LRI

Bat. 490
Université Paris-Sud

F91405 Orsay Cedex, France
Tel: 1-33-1-69-15-34-60

ABSTRACT
This article presents the InfoVis Toolkit, designed to support the
creation, extension and integration of advanced 2D Information
Visualization components into interactive Java Swing
applications. The InfoVis Toolkit provides specific data
structures to achieve a fast action/feedback loop required by
dynamic queries. It comes with a large set of components such as
range sliders and tailored control panels required to control and
configure the visualizations. These components are integrated
into a coherent framework that simplifies the management of rich
data structures and the design and extension of visualizations.
Supported data structures currently include tables, trees and
graphs. Supported visualizations include scatter plots, time series,
parallel coordinates, treemaps, icicle trees, node-link diagrams for
trees and graphs and adjacency matrices for graphs. All
visualizations can use fisheye lenses and dynamic labeling. The
InfoVis Toolkit supports hardware acceleration when available
through Agile2D, an implementation of the Java Graphics API
based on OpenGL, achieving speedups of 10 to 200 times.
 The article also shows how new visualizations can be added
and extended to become components, enriching visualizations as
well as general applications.

CR Categories: I.3.6 [Methodology and Techniques] Graphics
data structures and data types; H.5 [User Interfaces] Graphical
User Interface, Benchmarking; C.4 [Performance of Systems]:
Design Studies.
Keywords: Information Visualization, Toolkit, Graphics,
Integration.

1. INTRODUCTION

In recent years, Information Visualization has become popular
outside its research community, both in industry and research. It
is recognized as an important medium for communication,
exploration and analysis in Data Mining, biology, sociology or
cartography, to name a few.
 Despite its well understood potential, information visualization
applications are difficult to implement. They require a set of
components – such as range sliders or fisheye lenses – and
mechanisms – such as dynamic queries – that are not available or
not well supported by traditional GUI toolkits. The literature on
Information Visualization is large and resources describing the
concrete implementation of key components are sometimes hard
to find.
 This article describes the InfoVis Toolkit: a coherent software
architecture and a set of Java-based components designed to
support the creation of information visualization applications and
components for a large set of data structures. Its key features are:
• Generic data structures suited to visualization
• Specific algorithms to visualize these data structures
• Mechanisms and components to perform direct manipulation

on the visualizations
• Mechanisms and components to select, filter and perform

well-known generic information visualization tasks
• Components to perform labeling and spatial deformation.

 To paraphrase Alan Kay, a good toolkit should be designed so
that simple things become simple to do and complex things
become possible. The article describes some simple applications
which have been simple to do. The toolkit is also used for
complex applications such as [16]. Another important point raised
by Brian Gaines [15] is the ability to replicate novel ideas as a
mandatory step towards the evolution of a science. Every year,
new information visualization ideas are presented but their
replication and integration into existing applications is very

Figure 1: Examples of Scatter Plot, Treemap and Graph Visualizations Built with the InfoVis Toolkit

1 Email: Jean-Daniel.Fekete@inria.fr

October 10-12, Austin, Texas, USA
0-7803-8779-1/04/$20.00 ©2004 IEEE

IEEE Symposium on Information Visualization 2004

167

difficult and sometimes never happens. Currently, there is no
integrated toolkit facilitating the quick replication and integration
of novel information visualization techniques, slowing down the
development of the domain.
 This article describes the general framework of the toolkit and
some of its specific parts followed by a survey of existing tools
compared to the InfoVis Toolkit. The last section demonstrates
how new visualizations can be created and recent visualization
techniques integrated into InfoVis. The conclusion then outlines
areas of future work.

2. THE INFOVIS TOOLKIT
The InfoVis Toolkit is a Java library and software architecture
relying on the Swing GUI and organized around five main parts:
tables, columns, visualizations, components and input/ output.
Figure 2 details the parts described below.

The InfoVis toolkit provides a unified underlying data structure
based on tables. Representing data structures with tables improves
the memory footprint and performance, compared to ad-hoc data
structures used by other specialized InfoVis applications. Any
data structure can easily be implemented on top of tables and still
expose a high-level Object Oriented interface for ease of
programming.
 Layout algorithms are encapsulated into Visualization
components that map data structures into visual shapes.
Visualizations natively support dynamic labeling and fisheye
views.
 Using this unified framework, a large number of interactive
components required by information visualization are made
generic and reusable across all the concrete data types and
visualizations. These components are: dynamic queries and
filters, selection, sorting and visual attributes manipulation.
 The InfoVis Toolkit currently supports three concrete data
structures: tables, trees and graphs. For each data structure, it
supports several visualizations: time series, parallel coordinates
and scatter plots for tables, node-link diagrams and treemaps for
trees, node-link diagrams and adjacency matrices for graphs.
 We have also added experimental support for accelerated
graphics based on the OpenGL API to allow for richer graphics

attributes and faster rendering.

2.1 Tables and Columns
A table is a list of named columns plus metadata and user data. A
column manages rows of elements of homogeneous type, i.e.
integers, floating points or strings. The elements are indexed so
columns are usually implemented with primitive arrays. Some
rows can be undefined. This mechanism is important because in
real data sets, values may be missing. Allowing undefined
elements is also very useful for representing general data
structures.
 For columns containing Java Objects and derived types,
undefined rows contain the null value. For scalar types, an
associative structure keeps track of undefined rows. This
implementation is fast and efficient for dense columns, where
most rows are defined. For sparse attributes – such as an XML
structure encoded as a tree where each element may have a set of
attributes – we provide sparse column implementations also based
on associative structures. Even for these associative structures,
using integers as keys is much faster than using objects.
 Columns also support the following features:
• they contain metadata, e.g. to express that an integer column

contains categorical or numeral values;
• they can trigger notifications when their content is modified.

Since columns are often modified in large chunks,
notification can be deferred;

• they support formatting for input and output so, for example,
dates can be stored in columns of “long integers” data types
and still appear as dates when read or displayed. This is
important because scalar attributes are more space and time
efficient than the equivalent complex objects.

 A data set is stored as a table where each row represents a
record and each column an attribute. This is natural for tabular
data sets, but we also represent trees and graphs with this data
structure. Trees and graphs are implemented as wrappers on top
of tables with topological information represented by internal
columns. By convention, an internal column is a normal column
with a special prefix in front of its name. It can contain internal
information, e.g. topological or data synthesized from other
columns. These columns are not saved to files by data writers and
not available for dynamic queries, with some exceptions.
 Representing the topology of a tree consists in adding a
“parent”, “first child” and “next sibling” column [18]. More
columns are created on demand if performance requires so, for
instance for the degree of nodes (number of children), the sorted
children list or the children depth. Since these attributes are
synthesized from the basic topological structure and should be
recomputed when the topology changes, they are not created by
default. The toolkit supports a synchronization mechanism to
trigger the re-computation of synthesized columns when their
dependencies are changed. This re-computation occurs rarely in
real situations since the data sets are usually not modified once
they have been loaded. With this synchronization mechanism,
any synthesized value can be turned into a column and handled
like any other attribute value for dynamic queries or more general
filtering.
 Internal columns are also used for selection and dynamic
filtering. Selection is managed through a column of boolean
values (a row is selected when its column value is true) whereas
dynamic filtering uses a column of bit sets (see section 2.3.)
Boolean columns implement the Java ListSelectionModel
interface and Tables implement the TableModel interface,
enabling their integration into standard Java components.

WritersReaders

Table

Visualization

C
ol

um
ns

M
et

ad
at

a

V
is

ua
l A

ttr
ib

ut
es

Layout

Sh
ap

e
C

ol
um

n

Rendering

Labeling

Picking

Fisheyes

Image

Components

Dyamic Queries Controls

Figure 2: Internal structure of the InfoVis Toolkit. Squares
represent data structures whereas ellipses represent

functions.

168

 As shown in Figure 3, creating and manipulating a tree based
on a table is still done using an object-oriented programming
style.

2.2 Visualizations
Visualizations transform a set of semantic attributes stored in
table columns into visual representations. They also perform
filtering, zooming, navigation and picking. Each Visualization
exposes a list of visual attributes that can be associated with
columns. It then maintains an internal column of graphic shapes
that are filtered before being rendered. Visualizations are
redisplayed when at least one of the columns it refers to is
modified. Furthermore, when a visual attribute used to compute
the shapes is modified, the shapes are invalidated and recomputed
for the next rendering. This mechanism unifies all the column
changes, either due to a change in attribute values, in selection or
during dynamic queries. No attempt is made to optimize dynamic
queries at this level.
 Standard visual attributes include color, size, label,
transparency and sorting order. Selecting, filtering and sorting are
also associated with columns in a similar way. Creating
coordinated visualizations only requires several visualizations to
refer to the same table and share their selection and filtering visual
columns. For creating un-coordinated visualizations, different
selection and filter columns should be associated with the
visualizations.
 Specific visualizations can add more visual attributes or add
constraints to them. Scatter plots add x-axis and y-axis visual
attributes.
 Visualizations can be stacked. For example, node-link
visualizations are composed of two layers: one for the nodes and
one for the link underneath. Different visual attributes can then be
assigned to links and to nodes. This mechanism is also used for
Excentric Labels, implemented as a visualization layer on top of
all the visualizations.
 Visualizations use several sub-components to manage colors,
permutations, redisplay, labeling and spatial deformation.
 COLORS Mapping from abstract attributes to color is done
through a color visualization: an interface that returns a color
from a table row. Currently, we support four types of mapping for
columns categorized as sequential, categorical, differential and
explicit. The first three are described by Brewer [8] whereas the
fourth simply means that the column directly contains a color
specification. These categories can be explicitly stated in the
column’s “valueCategory” metadata or guessed from the column
type and range. When a column is specified for the color visual
attribute, its color visualization is returned by a Color
Visualization Factory. Factories are used in several places in the

InfoVis Toolkit. They are meant to be extended and modified by
programmers; they allow a loose coupling between related
components – like columns and their color visualizations.
Globally changing color management in all the visualizations of
the toolkit only requires the corresponding factory object to be
modified.
PERMUTATIONS. Permutations are used both for sorting and deep
filtering. They specify an order for table rows with the capability
of filtering out a row by not specifying it in the order, hiding it
from the visualization. Permutations also maintain the reverse
mapping, from a row number to its index, and the count of visible
rows. For tables, nothing more is required to manage
permutations of rows. For trees, an updated view of the tree
topology has to be maintained by the tree visualization with the
children list sorted and filtered according to the permutation. For
graph visualizations, we maintain permutations for the vertices
and for the edges. Node-link diagram layouts are usually
sensitive to the vertices and edges order. Matrix visualization
requires two vertices permutations for the row and column order.
The graph visualizations also need to maintain a modified graph
topology with the vertices and edges sorted and filtered according
to the vertices and edges permutations.
REDISPLAY. Redisplay is split between layout and rendering.
Most of the time, a layout can be reused several times. Consider a
user exploring a visualization: the first redisplay computes the
layout. Then, the user explores the display, looking at labels
through Tooltips or Excentric Labels. These dynamic labels
require some picking to be computed, the picking reuses the
computed layout. Selection only causes a redisplay without re-
layout. In general, filtering only changes the set of redisplayed
items, not their layout. This may seem odd for treemaps or
graphs. We could recompute the layout each time an item is
filtered, but that would usually change the display dramatically,
making it hard or impossible to follow the changes from one
frame to the next. Instead, just like in the Treemap4 program, we
“grey out” filtered items interactively and offer a “remove
filtered” option to erase them afterwards through the permutation.
Only this last command requires a re-computation of the layout.
Some dynamic filters do trigger a re-layout, in particular the
filtering of the X or Y axis column of scatter plots.
 The complexity of layout algorithms is linear for all table and
tree visualizations (we are not aware of the need for more
complex algorithms.) For graphs, only the matrix visualization is
linear with the number of edges. All other graph layout
algorithms are more complex and cannot be computed in
interactive time for more than a few hundred items. This is also
why we do not perform a layout when filtering a tree or a graph.
When the user triggers a “hide filtered” or “hide selected” button,
the items are hidden (removed from the permutation) and the
layout is performed without them, which may take a couple of
seconds for complex graphs.
RENDERING Visualizations maintain a column of shapes and
repaint them when required. The rendering of items relies on
shapes but also on color computation and optionally fisheye
lenses. By default, the rendering iterates over each non-filtered
rows in permutation order, computing the color with the color
visualization component. The shape is painted, as well as a
border – usually black for non-selected items and red for selected
ones. We have also implemented the smooth-shading techniques
used in MillionVis [14].

Tree tree = new DefaultTree();
IntColumn date = new IntColumn(“date”);
date.setFormat(new UTCDateFormat());
StringColumn name = new StringColumn(“name”);
tree.addColumn(date);
tree.addColumn(name);
int n1 = tree.addNode(Tree.ROOT);
name.setValue(n1, “Root”);
date.setValue(n1, “13/Mar/2004 11:23:30”);
int n2 = tree.addNode(n1);
…

Figure 3: Example of tree creation and initialization
using the Infovis Toolkit

Figure 4: Smooth-shaded rendering or items.

169

The basic visualization allows for smooth shaded rendering
where, instead of outlining items and drawing them with a flat
color, items are shaded slightly so that they are distinguishable,
even if they overlap (Figure 4.) However, using smooth shading
(using GradientPaint objects) is very expensive in Java.
 We experimented with native OpenGL graphics from Java, but
gave up because it forced us to maintain two different
implementations of each visualization to remain compatible with
Java components. Instead, we have used Agile2D, an
encapsulation of Graphics2D based on OpenGL, to get better
rendering performance. Despite its merits, Agile2D support is
still experimental because the current implementation of Java and
Swing is not designed to support alternate Graphics2D
implementations. This leads to performance issue due to the lack
of software double-buffer support, forcing to redraw everything
even for a slight change. However, the potentials are very
promising, especially for visual attributes such as transparency or
gradient that are very expensive in native Java, as described in
[11].
LABELING Visualizations optionally support tool tips or dynamic
labeling [13]. They use the visualization’s picking mechanism to
compute the labels under the pointer. Two methods are provided
for picking: one returns the topmost item under a position and the
second returns a list of items intersecting a rectangle.

SPATIAL DEFORMATIONS Spatial deformations can be applied by
the rendering after the shapes have been computed by the layout.
The toolkit currently supports a subset of Carpendale’s [9]
deformations within an extensible framework. We use a Fisheye
object that transforms a Java shape into its deformation through

the lens. Our implementation checks whether a specified shape
intersects the lens and, if not, returns it without further processing.
If it does, we iterate over its outline, applying the lens
deformation to each of the control vertices. This method alone
produces bad results even for simple shapes (Figure 5b.) Instead,
we further subdivide the shape’s outline into small segments
(Figure 5c). First, we subdivide curved segments into small line
segments using a flatness tolerance of 1/maxScale where
maxScale is the maximum scale of the fisheye lens. This alone is
not enough since long straight line – having a null flatness – need
to be subdivided too. This subdivision is adaptive: on portions
outside the lens and inside the focus, only the endpoints are
transformed. In the compression area the lines are subdivided into
segments of at most 1/3 the size of the compression region (Figure
5c.)
 We also tried a regular grid-sampling on a view-aligned grid,
with a default grid value of 4 pixels. This subdivision is not
adaptive but behaves in a predictable manner, with worse
performance than the adaptive algorithm, even with a small
tolerance. We also provide interactive controls for users to
choose the tolerance if they wish to trade speed for quality.

2.3 Dynamic Queries
Dynamic Queries are split into two parts: managing the filter
column related to one or several visualizations and managing the
Java/Swing component for the actual interaction. Filtering
performance should allow for smooth interaction so performance
is important. Dynamic queries are generally composed of
primitive filtering expressions combined by an “and” conjunction
[2]. To perform this operation as quickly as possible, dynamic
queries rely on a column of bit sets. Each expression is allocated
one bit. For each row, this bit is set when the expression returns
true (the row is filtered.) When all the filters have been applied,
only the rows with no bit set are displayed. When a dynamic filter
is applied, only its bit is recomputed for all the rows so updating
is always in time linear with the number of rows (if the filter time
is constant, which is true for all our filters).

Tanin et al. [25] describe two optimizations to dynamic queries
that are implemented by several visualization systems (including
Spotfire and Treemap4). First, they note that sliders are displayed
using a specified number of pixels and no more slider positions
can be perceived so they pre-compute, for each pixel position of
the sliders, the set of items that are affected by the slider going
though this pixel (it can increase or decrease depending on
whether the slider goes one way or the other.) Using this
technique, a second optimization is then applied: not all items are
redisplayed when the slider moves. When new items are added,
they are simply displayed on top of the others. When they are
removed, the items are drawn using the background color.
Nothing is done to show the items underneath in scatter plots, as
seen in Figure 6. This is considered as acceptable since this
rendering is only transient, during the dynamic query.
 We do not perform these optimizations for three reasons: they
require a complicated implementation with intricate inter-

a

b

c

Figure 5: Subdivision of Shapes through a fisheye;
a) is the non-deformed visualization,
b) is the non-subdivided deformation,

c) is the correctly subdivided deformation.

Figure 6: Optimizations of dynamic queries lead to

incorrect display, all overlapping items being erased
when some items are filtered out

170

dependencies between all the sliders to correctly compute the
delta items; we do not want to deal with transient states during
redisplay; finally, we want to provide sub-pixel precision when
interacting with range-sliders. This is a very important issue
when visualizing large data sets: if the precision of the sliders
were related to their sizes, sliders would compete for screen real-
estate with the visualization itself. Therefore, our range-sliders
offer sub-pixel resolution: by moving the pointer away from the
slider on the orthogonal direction, we increase the resolution and
therefore the virtual length of the slider. There are many other
ways described in the literature to avoid this pixel resolution
problem [19] [1] and we felt using the optimization of Tanin et al.
would limit the toolkit. The filtering speed is approximately
3,000,000 items per second. The limiting factor to achieve a
100ms interaction loop is therefore the rendering, which limits to
10,000 the maximal number of visible items for smooth
interaction.

2.4 COMPONENTS
The information visualization literature describes a very large and
rich set of interaction components, such as range sliders (or
double edge sliders), alpha sliders and others visualization sliders.
Moreover, visualizations can themselves be tailored into
components for specific interaction tasks, blurring the limit
between information visualization components and traditional
interactive components or widgets. For example, a tree selection
component in a toolkit is an interactive visualization using a
specific representation and interaction. There is no reason why
only one type of visualization should be provided. Similarly, a
data slider is simply a slider with a visualization overlaid on top
of it. Based on these observations, we designed the InfoVis
toolkit visualizations so they can be used as components or within
components.
 In addition to the visualization components, the InfoVis toolkit
provides several components to support interactive manipulations.
By default, each visualization comes with a control panel
organized in a tab group to interactively manipulate or configure
the visualization (Figure 7.) The coupling between the
visualizations and their panels is done through factories to allow
programmers to substitute their own panels, components and
interaction modes. Predefined components include range sliders
and color visualization selectors. More components can be added
as Swing components or InfoVis embedded components. Sliders
or range sliders can then visualize interesting features such as text
paragraph marks, code indentation depth and distribution of data.
Tree selection components can be implemented using any tree
visualization.

3. RELATED WORK
Implementing information visualization might look simple using a
GUI toolkit: create a data structure for holding the data and use a
component to render it on screen; then, add selection and dynamic
queries. Toolkits such as Java Swing already have data structures
for tables and trees as well as components to display and interact
with them. However, these toolkits offer no support for dynamic
queries, mapping of data attributes to visual attributes, dynamic
labeling, spatial deformation, loading and saving from various
formats, etc. Creating all these components from scratch is very
long, tedious and frequently difficult.
 Still, most InfoVis projects and products are created from
scratch and several research centers have developed different
applications for specific data structures and visualizations, all
supporting a different subset of the useful components.
Supporting all the components is long, difficult, and requires a
global consistency hard to achieve when crafting a proof of
concept.
 Solutions exist to avoid starting from scratch. Among the
toolkits related to Information Visualization, the most popular are
PAD++ and Jazz [5] [6], GGobi [23], XML Toolkit[7], Polaris
[22] and GeoVista studio [24]. PAD++ and more recently Jazz
are scene graph management toolkits designed to build zoomable
user interfaces (ZUIs). They have been successfully used for
creating InfoVis applications such as PhotoMesa [4] and
SpaceTree [17]. These applications demonstrate new
presentations and navigations, however, they do not offer the
filtering and visual attribute management required to fully support
information visualization techniques such as dynamic queries,
dynamic labeling or spatial deformations.
 GGobi and Polaris are specialized for visualization of tabular
data structures. Polaris seems the closest system to InfoVis but is
written in C++/OpenGL and organizes its in-memory database as
tuples instead of columns. One important feature of Polaris is its
ability to balance the rendering load among several visualizations
to allow for real-time monitoring. This capability could be
implemented in InfoVis but is not currently supported. Since
Polaris is not available in source form, it is difficult to compare it
in more details with InfoVis.
 The XML Toolkit is a collection of information visualization
algorithms rather than a full toolkit. It relies on the standard Java
data structures interfaces such as TreeModel or TableModel
which are not optimized in space or time but are well documented.
 GeoVista studio is a large library of component based on the
Java Beans protocol [10] to connect and configure the
components using a visual programming interface. It can be
considered as a high-level mechanism to choose and configure
visualization components such as those provided by the InfoVis
Toolkit. Indeed, it currently uses some of its interactive
components such as the Excentric Labels.
 Scientific visualization toolkits, such as the Visualization
Toolkit [20] or IBM OpenDX [26], have a similar goal as the
InfoVis Toolkit but for a different domain. They do not provide
extended support for 2D visualizations, dynamic queries, generic
data structures, labeling, space deformation etc.
 Commercial information visualization applications, such as
SpotFire [3] usually come with a development toolkit to
customize them. However, the level of customization they
provide is limited. For example, it does not allow replacing all the
range sliders by another kind of component or adding Excentric
Labeling [13]. Doing so is very important when designing novel
information visualization components and requires deep access
into the toolkit/application.
 The InfoVis Toolkit has been inspired by several systems,

Figure 7: Control panels for treemap visualization

171

mainly Treemap4 (www.cs.umd.edu/hcil/treemap), SpaceTree
[17] and MillionVis[14].
Assessing the quality of a toolkit is a difficult task. Shneiderman
and Fekete [21] describe six criteria to qualify software tools for
HCI. We list them here and apply them to the InfoVis Toolkit:
1. Part of the application built using the tool: data structures,

presentation part and interaction part.
2. Learning time: long (weeks)
3. Building time: short (hours)
4. Methodology imposed or advised: create specific data

structures first, then apply or create visualizations, then new
interactions if required and finally specific control panels if
needed.

5. Communication with other subsystems: integration of a rich
and extendable set of input/output formats. Use of standard
Java/Swing mechanisms for notifications (Listeners, Models
and Events).

6. Extensibility and Modularity: very extensible but with design
limits such as no 3D support for example.

The next section provides more concrete examples of extensions
and applications of the InfoVis Toolkit.

4. EXAMPLES OF EXTENSIONS
The InfoVis Toolkit user is the application programmer. We
describe five examples to let her/him assess the potentials of the
toolkit:
1. implementing parallel coordinates
2. turning the standard tree layout into a radial tree layout
3. visualization of graphs as treemaps with links
4. implementation of the EdgeLens technique
5. visualizing an image repository as a treemap with thumbnails
 All of the examples are in the InfoVis Toolkit distribution.
We asked undergraduate students to implement the Parallel
Coordinates visualization using either the InfoVis Toolkit or a
toolkit they freely chose. The InfoVis Toolkit implementation
required 96 lines of code (Figure 8). Most student groups using
InfoVis added interaction techniques to manipulate the axes
because they felt doing only the visualization was not enough.
Other groups have chosen different languages such as Tcl/Tk or
Java without the InfoVis Toolkit. It took 600 to 6000 lines of code
then to implement the visualization with fair results but much less
functionalities in term of dynamic queries, input/output etc. It
took one day of work to implement this visualization for an
undergraduate student staring with the InfoVis Toolkit. His code
is now distributed with the toolkit.

4.1 Radial Trees
Implementing radial trees (Figure 9) from standard (Cartesian)
trees requires 37 lines of Java and took one day to an
undergraduate student, most of this time being spent on recalling
his trigonometric skills.

4.2 Visualization of Graphs as Treemaps with Links
In [12], we describe a technique for visualizing a graph as a
treemap with overlaid links. To implement this technique using
the InfoVis Toolkit, we had to overlay a set of links to a treemap.
Since visualizations can be stacked, this is supported natively by
the toolkit. A second aspect of our technique consists in avoiding
arrows by using the bias of curvature for expressing the
orientation of a link. We use a quadratic Bézier curve biased
towards the starting point (Figure 10). The LinkVisualization
class computes the link shapes using a LinkShaper object.

Parallel Coordinates

Implementing the new subclass of LinkShaper takes about 50
lines. The reading of a Web site, extracting its tree structure and
links rely on components already provided by the Toolkit such as
the HTMLGraphReader so this part of code also requires around
50 lines. Finally, there are many possible choices in term of
interaction. We have implemented three of them: static display of
all of the links, dynamic display of the links starting or ending at

public class ParallelCoordinatesVisualization
 extends TimeSeriesVisualization {
public ParallelCoordinatesVisualization(Table table) {
 super(table);
}
public void paintBackground(Graphics2D graphics,

Rectangle2D bounds) {
 super.paintBackground(graphics, bounds);
 double sx = bounds.getWidth()/(columns.size()-1);
 graphics.setColor(Color.BLACK);
 for (int i = 0; i < columns.size(); i++) {
 int x = (int)(sx * i + bounds.getX());
 graphics.drawLine(x, (int) bounds.getY(),
 x, (int) bounds.getHeight());
 }
}
public void computeShapes(Rectangle2D bounds) {
 double sx = bounds.getWidth()/(columns.size()-1);
 for (RowIterator iter = iterator(); iter.hasNext();) {
 int i = iter.nextRow();
 GeneralPath p = new GeneralPath();
 for (int col = 0; col < columns.size(); col++) {
 NumberColumn n = getNumberColumnAt(col);
 double min = n.getDoubleMin();
 double max = n.getDoubleMax();
 double diff = (max - min);
 double sy = bounds.getHeight() / diff;
 float x = (float) (sx * col + bounds.getX());
 float h = (float) (sy * (n.getDoubleAt(i) + min));
 float y =

(float)(bounds.getY()+bounds.getHeight()-h);
 if (col == 0) {
 p.moveTo(x, y);
 } else {
 p.lineTo(x, y);
 }
 }
 setShapeAt(i, p);
 }
}
}

Figure 8: Implementation of Parallel Coordinates

Figure 9: Radial tree visualization

172

selected items and dynamic display of links starting or ending at
the item under the pointer. The implementation of each of these
interactions roughly requires one to ten lines of code.
 Finally, all of these interactions modes can be useful so a
control panel is added to let users configure the interaction style.

4.3 EdgeLens
In [27], Wong and Carpendale present a dynamic visualization
technique to improve the readability of node-link representations
by pushing edges away from the pointer. They use a modified
version of Fisheyes transformations to deform links dynamically
as the user moves his pointer around a graph.
 We have implemented this technique in the InfoVis Toolkit by
restricting the Fisheyes lens to only deform the link layer and not
the other layers, as shown in Figure 11, requiring 1 line of code.

The original article proposes two methods for bending the links:

locally and globally. We only implemented the local bending
because the global bending mechanism requires a modification of
the standard Fisheyes technique that we haven’t implemented but
would be much simpler than the current implementation.

4.4 Image Thumbnails in Treemaps
We have created of subclass of the treemap visualization to show
image thumbnails when representing a file-system hierarchy
containing images (Figure 12). The source code is 200 lines long,
mostly due to the computation and cacheing of image thumbnails
(40 lines are for the visualization, 160 for the management of
images).
 This representation is a simplification of PhotoMesa [4] which
adds more treemaps techniques such as “bubble maps” and
“quantum visualization”. They can be implemented as Treemap
algorithms and added to the application when everything else
works. This will probably be one of the exercises for next year’s
class on Information Visualization.

5. CONCLUSION AND FUTURE WORK
This article described the InfoVis Toolkit, a toolkit that supports
the development and extension of 2D Information Visualization
components and applications using Java and Swing. Its key
features are:
• Generic data structures suited to visualization
• Specific algorithms to visualize these data structures
• Mechanisms and components to perform direct manipulation

on the visualizations
• Mechanisms and components to select, filter and perform

well-known generic tasks of information visualization
• Components to perform labeling and spatial deformation.

 InfoVis brings together several ideas from different domains
and assembles them in a consistent framework, supporting the
creation of new visualization techniques, thanks to optimized data
structures and components to fit them together. It also supports
the creation of new interaction components – such as new space
deformation techniques or new sliders – that can easily replace
existing ones for interacting on visualizations. It finally allows
information visualization techniques to be easily integrated into
any interactive application, bridging the gap between the
information visualization community and the communities that
need it.
 The InfoVis Toolkit consists of approximately 30,000 lines of
Java and a 300K Jar file. It is currently licensed under the QPL
and available at: http://www.lri.fr/~fekete/InfovisToolkit. It is
used by several research projects in domains including biology,
cartography and trace analysis.
A major concern with the InfoVis toolkit is offering performance

Figure 11: "EdgeLens" in InfoVis

Figure 12: Visualization of a file-system hierarchy

containing images in a Treemap

Figure 10: Visualization of the InfoVis Toolkit HTML

manual as a treemap with overlaid links.

173

http://www.lri.fr/~fekete/InfovisToolkit

without losing flexibility and modularity. We will improve the
Agile2D system to offer new abstractions while keeping with the
Java2D compatibility as much as possible. We also hope Sun will
allow better integration for non-native implementations of
Graphics2D. By relying more on OpenGL, we expect to offer
richer visual attributes to visualizations, including management of
the third dimension with its related capabilities such as lighting,
fog, depth clipping and stereovision to name a few. These
capabilities do not require any 3D navigation to be usable.
 In the near future, we also plan to implement mechanisms to
support animation and continuous monitoring for time-oriented
visualizations.
 We look forward to continuing the development of the InfoVis
Toolkit and expect the Information visualization community will
provide visualization components and useful feedback.

REFERENCES
[1] C. Ahlberg and B. Shneiderman, The Alphaslider: A Compact

and Rapid Selector. in Proceedings of CHI '94, (Boston, MA,
1994), ACM Press, 365-371.

[2] C. Ahlberg and B. Shneiderman, Visual Information Seeking:
Tight Coupling of Dynamic Query Filters with Starfield Displays.
in Proceedings of CHI '94, (Boston, MA, 1994), ACM Press,
313-317.

[3] C. Ahlberg and E. Wistrand, IVEE: An Information Visualization
& Exploration Environment. in Proceedings of the IEEE
Symposium on Information Visualization '95, (1995), IEEE Press,
66-73.

[4] B.B. Bederson, PhotoMesa: A Zoomable Image Browser Using
Quantum Treemaps and Bubblemaps. in Proceedings of the 14th
annual ACM symposium on User interface software and
technology, (Orlando, Florida, 2001), ACM Press, 71 - 80.

[5] B.B. Bederson, J. Hollan, K. Perlin, J. Meyer, D. Bacon and G.
Furnas Pad++: A Zoomable Graphical Sketchpad for Exploring
Alternate Interface Physics. Journal of Visual Languages and
Computing, 7. 3-31.

[6] B.B. Bederson, J. Meyer and L. Good, Jazz: An Extensible
Zoomable User Interface Graphics Toolkit in Java. in
Proceedings of User Interface and Software Technology (UIST
2000), (San Diego, CA, 2000), ACM Press, 171-180.

[7] K. Börner and Y. Zhou, A Software Repository for Education and
Research in Information Visualization. in Information
Visualisation Conference, (London, England, 2001), 257-262.

[8] C.A. Brewer, Guidelines for Use of the Perceptual Dimensions of
Color for Mapping and Visualization. in Proceedings of the
International Society for Optical Engineering (SPIE), (San José,
CA, 1994), 54-63.

[9] M.S.T. Carpendale and C. Montagnese, A framework for unifying
presentation space. in Proceedings of the 14th annual ACM
symposium on User interface software and technology, (Orlando,
Florida, 2001), ACM Press, 61-70.

[10] R. Englander Developing Java Beans. O'Reilly & Associates,
1997.

[11] J.-D. Fekete. The Infovis Toolkit INRIA Futurs Research

Report, INRIA Futurs, Orsay, 2003, 15.
[12] J.-D. Fekete, N. Dang, C. Plaisant and D. Wang, Interactive

Poster: Overlaying Graph Links on Treemaps. in IEEE
Symposium on Information Visualization, (Seattle, WA, 2003).

[13] J.-D. Fekete and C. Plaisant, Excentric Labeling: Dynamic
Neighborhood Labeling for Data Visualization. in Proceedings of
ACM CHI 99 Conference on Human Factors in Computing
Systems, (1999), 512-519.

[14] J.-D. Fekete and C. Plaisant, Interactive Information
Visualization of a Million Items. in IEEE Symposium on
Information Visualization (InfoVis'02), (Boston, MA, 2002),
IEEE Press, 117-124.

[15] B.R. Gaines Modeling and forecasting the information sciences.
Information Sciences: an International Journal, Special issue on
information sciences—past, present, and future, 57-58. 3 - 22.

[16] M. Ghoniem, N. Jussien and J.-D. Fekete, VISEXP: visualizing
constraint solver dynamics using explanations. in FLAIRS'04:
Seventeenth international Florida Artificial Intelligence Research
Society conference, (Miami Beach, FL, 2004), AAAI press.

[17] J. Grosjean, C. Plaisant and B.B. Bederson, SpaceTree:
Supporting Exploration in Large Node Link Tree, Design
Evolution and Empirical Evaluation. in IEEE Symposium on
Information Visualization (InfoVis'02), (Boston, MA, 2002),
IEEE Press, 57 -64.

[18] D.E. Knuth Fundamental Algorithms. 1.
[19] S. Pook, E. Lecolinet, G. Vayssex and E. Barillot, Control

Menu: Execution and Control in a Single Interactor. in In
Extended Abstracts of CHI2000, (Den Hague, The Netherlands,
2000), ACM Press, 263- 264.

[20] W. Schroeder, K. Martin and B. Lorensen The Visualization
Toolkit: An Object Oriented Approach to 3D Graphics. Kitware,
Inc., 2003.

[21] B. Shneiderman and C. Plaisant Designing the User Interface.
Addison-Wesley Publisher, 2004.

[22] C. Stolte, D. Tang and P. Hanrahan Polaris: A System for
Query, Analysis and Visualization of Multi-dimensional
Relational Databases. IEEE Transactions on Visualization and
Computer Graphics, 8 (1). 52-65.

[23] J. Symanzik, D.F. Swayne, D.T. Lang and D. Cook, Software
Integration for Multivariate Exploratory Spatial Data Analysis. in
Proceedings of the SCISS Specialist Meeting "New Tools for
Spatial Data Analysis", (Santa Barbara, CA, 2002).

[24] M. Takatsuka and M. Gahegan GeoVISTA Studio: A Codeless
Visual Programming Environment For Geoscientific Data
Analysis and Visualization. The Journal of Computers &
Geosciences, 28 (10). 1131-1144.

[25] E. Tanin, R. Beigel and B. Shneiderman Incremental data
Structures and Algorithms for Dynamic Query Interfaces.
SIGMOD Record, 25 (4). 21-24.

[26] D. Thompson, J. Braun and R. Ford OpenDX: Paths to
Visualization. VIS, Inc., 2000.

[27] N. Wong, S. Carpendale and S. Greenberg, EdgeLens: An
Interactive Method for Managing Edge Congestion in Graphs. in
2003 IEEE Symposium on Information Visualization, (Seattle,
WA, 2003), IEEE Press, 52-58.

174

