
Allaire Corporation

Developing Web
Applications with
ColdFusion

ColdFusion 4.5

Copyright Notice

© 1999 Allaire Corporation. All rights reserved.

This manual, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of
this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Allaire Corporation. Allaire
Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written permission of Allaire
Corporation.

ColdFusion and HomeSite are federally registered trademarks of Allaire Corporation.
HomeSite, the ColdFusion logo and the Allaire logo are trademarks of Allaire
Corporation in the USA and other countries. Microsoft, Windows, Windows NT,
Windows 95, Microsoft Access, and FoxPro are registered trademarks of Microsoft
Corporation. All other products or name brands are the trademarks of their respective
holders. Solaris is a trademark of Sun Microsystems Inc. UNIX is a trademark of The
Open Group. PostScript is a trademark of Adobe Systems Inc.

Part number: AA-45WEB-RK

Contents

Preface: Welcome to ColdFusion ..xv

Intended Audience...xvi
Welcome to the ColdFusion 4.5 Web Application Server ...xvi
Products and System Requirements ...xvii
New features in ColdFusion 4.5 ... xviii

New visual tools ... xviii
Enhancements to CFML ..xix
Better reliability ..xix
Improved performance..xix
Enterprise connectivity features ..xx
Security enhancements...xx

Developer Resources ...xxi
About ColdFusion Documentation ...xxii

Documentation updates ...xxii
ColdFusion manuals ...xxii
ColdFusion Server online documentation .. xxiii
Printing ColdFusion documentation... xxiii
Documentation conventions...xxiv

Getting Answers ...xxiv
Contacting Allaire ...xxiv

Chapter 1: Introduction to ColdFusion...1

A Quick Web Overview .. 2
What You Should Already Know ... 2
What is ColdFusion? .. 3

Editions of ColdFusion... 3
ColdFusion Features.. 3

Rapid development .. 4
Scalable deployment .. 4
Open integration .. 4
Complete security... 5

ColdFusion Components .. 5
ColdFusion Studio.. 6
ColdFusion application pages... 6

iv Developing Web Applications with ColdFusion

ColdFusion Server ...6
ColdFusion Administrator..6
Data sources ..7

How ColdFusion Server Works ..7

Chapter 2: Writing Your First ColdFusion Application..................................9

The Development Process ...10
Writing Code ...10
Saving Application Pages ...11
Viewing Application Pages ...11
Variables ..13
Adding More Variables to the Application..14
Development Considerations..14

Chapter 3: Querying a Database ...15

Publishing Dynamic Data ..16
Database Basics...16
Understanding Data Sources...18

Open Database Connectivity (ODBC) ...18
Adding Data Sources ..19

Data Source Notes and Considerations...20
Retrieving Data..20

The CFQUERY Tag ..20
Writing SQL ...21

Basic SQL Syntax elements...22
SQL Notes and Considerations ..23

Building Queries ...24
Query Notes and Considerations...25

Outputting Query Data...25
Query Output Notes and Considerations..26

Getting Information About Query Results..27
Query Properties Notes and Considerations ..28

Chapter 4: Retrieving and Formatting the Data You Want.........................29

Using Forms to Specify the Data to Retrieve ..30
FORM tag syntax..30
Form Controls..30
Form Notes and Considerations ..34

Processing Form Variables on Action Pages...34
Dynamically Generating SQL Statements ..34
Creating Action Pages...35

Form Variable Notes and Considerations ...36
Using HTML Tables to Layout Query Results...37
Formatting Individual Data Items...38
Performing Pattern Matching ..39
Filtering Data Based on Multiple Conditions...39

Contents v

Creating Table Joins..40
Building Flexible Search Interfaces ...40

Code Review ..41
Returning Query Results to the User...42

Chapter 5: Making Variables Dynamic ...45

Dynamically Populating Select Boxes ...46
Creating Dynamic Checkboxes and Multiple Select Boxes...47

Checkboxes ..47
Multiple select lists..49

Testing for a variable’s existence ...51
Creating Default Variables with CFPARAM ..51
Checking Query Parameters with CFQUERYPARAM ..52
Dynamic SQL...53

Chapter 6: Updating Your Data...59

Inserting Data..60
Creating an HTML Insert Form ...60

Data Entry Form Notes and Considerations...61
Creating an Action Page to Insert Data ...61
Updating Data...62
Creating an Update Form ..63
Creating an Action Page to Update Data ..65
Deleting Data ..66
Requiring Users to Enter Values in Form Fields...67
Validating the Data That Users Enter in Form Fields ..68

Chapter 7: Reusing Code ...71

Ways to Reuse Code..72
Reusing Common Code with CFINCLUDE ..72
About Custom Tags in CFML...73
Using Existing Custom Tags...73
Writing Custom CFML Tags...73
Passing Attribute Values between Custom Tags ..74
Nesting Custom Tags..77
Passing Data Between Nested Custom Tags ..78

What data is accessible?..78
Where is data accessible?..78
High-level data exchange ...78
Passing Custom Tag Arguments via CFML Structures...81

Executing Custom Tags ..82
Tag instance data...82
Pattern of execution ..83
Modes of execution ...83
Specifying execution modes...83
Terminating tag execution ...84

vi Developing Web Applications with ColdFusion

Access to generated content...84
Installing Custom Tags...85

Local tags..85
Shared tags...85

Managing Custom Tags..85
Resolving file name conflicts..85
Securing Custom Tags ..86
Encoding Custom Tags ...86

Chapter 8: Debugging and Error Handling ..89

Debug Settings in the ColdFusion Administrator ..90
Generating debug information for an individual page ..90
Generating debug information for an individual query...90
Error messages...90

CFML Code Validation ...91
Troubleshooting Common Problems ...91

ODBC data source configuration ...91
HTTP/URL ...92
CFML syntax errors ...92

Generating Custom Error Messages (CFERROR) ..93
Creating an error application page ..93

Overview of Exception Handling in ColdFusion ..94
Types of recoverable exceptions supported ...95

Exception Information in CFCATCH ..97
Tag context information ...98
Database exceptions ...99
Expression exceptions ..99
Locking exceptions..99
MissingInclude exceptions...100

Exception handling strategies..100
Exception handling example ...100
Custom Exception Types..102

Chapter 9: Handling Complex Data
with Structures ..103

About Arrays ..104
Creating an Array ..105

Multidimensional Arrays ..106
Basic Array Techniques ..106

Adding elements to an array...107
Referencing Elements in Dynamic Arrays ..107

Additional referencing methods ..108
Populating Arrays with Data ..108

Populating an array with ArraySet ...108
Populating an array with CFLOOP...108
Using Nested Loops for 2D and 3D Arrays ..109

Populating an Array from a Query...110

Contents vii

Array Functions...111
About Structures ...113

Structure notation ...113
Creating and Using Structures...114

Creating structures..114
Adding data to structures ...114
Finding information in structures ...115
Getting information about structures ...115
Copying structures ..116
Deleting structures..116

Structure Example ..117
Using Structures as Associative Arrays ...119

Looping through structures..119
Structure Functions ..120

Chapter 10: Building Dynamic Forms...123

Creating Forms with the CFFORM Tag ...124
Using HTML in a CFFORM...124
CFFORM controls..124
Improving performance with ENABLECAB ..125
Browsers that disable Java ..125

Input Validation with CFFORM Controls ...126
Input Validation with JavaScript ...127

JavaScript objects passed to the validation routine ...127
Handling failed validation ..127

Building Tree Controls with CFTREE ..129
Grouping output from a query ...130
CFTREE form variables ...131
Input validation ...132

Structuring Tree Controls...132
Image names in a CFTREE..133

Embedding URLs in a CFTREE ..134
Specifying which tree items to send to the action page ...135

Creating Data Grids with CFGRID...135
Populating a grid from a query...136

Creating an Updateable Grid ...137
Editing data in a CFGRID..138

Building Slider Bar Controls...142
CFSLIDER form variable...142

Building Text Entry Boxes ..142
CFTEXTINPUT form variable...143

Building Drop-Down List Boxes ..143
Embedding Java Applets ..144

Registering a Java applet...145
Using CFAPPLET to embed an applet ...146
Handling form variables from an applet ...147

viii Developing Web Applications with ColdFusion

Chapter 11: Indexing and Searching Data ...149

Searching a ColdFusion Web Site..150
Advantages of using Verity ...150
Online Verity training ...151

Supported File Types..151
Support for International Languages ..152
Steps in Creating a Searchable Data Source ...153
Creating a Collection ..153

Using the ColdFusion Administrator to create a collection ..154
Creating a collection with the CFCOLLECTION tag...154

Populating and Indexing a Collection...157
Selecting an indexing method..157

Building a Search Interface ..159
Using the Verity wizard in Studio ..159
Basic search operations ..160
Summarization ..161
CFSEARCH properties...162

Indexing database query results ..162
Indexing CFLDAP Query Results ...163
Indexing CFPOP Query Results ...164
Using Query Expressions ...165

Simple query expressions ...166
Explicit query expressions ..166
Expression syntax ..166
Special characters..168

Composing Search Expressions...168
Searching with Wildcards...170

Searching for wildcards as literals..170
Searching for special characters as literals..170

Operators and Modifiers ..171
Operators ...171
Modifiers ..178

Managing Collections...180
Maintenance options ..180
Securing a collection ...181

Chapter 12: Using the Application Framework ...183

Understanding the Web Application Framework ..184
Application-level settings and functions in Application.cfm ..184
Client state management..184
Custom error handling ...185
Web server security integration ...185

Mapping Out an Application Framework...185
Behavior with CFINCLUDE ..187

Creating the Application.cfm File..187
Naming the application ..188

Setting up client state management options..188

Contents ix

Choosing a client variable storage method...189
Managing Client State in a Clustered Environment ..190
Using Client State Management..190

Creating a client variable ..191
Using Client Variables ..191

Standard client variables ..191
Using client state management without cookies..191
Getting a list of client variables ..192
Deleting client variables ...192
Exporting the client variable database ..193

Application and Session Variables ..193
Enabling application and session variables ..193
Differentiating client, session, and application variables..194

Using Session Variables..194
What is a session? ..194
Storing session data in session variables...195

Using Application Variables...196
Storing application data in application variables...196
Application variable time-outs...196

Tips for Using Session and Application Variables..197
Getting a list of application and session variables..197

Default Variables and Constants ...197
Using CFLOCK for Exclusive Locking ...198

Using CFLOCK...199
Avoiding deadlocks ...199

CFLOCK Examples..200

Chapter 13: Sending and Receiving Email ...205

Using ColdFusion with Mail Servers ...206
Sending Email Messages ..206

Sending SMTP mail with CFMAIL..207
Samples uses of CFMAIL ..207

Sending form-based email ...208
Sending query-based email ..208
Sending email to multiple recipients...209

Customizing Email for Multiple Recipients..209
Attaching a MIME file ...210

Advanced Sending Options..211
Sending mail as HTML..211
Error logging and undelivered messages ..211

Receiving Email Messages..211
Using CFPOP ...212
CFPOP query variables ...212

Handling POP Mail ...213
Returning only message headers ...213
Returning an entire message..214
Returning attachments with messages..215
Deleting messages...216

x Developing Web Applications with ColdFusion

Chapter 14: Managing Files on the Server ...219

Using CFFILE ..220
Uploading Files ...220

Resolving conflicting file names ..222
Controlling the type of file uploaded...222

Setting File and Directory Attributes...223
UNIX...223
Windows...224

Evaluating the Results of a File Upload...224
Moving, Renaming, Copying, and Deleting Server Files ...226
Reading, Writing, and Appending to a Text File...227

Reading a text file ..227
Writing a text file ...227

Performing Directory Operations..229
Returning file information..229

Chapter 15: Interacting with Remote Servers..231

Using CFHTTP to Interact with the Web ..232
Allaire Alive ..232

Using the CFHTTP Get Method...232
Creating a Query from a Text File..234
Using the CFHTTP Post Method ...236
Using Secure Sockets Layer (SSL) with CFHTTP..238
Performing File Operations with CFFTP...239

Caching connections across multiple pages...240
Connection caching actions and attributes ..241

Moving Complex Data Structures Across the Web with WDDX ...241
An Overview of Distributed Data for the Web ..242
WDDX Components ...242
Working With Application-Level Data ..243
Data Exchange Across Application Servers ..243

Time zone processing ...243
How WDDX Works..244
Converting CFML Data to a JavaScript Object ...245
Transferring Data From Browser to Server...246

Chapter 16: Connecting to LDAP Directories...249

What is LDAP? ...250
LDAP attributes ...251
Key Terms ..251

ColdFusion Support for LDAP ...252
Working with LDAP Directories...253
Viewing the Directory Schema ..253
Querying an LDAP Directory ...254
Updating an LDAP Directory ...256

Creating searchable CFLDAP output...261

Contents xi

Chapter 17: Application Security ..263

ColdFusion Security Features..264
Remote Development Services (RDS) Security ..264
Overview of User Security ..265
Using Advanced Security in Application Pages..265
Using the CFAUTHENTICATE tag...266
Authentication and Authorization Functions ..267

Using the IsAuthenticated Function..267
Using the IsAuthorized Function...267

Catching Security Exceptions ..268
Using the CFIMPERSONATE Tag ..269
Example of User Authentication and Authorization..270

Authenticating users in Application.cfm...271
Checking for authentication and authorization ...272

Chapter 18: Building Custom CFAPI Tags ..275

What Are CFX Tags? ..276
Before You Begin Developing CFX Tags in C++ ...276

Sample C++ CFXs ..276
Setting Up Your C++ Development Environment ..276

Using the Tag Wizard to create CFXs in C++ ..277
Compiling C++ CFXs ... 277
Debugging C++ CFXs..277
Before You Begin Developing CFX Tags in Java ...278

Sample Java CFXs ..278
Setting Up Your Development Environment to Develop CFXs in Java279

Writing a Java CFX ..279
Processing Requests..280
Java CFX Class Loading...282
Automatic Class Reloading...283
Life cycle of Java CFXs...283
Calling the CFX from a ColdFusion Template ..284

ZipBrowser Example...284
Approaches to Debugging Java CFXs ..286

Outputting Debug Information..286
Using the Debugging Classes ...286
Debugging Classes Reference ..288

Java Customization and Configuration...289
Implementing C++ CFX Tags ...289
Implementing Java CFX Tags...289
Registering CFXs ...289

Distribution ...291
C++ CFX Reference ...293
CCFXException Class ...294

Class members...294
CCFXException::GetError...294
CCFXException::GetDiagnostics..294

xii Developing Web Applications with ColdFusion

CCFXQuery Class ..295
Class members...295
CCFXQuery::AddRow..296
CCFXQuery::GetColumns...296
CCFXQuery::GetData ..297
CCFXQuery::GetName ..297
CCFXQuery::GetRowCount ..297
CCFXQuery::SetData...298
CCFXQuery::SetQueryString ..299
CCFXQuery::SetTotalTime ...299

CCFXRequest Class...299
Class Members ..299
CCFXRequest::AddQuery..300
CCFXRequest::AttributeExists..301
CCFXRequest::CreateStringSet ..301
CCFXRequest::Debug..302
CCFXRequest::GetAttribute..302
CCFXRequest::GetAttributeList ...302
CCFXRequest::GetCustomData ...303
CCFXRequest::GetQuery...303
CCFXRequest::GetSetting ...304
CCFXRequest::ReThrowException ..304
CCFXRequest::SetCustomData ..305
CCFXRequest::SetVariable..306
CCFXRequest::ThrowException...306
CCFXRequest::Write..307
CCFXRequest::WriteDebug ..307

CCFXStringSet Class ...308
Class members...308
CCFXStringSet::AddString ..308
CCFXStringSet::GetCount...309
CCFXStringSet::GetIndexForString..309
CCFXStringSet::GetString ...310

Java CFX Reference ...311
Interface CustomTag ..311

Method Detail..311
Interface Query ...312

Method Detail..312
Interface Request ..316

Method Detail..317
Interface Response ...321

Method Detail..321

Chapter 19: Using CFOBJECT to Invoke Component Objects...................325

Component Object Overview ..326
About COM ..326
About CORBA...326
About Java Objects ..326

Contents xiii

Invoking Component Objects..327
Coding guidelines..327
Calling methods ..327
Calling nested objects ...328

Getting Started with COM/DCOM ..328
Requirements for COM...328
Registering the object ...328
Finding the component ProgID and methods..329

Creating and Using COM Objects ...331
Connecting to COM objects ...331
Setting properties and invoking methods ...332

Getting Started with CORBA ..332
Calling a CORBA Object ...333

Declaring structures and sequences..333
Exception handling ...334

Calling Java Objects ..335
Calling EJBs..335
Exception handling ...335

Chapter 20: Extending ColdFusion Pages with CFML Scripting337

About CFScript ..338
CFScript example ..338
Supported statements...338

The CFScript Language ..339
Statements ...339
Expressions ..342
Variables...342
Comments..342
Differences from JavaScript..342
Reserved words..343

Interaction of CFScript with CFML ...343

Chapter 21: Accessing the Windows NT Registry345

Overview of Registry Access in ColdFusion ..346
Getting Registry Values...346
Setting Registry Values ...347
Deleting Registry Values...348

Index ..349

xiv Developing Web Applications with ColdFusion

Preface Welcome to ColdFusion

This manual describes the process of developing Web applications using
ColdFusion. In the first six chapters, you can follow the instructions presented to
learn how to create basic ColdFusion applications. Then, chapters seven through 17
cover various topics of interest in enhancing your applications. Finally, chapters 18
through 21 explain how to extend ColdFusion’s capabilities.

Because of the power and flexibility of ColdFusion, you can create many different
types of Web applications of varying complexity. As you become more familiar with
the material presented in this manual, and begin to develop your own applications,
you will want to refer to the CFML Language Reference for details about various tags
and functions.

Contents

• Intended Audience.. xvi

• Welcome to the ColdFusion 4.5 Web Application Server............................. xvi

• Products and System Requirements... xvii

• New Features in ColdFusion 4.5... xviii

• Developer Resources... xxi

• About ColdFusion Documentation .. xxii

• Getting Answers ...xxiv

xvi Developing Web Applications with ColdFusion

Intended Audience
This manual is particularly useful for Web application developers who are new to
ColdFusion. In particular, Chapters 1 through 6 provide instructions for creating a
basic ColdFusion application. If you are somewhat familiar with ColdFusion, but want
to learn more about a particular topic such as sending and receiving email, refer to
Chapters 7 through 17. Finally, if you want to extend ColdFusion’s capabilities with
CFML scripting or creating custom tags, Chapters 18 through 21 will be helpful.

Welcome to the ColdFusion 4.5 Web Application Server
The ColdFusion 4.5 release focuses on fundamentals — the fundamentals of delivering
your e-business: faster development, better reliability, enhanced scalability, expanded
integration, and stronger security.

At the center of the ColdFusion 4.5 release is an application server platform that's been
highly optimized with new functionality and native support for UNIX. As a result, your
e-business systems will run better and do more. With this release we're launching a
new edition of ColdFusion Server for Linux so you can take advantage of the reliability
and performance of the hottest new Internet server operating system.

While optimizing the core server, we also enhanced fundamental features including
email integration, server-side FTP and HTTP, advanced security, scheduling, and
database connectivity — again giving you more reliability and new functionality.

The focus on fundamentals extends to new features. As part of a broad new
commitment to Java, ColdFusion 4.5 has a range of new Java integration options from
Java CFXs to Java Servlet support to Java object and EJB connectivity. In ColdFusion
Studio 4.5, we added new tools to make you more productive including a flexible new
project architecture that makes managing and deploying complex Web applications a
snap. On the server, we focused on reliability, performance and security with features
such as service-level fail-over, Cisco Local Director integration, and OS security
integration.

Whether you're revolutionizing your company's HR operations, building the next
generation of your firm's global intranet, or launching the next killer .COM company,
you'll find the speed, scalability, connectivity, and security you need in ColdFusion 4.5.

Preface xvii

Products and System Requirements
ColdFusion has been fully tested on the following platforms and with the following
configurations.

ColdFusion Server 4.5 Enterprise Edition for Windows

• Windows NT 4.0 SP4+

• Intel Pentium or above

• 150 MB hard disk space

• 128 MB RAM (256 MB recommended for clustering)

ColdFusion Server 4.5 Enterprise Edition for Solaris

• SPARC Solaris 2.5.1, 2.6, or 7 (patch 103582-1B or higher)

• 128 MB RAM (256 MB recommended for clustering)

• 200 MB hard disk space

ColdFusion Server 4.5 Enterprise Edition for Linux

• Red Hat Linux 6.0 or 6.1

• Intel Pentium or above

• 128 MB RAM (256 MB recommended for clustering)

• 150 MB hard disk space

ColdFusion Server 4.5 Professional Edition for Windows

• Windows 95/98 or Windows NT 4.0

• Intel Pentium or above

• 50 MB hard disk space

• 32 MB RAM (128 MB recommended)

ColdFusion Server 4.5 Professional Edition for Linux

• Red Hat Linux 6.0 or 6.1

• Intel Pentium or above

• 64 MB RAM (128 MB recommended)

• 100 MB hard disk space

xviii Developing Web Applications with ColdFusion

ColdFusion Studio 4.5

• Windows 95/98/NT4

• Intel Pentium or above

• 35 MB hard disk space

• 32 MB RAM (64 MB recommended)

New Features in ColdFusion 4.5
A wide range of new features are available in ColdFusion 4.5.

New visual tools

Universal File Browser — Access all your files from a single explorer that integrates
access to the Windows file system, ColdFusion RDS servers, and FTP servers. Drag-
and-drop between any of these services all in an integrated file browser.

Advanced Project Management — Manage your complex Web application
development projects with a new project architecture that gives you more flexibility
and control using physical, virtual, and auto-inclusive project folders as well as project
resource browsing.

Scriptable Deployment — Deploy applications to complex server configurations with
FTP or ColdFusion Remote Development Services (RDS). Use VBScript or Java Script to
fully script deployment of projects with granular control over how files uploaded.
Setup deployment scripts using a powerful wizard and save scripts for re-use.

Collapsible Code — Work with large, complex scripts and pages more easily by
collapsing sections of the code in the editor so you can build sophisticated
applications more quickly.

Function Insight — Find the parameters and format for functions instantly and inline
as you code.

Image Map Editor — Create image maps right in ColdFusion Studio with a new easy-
to-use visual tool.

Configuration Wizard — Setup your work environment so it meets all your needs
using any of more than dozen common configurations.

TopStyle CSS Editor — Create and edit standards-compliant cascading style sheets to
easily control the look and feel of your web applications.

WML Support — Build wireless Web applications quickly and easily with the complete
set of Wireless Markup Language (WML) visual tools.

Preface xix

Enhancements to CFML

Object Scripting — Instantiate and script objects using CFML script in addition to the
CFOBJECT tag easier integration with distributed object middleware such as COM and
CORBA.

Structured Exception Handling — Exception handling now offers hierarchical
exception handling that supports both greater customization and greater access to
internal exceptions.

String Conversion Functions — Convert strings quickly and easily to be compatible
with Java Script and XML standards.

Better reliability

Server Probes — Guarantee high availability by automatically detecting when a
ColdFusion Server or Web server hangs or stops, failing-over to a new machine in a
ColdFusion cluster, and restarting the server with problems. (Enterprise Edition only)

Improved Automatic Server Recovery — Monitor and automatically restart server
process in case of failures or critical errors on individual servers not deployed in a
cluster.

Clustering Support for Apache — Setup ColdFusion clusters on Linux and Solaris
using the Apache Web Server. (Enterprise Edition only)

Automatic Shared Variable Locking — Lock user and session variable reads
automatically at the server level to prevent destabilizing conflicts and control thread
write contentions. Configure variable locking to meet the specific needs of your
applications.

Individual Data Source Control — Enable and disable individual data sources
individually without affecting server availability for runtime data source maintenance
without server restarts.

Improved performance

Cisco Local Director Integration — Deliver very large scale sites with Cisco Local
Director intelligently balancing load based on the load metrics provided by the
ColdFusion Servers in a cluster. (Enterprise Edition only)

Client-Side Page Caching — Leverage browser page caching to avoid unnecessary
downloads of unchanged pages and improve overall site performance.
Programmatically control refresh of client-side cache to ensure users see most up-to-
date output.

White Space Removal — Reduce white space left by processed code in application
pages to make the pages smaller and faster. Control white space removal
programmatically or administratively.

xx Developing Web Applications with ColdFusion

Scriptable Performance Metrics — Track key server metrics at run time through your
own scripts for intelligent diagnosis of performance bottlenecks of stability problems
in your applications.

Performance Debugging Data — Access detailed debugging information on the
performance of each individual page included in an application page that is being
debugged.

Enterprise connectivity features

Transaction Commit and Rollback — Control database transactions with
programmable commit and rollback support for more reliable and better-managed
database interactions.

Java Object and EJB Connectivity — Connect to any Java object or Enterprise JavaBean
(EJB) hosted by any major EJB server to extend ColdFusion and access complex
business logic or third party distributed components.

Java Servlets — Call Java Servlets hosted by a Servlet Engine such as Allaire JRun from
within a ColdFusion application to access extended functionality

Java-based ColdFusion Extensions (CFX) — Extend ColdFusion with new
functionality through CFXs created with Java.

Binary Object Support — Use Character Large Binary Object (CLOB) support to
encoded binary objects, transmit them via XML, and store them in databases or files.

SQL Bind Parameters — Improve query performance, security and flexibility with
explicitly typed query parameters.

WDDX 1.0 — Exchange complex data, including encoded images, between servers and
with other programming environments even faster using the latest version of Web
Distributed Data Exchange (WDDX).

OS Command Execution — Execute OS shell scripts, services, executables and batch
files from within ColdFusion applications.

LDAP 3.0 — Use all the power of LDAP 3.0 for directory access including file filtering,
SSL encryption, and Microsoft Active Directory integration.

Enhanced Mail Integration — Develop more sophisticated and robust email
applications with new support for controlling mail headers, BCC, and multiple file
attachments.

Improved Server-Side HTTP — Use URL redirection, SSL, cookies, return headers, and
more robust server-side HTTP support for building distributed Web applications.

Security enhancements

General OS Security Integration — Secure entire Web applications and control access
to files and objects through your existing Windows NT security architecture.
Authenticated users in your applications can be limited to privileges authorized
through Windows security. (Windows NT Only)

Preface xxi

OS Server Sandbox Security — Secure shared hosting environments more easily by
creating Server Sandboxes with Windows NT security. OS Server Sandboxes process all
requests under the privileges of a designated Windows NT user account (Enterprise
Edition for Windows only).

Enhanced Advanced Security — Secure CFML functions and enable CFML code
segments to be executed using the run-time security permissions of a designated user.

New Advanced Security Interface — Manage Advanced Security configuration more
quickly and easily with a completely redesigned browser-based resource view.

Scriptable Advanced Security Administration — Configure ColdFusion Advanced
Security through your own CFML scripts for easier maintenance of ColdFusion
Servers.

Developer Resources
Allaire Corporation is committed to setting the standard for customer support in
developer education, technical support, and professional services. Our Web site is
designed to give you quick access to the entire range of online resources.

Allaire Developer Services

Resource Description

Allaire Web site

www.allaire.com

General information about Allaire products and
services.

Technical Support

www.allaire.com/support

Allaire offers a wide range of professional support
programs. This page explains all of the available
options.

Training and Consulting

www.allaire.com/services

Information about training classes, online
courses, and consulting services offered by
Allaire.

Developer Community

www.allaire.com/developer

All of the resources you need to stay on the
cutting edge of ColdFusion development,
including online discussion groups, Knowledge
Base, Component Exchange, Resource Library,
technical papers and more.

Allaire Partners

www.allaire.com/partners

The Allaire Alliance is a network of solution
providers, application developers, resellers, and
hosting services creating solutions with
ColdFusion.

xxii Developing Web Applications with ColdFusion

About ColdFusion Documentation
ColdFusion documentation is designed to provide support for all components of the
ColdFusion development system. Both the print and online versions are organized to
allow you to quickly locate the information you need.

In addition to the book set, the documentation is provided in two other formats:

• HTML — Browser-based Help references.

• Adobe Acrobat (PDF) — Available from the root level on the product CD-ROM
and from the Developer area of Allaire’s Web site at http://www.allaire.com/
developer.

Documentation updates

Late additions and corrections to ColdFusion printed documentation are listed in the
Documentation Updates page. To reach this page, open the Welcome to ColdFusion
page installed with ColdFusion, where you’ll find links to the update page as well as
links to other pages containing useful information about ColdFusion, Allaire support
options, and Allaire products and services.

For ColdFusion Studio users, you can access the documentation update page by
clicking on the Help resource tab and browsing your way through the online help tree
to the Allaire Support folder.

ColdFusion manuals

The core ColdFusion documentation set consists of the following titles.

Administering ColdFusion Server

Includes instructions for installing ColdFusion Server. Describes configuration options
for maximizing performance, managing data sources, setting security levels, and a
range of development and site management tasks. If you are administering a
ColdFusion site, you’ll need this book to help plan and implement ColdFusion
security, load balancing, and for details about tuning the ColdFusion application
server.

Developing Web Applications with ColdFusion

Presents the fundamentals of ColdFusion application development and deployment.
Also includes detailed information about ColdFusion data sources, user interfaces,
and Web technologies.

CFML Language Reference

Provides the complete syntax, with example code, of all CFML tags and functions.

Preface xxiii

Using ColdFusion Studio

Documents everything you need to know about using ColdFusion Studio, including
features like projects, source control integration, as well as the Studio workspace and
interface.

ColdFusion Quick Reference Guide

A valuable quick reference to CFML tags, functions, and variables.

ColdFusion Server online documentation

To view the HTML documentation, open the following URL: http://127.0.0.1/
cfdocs/dochome.htm.

Note that because the Verity search libraries are not available on Linux for this release,
the online documentation search facility is not functional on Linux. If you try to open
the search page, a message box opens to explain why the facility is not available.

Acrobat versions of all ColdFusion documentation are available from the root level on
the product CD. If you don’t have a product CD, you can download ColdFusion
documentation from the Allaire web site by visiting http://www.allaire.com/
developer and clicking the Documentation link.

ColdFusion Studio online documentation

Click the Help resource tab in ColdFusion Studio to view online Help pages. The help
tree contains ColdFusion documentation and a number of additional developer
resources. Studio online documentation is searchable and individual pages can be
bookmarked.

Printing ColdFusion documentation

If you are working with an evaluation version of ColdFusion and would like printed
documentation, access the Adobe Acrobat files found from the root level on the
product CD. If you do not have access to a product CD, you can download the Acrobat
files from the Allaire web site: http://www.allaire.com/developer, click the
Documentation link.

The Acrobat files offer excellent print output. You can print an entire manual,
individual sections, or page ranges of your choice. To get the Acrobat reader, visit:
http://www.acrobat.com.

xxiv Developing Web Applications with ColdFusion

Documentation conventions

When reading, please be aware of these formatting cues:

• Code samples, filenames, and URLs are set in a monospaced font

• Notes and tips are identified by bold type

• Bulleted lists present options and features

• Numbered steps indicate procedures

• Tool button icons are generally shown with procedure steps

• Menu levels are separated by the greater than (>) sign

• Text for you to type in is set in italics

Getting Answers
One of the best ways to solve particular programming problems is to tap into the vast
expertise of the ColdFusion developer community on the Allaire Forums. Other
ColdFusion developers on the forum can help you figure out how to do just about
anything with ColdFusion. The search facility can also help you search messages going
back 12 months, allowing you to learn how others have solved a problem you may be
facing. The Forums is a great resource for learning ColdFusion, but it’s also a great
place to see the ColdFusion developer community in action.

Contacting Allaire

Corporate headquarters

Allaire Corporation
One Alewife Center
Cambridge, MA 02140

Tel: 617.761.2000
Fax: 617.761.2001

http://www.allaire.com

Preface xxv

Technical support

Telephone support is available Monday through Friday 8 A.M. to 8 P.M. Eastern time
(except holidays)

Toll Free: 888.939.2545 (U.S. and Canada)

Tel: 617.761.2100 (outside U.S. and Canada)

For complete details about Allaire Product Support options, please refer to the Allaire
Support pages on the Allaire web site: http://www.allaire.com/support.

Postings to the ColdFusion Support Forum (http://forums.allaire.com) can be
made any time.

Sales

Toll Free: 888.939.2545

Tel: 617.761.2100
Fax: 617.761.2101

Email: sales@allaire.com

Web: http://www.allaire.com/store

xxvi Developing Web Applications with ColdFusion

C H A P T E R 1

Chapter 1 Introduction to ColdFusion

This chapter explains the difference between creating static Web pages with HTML
and creating dynamic applications with ColdFusion. It also describes what
ColdFusion is and how it works.

Contents

• A Quick Web Overview... 2

• What You Should Already Know.. 2

• What is ColdFusion?... 3

• ColdFusion Features .. 3

• ColdFusion Components .. 5

• How ColdFusion Server Works.. 7

2 Developing Web Applications with ColdFusion

A Quick Web Overview
Over the last few years, the Web has changed from being simply a collection of static
HTML pages to an application development platform. Rather than offering a space
where organizations can merely advertise goods and services, similar to traditional
yellow pages directories, companies conduct business ranging from ecommerce to
managing internal business processes. For example, a static HTML page would allow a
bookstore to publish its location, list services such as the ability to place special orders,
and advertise upcoming events like book signings. A dynamic site for the same
bookstore would allow customers to order books online, write reviews of books they’ve
read, and even get suggestions for purchasing books based on their reading
preferences.

ColdFusion is a rapid application development environment that lets you build
dynamic sites. You can use the Web to handle business transactions, and even to
conduct the day to day business of your organization.

What You Should Already Know
Before you begin using ColdFusion to create your Web applications, you should be
familiar with the following topics:

HTML

You’ll find that ColdFusion tags (CFML) are similar in syntax to HTML tags, yet, unlike
HTML, they enable you to create dynamic Web pages. You should understand how to
create a basic HTML page, put information into tables, gather data in forms, and create
links.

Relational Database Design and Management

If you plan on creating applications that use data from existing data sources, you
should understand how the data is organized. In most cases, this means
understanding how tables are organized to prevent unnecessary duplication of data.
For example, if you have data about employees, rather than repeating the department
number and name in each employee’s record, you would most likely have a separate
table that lists each department number and name just once.

SQL

Familiarity with some Structured Query Language (SQL) will be helpful as you develop
your ColdFusion applications. In particular, you should be able to use the SELECT,
UPDATE, INSERT, and DELETE statements, as well as WHERE clauses and boolean
logic operators.

Chapter 1: Introduction to ColdFusion 3

What is ColdFusion?
ColdFusion lets you create page-based Web applications using ColdFusion Markup
Language (CFML), the tag-based language you use to create server-side scripts that
dynamically control data integration, application logic, and user interface generation.
ColdFusion Web applications can contain XML, HTML, and other client technologies
such as CSS and JavaScript.

ColdFusion application pages are different from static HTML pages in the following
ways:

• They are saved and referenced with a specific file extension.

• The default ColdFusion file extension is CFM.

• They contain ColdFusion Markup Language.

Editions of ColdFusion

There are three editions of ColdFusion: Enterprise, Professional, and Express. Using
ColdFusion Enterprise and Professional editions and ColdFusion Studio, you can build
Web applications that leverage existing technologies and business systems such as
RDBMS, messaging servers, file repositories, directory servers, and distributed object
middleware. ColdFusion Enterprise also offers advanced security features, load
balancing, server fail-over, and visual cluster administration. Using ColdFusion
Express, you can build Web applications that interact with desktop databases that
support the ODBC standard.

ColdFusion Features
ColdFusion provides a comprehensive set of features that enable:

• Rapid development

• Scalable deployment

• Open integration

• Complete security

4 Developing Web Applications with ColdFusion

Rapid development

The ColdFusion development platform enhances the speed and ease of development
through the following features:

• A tag-based server scripting language that is powerful and intuitive.

• Two-way visual programming and database tools.

• Remote interactive debugging for quickly identifying and fixing problems.

• Web application wizards to automate common development tasks.

• Source control integration to enable team development.

• Secure file and database access via HTTP for remote development.

• A tag-based component architecture for flexible code reuse.

Scalable deployment

ColdFusion delivers a high-performance platform for application deployment through
the following features:

• A multi-threaded service architecture that scales across processors.

• Database connection pooling to optimize database performance.

• Just-in-time page compilation and caching to accelerate page request
processing.

• Dynamic load balancing for scalable performance in a cluster environment
(Enterprise Edition only).

• Automatic server recovery and fail-over for high availability (Enterprise Edition
only).

Open integration

ColdFusion integrates with new and legacy technologies through the following
features:

• Database connectivity using native database drivers (Enterprise Edition only),
ODBC, or OLE-DB.

• Embedded support for full text indexing and searching.

• Standards-based integration with directory, mail, HTTP, FTP, and file servers.

• Connectivity to distributed object technologies including CORBA (Enterprise
Edition only), COM (Windows Enterprise Edition only), Java objects and EJBs.

• Open extensibility with C/C++ and Java.

Chapter 1: Introduction to ColdFusion 5

Complete security

ColdFusion provides a foundation for building secure applications through the
following features:

• Integration with existing authentication systems including Windows NT
domain and LDAP directory servers, and proprietary user and group databases.

• Advanced access control so that server administrators can control developers’
access to files and data sources.

• Support for existing database security.

• Server sandbox security for protecting multiple applications on a single server
(Enterprise Edition only).

• Support for existing Web server authentication, security, and encryption.

For detailed information on security, refer to Administering ColdFusion Server. Also, for
the latest publications from Allair on security, visit the Security Zone at http://
www.allaire.com/developer/securityzone/. For a complete feature list and more
detailed information, refer to the ColdFusion product pages, http://www.allaire.com/
coldfusion.

ColdFusion Components
ColdFusion applications rely on several core components:

• ColdFusion Studio

• ColdFusion application pages

• ColdFusion Server

• ColdFusion Administrator

• ODBC data sources and other data sources

ColdFusion application pages look somewhat like HTML pages, but, as you will see, are
much more dynamic and powerful. You will probably want to use ColdFusion Studio to
create the application pages, although you can use the editor of your choice.
ColdFusion Server processes the ColdFusion application pages. For example, you may
access a data source from your application pages.

In addition to the core components, as you become more familiar with ColdFusion
and build more complex applications, you can use ColdFusion Extensions to extend its
capabilities.

6 Developing Web Applications with ColdFusion

ColdFusion Studio

ColdFusion Studio is the development environment for ColdFusion Server. It offers
visual development tools, including dynamic page previews using your Web browser,
an interactive debugger, a query builder, an expression builder, project management
and source control tools, and many other productivity enhancements. To learn more
about ColdFusion Studio, see Using ColdFusion Studio.

ColdFusion application pages

Application pages are the functional parts of a ColdFusion application, including the
user interface pages and forms that handle data input and format data output. They
can contain ColdFusion tags (CFML), HTML tags, CFScript, JavaScript, and anything
else you can normally embed in an ordinary HTML page. The default file extension
used for ColdFusion application pages is .CFM.

CFML

CFML is a tag-based server scripting language that encapsulates complex processes
such as connecting to databases and LDAP servers, and sending email. The core of the
ColdFusion development platform language is more than 70 server-side tags and more
than 200 functions.

ColdFusion Server

ColdFusion Server listens for requests from the Web server to process ColdFusion
application pages. It runs as a service under Windows NT and as a process under
UNIX. For information on installing and configuring ColdFusion Server, refer to
Administering ColdFusion Server.

ColdFusion Administrator

You use the Administrator to configure various ColdFusion Server options, including:

• ColdFusion data sources

• Debugging output

• Server settings

• Application security

• Server clustering

• Scheduling page execution

• Directory mapping

See Administering ColdFusion Server for details on using the Administrator.

Chapter 1: Introduction to ColdFusion 7

Data sources

ColdFusion applications may interact with any database that supports the ODBC
standard. However, ColdFusion is not limited to ODBC data sources. You can also
retrieve data using OLE-DB, native database drivers, or directory servers that support
the Lightweight Directory Access Protocol (LDAP). Data can also be retrieved from
mail servers that support the Post Office Protocol (POP), and which is indexed in Verity
collections.

How ColdFusion Server Works
Regardless of which ColdFusion Server you have installed, ColdFusion application
pages are processed on the server at runtime, each time they are requested by a
browser.

A page request happens when you click on a Web site link to open a Web page in your
browser. When you request a ColdFusion application page, ColdFusion server
processes the request, retrieves any data if necessary, routes the data through the Web
server, back to your browser.

In more detail, here’s what happens when a Coldfusion page is opened:

1. The client requests a page that contains CFML tags.

2. The Web server passes files to ColdFusion Server if a page request contains a
ColdFusion file extension.

3. ColdFusion Server scans the page and processes all CFML tags.

4. ColdFusion Server then returns only HTML and other client-side technologies to
the Web server.

5. The Web server passes the page back to the browser

.

8 Developing Web Applications with ColdFusion

C H A P T E R 2

Chapter 2 Writing Your First ColdFusion
Application

This chapter guides you through the ColdFusion development process as you create
a ColdFusion application page, save it, and view it in a browser.

Contents

• The Development Process... 10

• Writing Code... 10

• Saving Application Pages... 11

• Viewing Application Pages .. 11

• Variables.. 13

• Adding More Variables to the Application ... 14

• Development Considerations ... 14

10 Developing Web Applications with ColdFusion

The Development Process
Whether you are creating a static HTML page or a ColdFusion application page, you
follow the same iterative process:

• Write some code.

• Save the code to a document or page.

• View the page in a browser.

• Modify the page.

• Save the page again.

• View it in a browser.

• and so on...

Writing Code
Although you can code your application pages using NotePad or any HTML editor, this
manual will use ColdFusion Studio because it affords many features that make
ColdFusion development easier. See Using ColdFusion Studiofor details. If you haven’t
already done so, you should install ColdFusion Studio.

From a coding perspective, the major difference between a static HTML page and a
ColdFusion application page is that ColdFusion pages contain ColdFusion Markup
Language (CFML). CFML is a markup language that's very similar in syntax to HTML
so Web developers find it intuitive.

Unlike HTML which defines how things are displayed and formatted on the client,
CFML identifies specific operations that are performed by ColdFusion Server.

To create a ColdFusion application page:

1. Open ColdFusion Studio.

2. Select File > New and select the Default Template for your new page.

3. Edit the file so that it appears as below:

<HTML>
<HEAD>
<TITLE>Call Department</TITLE>
</HEAD>
<BODY>
Call Department
<CFSET Department="Sales">
<CFOUTPUT>
I’d like to talk to someone in #Department#.
</CFOUTPUT>
</BODY>
</HTML>

Chapter 2: Writing Your First ColdFusion Application 11

Saving Application Pages
Instead of saving pages with an HTM or HTML file extension, you save ColdFusion
application pages with a CFM or CFML extension. By default, the Web server knows to
pass a page that contains a CFM extension to the ColdFusion Server when it is
requested by a browser.

Save ColdFusion application pages underneath the Web root or another Web server
mapping so that the Web server can publish these pages to the Internet. For example,
you might want to create a directory myapps and save your practice pages there.

To save the page:

1. Select File > Save.

2. Save your page as calldept.cfm in myapps under the Web root directory.

For example, the directory path on your machine may be:

c:/inetpub/wwwroot/myapps on Windows NT or

<mywebserverdocroot>/myapps on UNIX

Viewing Application Pages
You view the application page on the Web server to ensure that the code is working as
expected. Presently, your page is very simple. But, as you add more code, you will want
to ensure that the page continues to work.

To view the page in a local browser:

1. Open a Web browser on your local machine and enter the following URL:

http://127.0.0.1/myapps/calldept.cfm

Where 127.0.0.1 refers to the localhost and is only valid when you are viewing
pages locally.

2. Use the Web browser facility that allows you to view a page’s source code to
examine the code that the browser uses for rendering.

Note that only HTML and text is returned to the browser.

12 Developing Web Applications with ColdFusion

Compare the code that was returned to the browser with what you originally
created. Notice that the ColdFusion comments and CFML tags are processed, but
do not appear in the HTML file that’s returned to the browser.

Code Review

The application page that you just created contains both HTML and CFML. You used
the CFML tag CFSET to define a variable, Department, and set its value to be "Sales."
You then used the CFML tag CFOUTPUT to display text and the value of the variable.

Original ColdFusion page HTML file returned by Web server

<HTML>
<HEAD>
<TITLE>Call Department</TITLE>
</HEAD>
<BODY>
Call Department
<!--- Set all variables --->
<CFSET Department="Sales">
<CFOUTPUT>
I’d like to talk to someone in
#Department#.
<!--- Display results --->
</CFOUTPUT>
</BODY>
</HTML>

<HTML>
<HEAD>
<TITLE>Call Department</TITLE>
</HEAD>
<BODY>
Call Department

I’d like to talk to someone in
Sales.

</BODY>
</HTML>

Code Description

<!--- Set all variables ---> CFML comment, which is not returned in
the HTML page.

<CFSET Department="Sales"> Creates a variable named Department and
sets the value equal to Sales.

<!--- Display results ---> CFML comment, which is not returned in
the HTML page.

<CFOUTPUT>
I’d like to talk to someone in
#Department#.
</CFOUTPUT>

Displays whatever appears between the
opening and closing CFOUTPUT tags, in
this case the text "I’d like to talk to
someone in" followed by the value of the
variable Department, which is "Sales."

Chapter 2: Writing Your First ColdFusion Application 13

Variables
A Web application page is different from a static Web page because it can publish data
dynamically. This involves creating, manipulating, and outputting variables.

A variable stores data that can be used in applications. As with other programming
languages, you’ll set variables in ColdFusion to store data that you want to access later.
And you’ll reference a range of variables to perform different types of application
processing.

There are a variety of variable types that you can create and reference in your
ColdFusion applications. Also, ColdFusion variables are typeless, which means that
you don’t need to define whether or not the variable value is numeric, text, or time-
date. See the CFML Language Reference for a complete list of variable types

The primary differences between variable types are where they exist, how long they
exist, and where their values are stored. These considerations are referred to as a
variable’s scope.

You will learn more about scope as needed throughout this book.

For example, you would store a user’s preferences in a variable in order to use that data
to customize the page that’s returned to the browser.

You don’t use pound signs when you create the variable. However, when you want to
display the value that a variable is set to, enclose the variable name in pound signs (#).
The following table illustrates the use of pound signs and variable names.

CFML Code Results

<CFSET Department="Sales"> The variable named Department is created
and the value is set to Sales.

<CFOUTPUT>
I’d like to talk to someone in
Department.
</CFOUTPUT>

ColdFusion doesn’t treat Department as a
variable because it isn’t surrounded by
pound signs. The HTML page will display:

I’d like to talk to someone in Department.

<CFOUTPUT>
I’d like to talk to someone in
#Department#.
</CFOUTPUT>

ColdFusion replaces the variable Department
with its value. The HTML page will display:

I’d like to talk to someone in Sales.

14 Developing Web Applications with ColdFusion

Adding More Variables to the Application
Applications can use many different variables. For example, the calldept.cfm
application page can set and display values for department, city, and salary.

To modify the application:

1. Return to the file calldept.cfm in ColdFusion Studio,

2. Modify the code so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Call Department</TITLE>
</HEAD>
<BODY>
Call Department

4 <!--- Set all variables --->
<CFSET Department="Sales">

4 <CFSET City="Boston">
4 <CFSET Salary="110000"
4 <!--- Display results --->

<CFOUTPUT>
4 I’d like to talk to someone in #Department# in #city# who earns at

least #Salary#.
</CFOUTPUT>
</BODY>
</HTML>

3. Save the file.

4. View the page in your Web browser by entering the following URL:

http://127.0.0.1/myapps/calldept.cfm

Development Considerations
The same development rules that apply for any programming environment apply to
ColdFusion. You should also follow the same programming conventions that you
would with any other language:

• Comment your code as you go.

HTML comments use this syntax: <!-- html comment -->

CFML comments add an extra dash: <!--- cfml comment --->

• File names should be all one word, begin with a letter and can contain only
letters, numbers and the underscore.

• File names should not contain special characters.

C H A P T E R 3

Chapter 3 Querying a Database

This chapter describes how to retrieve data from a database, work with query data,
and enable debugging in ColdFusion applications. You will learn how to use the
ColdFusion Administrator to set up a data source and enable debugging, use the
CFQUERY tag to query a data source, and use the CFOUTPUT tag to output the query
results to a Web page.

Contents

• Publishing Dynamic Data.. 16

• Database Basics.. 16

• Understanding Data Sources .. 18

• Adding Data Sources.. 19

• Retrieving Data... 20

• Writing SQL... 21

• Building Queries... 24

• Outputting Query Data.. 25

• Getting Information About Query Results ... 27

16 Developing Web Applications with ColdFusion

Publishing Dynamic Data
A Web application page is different from a static Web page because it can publish data
dynamically. This can involve querying databases, connecting to LDAP or mail servers,
and leveraging COM, DCOM, CORBA, or Java objects to retrieve, update, insert, and
delete data at runtime — as your users interact with pages in their browsers.

For ColdFusion developers, the term "data source" can refer to a number of different
types of structured content accessible locally or across a network. You can query Web
sites, LDAP servers, POP mail servers, and documents in a variety of formats.

Most commonly though, a database will drive your applications, and for this
discussion a data source is defined as the entry point for database operations.

During this chapter, you will build a query to retrieve data from company.mdb, an
Access database. In subsequent chapters in this book, you will insert and update data
in this database.

To build a query, you will need to use:

• ColdFusion data sources

• The CFQUERY tag

• SQL commands

Database Basics
You don't need a thorough knowledge of databases to develop a data-driven
ColdFusion application, but you will need to learn some basic concepts and
techniques.

A database is a structure for storing information. Databases are organized in tables,
which are collections of related items. For example, a table might contain the names,
street addresses, and phone numbers of individuals. Think of a table as a grid of
columns and rows. In this case, one column contains names, a second column
contains street addresses, and the third column contains phone numbers. Each row
constitutes one data record because the data in that row applies to a unique item, in
this case, one individual. Rows are also referred to as records. Columns are also
referred to as fields.

Chapter 3: Querying a Database 17

Data can be organized in multiple tables. This type of data structure is known as a
relational database and is the type used for all but the simplest data sets.

From this basic description, a few database design rules emerge:

• Each record should contain a unique identifier, known as the primary key.

This could be an employee ID, a part number, or a customer number. This is
typically the column used to maintain each record’s unique identity among the
tables in a relational database.

• Once a column has been defined to contain a specific type of information, the
data must be entered in that column in a consistent way.

This is accomplished by defining a data type for the column, such as allowing
only numeric values to be entered in the salary column.

• Assessing user needs and incorporating those needs in the database design is
essential to a successful implementation. A well-designed database
accommodates the changing data needs within an organization.

The best way to familiarize yourself with the capabilities of your database product or
DBMS is to review the product documentation.

18 Developing Web Applications with ColdFusion

Understanding Data Sources
A database is a file or server that contains a collection of data. A data source is a pointer
from ColdFusion to a specific database. You add data sources to your ColdFusion
Server so that you can point to the databases that you want to connect to from your
ColdFusion applications.

Open Database Connectivity (ODBC)

ODBC is a standard interface for connecting to a database from an application.
Applications that use ODBC must have an ODBC driver installed and configured for
each data source.

On Windows, you can check your system’s installed drivers by opening the ODBC Data
Source Manager in the Windows Control Panel.

On Windows, the installed set of ColdFusion ODBC drivers includes:

• Microsoft SQL Server

• Microsoft Access and FoxPro databases

• Borland dBase-compliant databases

• Microsoft Excel worksheet data ranges

• Delimited text files

On UNIX, look in the ODBC page of the ColdFusion Administrator for a list of avalable
ODBC drivers.

A good source of information on ODBC is the ODBC Programmer’s Reference at http://
www.microsoft.com/data/odbc.

Chapter 3: Querying a Database 19

Adding Data Sources
You add data sources in the ColdFusion Administrator to define connection
requirements for database access.

When you add a data source, you assign it a name so that you can reference it within
tags such as CFQUERY on application pages to query databases. During a query, the
data source tells ColdFusion which database to connect to and what parameters to use
for the connection.

To add a data source:

1. Start the ColdFusion Administrator. On Windows, Select Start > Programs >
ColdFusion Server > ColdFusion Administrator. On UNIX, enter the URL
hostname/CFIDE/administrator in your browser.

The Administrator prompts you for a password if you assigned one to the
ColdFusion Server during install.

2. Enter a password to gain access to the Administrator.

3. Choose ODBC under the Data Sources heading on the left menu.

4. Name the data source CompanyInfo.

5. Select Microsoft Access Driver (*.mdb) from the dropdown box to describe the
ODBC driver.

6. Choose Add.

7. In the Database File field, enter the full path of the company.mdb Access database
and click OK.

8. Choose Create to create the CompanyInfo data source.

20 Developing Web Applications with ColdFusion

The data source is added to the data source list.

9. Locate CompanyInfo in the data source list.

10. Choose Verify to run the verification test on the data source.

If the data source was created, you should see this message:

The connection to the data source was verified successfully.

For more information about managing data sources, See Administering ColdFusion
Server.

Data Source Notes and Considerations

When adding data sources to ColdFusion Server, keep these guidelines in mind:

• Data source names should be all one word and begin with a letter.

• Data source names can contain only letters, numbers and the underscore.

• Data source names should not contain special characters.

• Although data source names are not case-sensitive, you should use a consistent
capitalization scheme.

• A data source must exist in the ColdFusion Administrator before you use it on
an application page to retrieve data.

Retrieving Data
You can query databases to retrieve data at runtime. When retrieving data from a
database:

• You use the CFQUERY tag on a page to tell ColdFusion how to connect to a
database and how to store the retrieved data.

• You write SQL commands inside the CFQUERY block to specify the data that
you want to retrieve from the database.

• The retrieved data is stored on that page as a query variable.

• You can reference the query variable data on that page in a CFOUTPUT block to
use its values.

The CFQUERY Tag

The CFQUERY tag is one of the most frequently used CFML tags. You use it in
conjunction with the CFOUTPUT tag so that you can retrieve and reference the data
returned from a query.

When ColdFusion encounters a CFQUERY tag on a page, it does the following:

• Connects to the specified data source.

Chapter 3: Querying a Database 21

• Performs SQL commands that are enclosed within the block.

• Returns query variable values to the page.

CFQUERY tag syntax

<CFQUERY NAME="EmpList" DATASOURCE="CompanyInfo">
You’ll type SQL here

</CFQUERY>

In this example, the query code tells ColdFusion to:

• Use the CompanyInfo data source to connect to the company.mdb database.

• Store the retrieved data in the query variable EmpList.

In general, you should follow these guidelines:

• The CFQUERY tag is a block tag, that is, it has an opening <CFQUERY> and
ending </CFQUERY> tag.

• Use the NAME attribute to name the query variable so that you can reference it
later on the page.

• Use the DATASOURCE attribute to name an existing data source that should be
used to connect to a specific database.

• Always surround attribute values with double quotes (").

• Place SQL statements inside the CFQUERY block to tell the database what to
process during the query.

• When referencing text literals in SQL, use single quotes (’). For example, Select
* from mytable WHERE FirstName=’Russ’ selects every record from mytable
in which the first name is Russ.

Note The data source must exist in order to perform a successful query.

Writing SQL
In between the begin and end CFQUERY tags, write the SQL that you want the
database to execute.

For example, to retrieve data from a database:

• Write a SELECT statement that lists the fields or columns that you want to
select for the query.

• Follow the SELECT statement with a FROM clause that specifies the database
tables that contain the columns.

Tip If you are using ColdFusion Studio, you can use the Query Builder to
build SQL statements by graphically selecting the tables, and records
within those tables you want to retrieve. See Using ColdFusion Studio for
details.

22 Developing Web Applications with ColdFusion

When the database processes the SQL, it creates a data set that is returned to
ColdFusion Server. ColdFusion places the data set in memory and assigns it the name
that you defined for the query in the begin CFQUERY tag.

You may reference that data set by name using the CFOUTPUT tag further down on the
page.

Basic SQL Syntax elements

The following sections present brief descriptions of the main SQL command elements.

Statements

These keywords identify commonly-used SQL commands:

Statement clauses

These keywords are used to refine SQL statements:

Basic SQL Statements

Keyword Description

SELECT Retrieves the specified records

INSERT Adds a new row

UPDATE Changes values in the specified rows

DELETE Removes the specified rows

Basic SQL Clauses

Keyword Description

FROM Names the data source for the operation

WHERE Sets one or more conditions for the operation

ORDER BY Sorts the result set in the specified order.

GROUP BY Groups the result set by the specified select list items.

Chapter 3: Querying a Database 23

Operators

These specify conditions and perform logical and numeric functions:

SQL Notes and Considerations

Keep the following in mind when writing SQL in ColdFusion:

• There is a lot more to SQL than what is covered here. It’s a good idea to
purchase one or several SQL guides that you can refer to.

• The data source, columns, and tables that you reference must exist in order to
perform a successful query.

• Some DBMS vendors use non-standard SQL syntax (known as a dialect) in their
products. ColdFusion does not validate the SQL in a CFQUERY, so you are free
to use any syntax that is supported by your data source. Check your DBMS
documentation for non-standard SQL usage.

Basic SQL Operators

Operator Description

AND Both conditions must be met, such as Paris AND Texas

OR At least one condition must be met, such as Smith OR Smyth

NOT Exclude the condition following, such as Paris NOT France

= Equal to

<> Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

+ Addition

- Subtraction

/ Division

* Multiplication

24 Developing Web Applications with ColdFusion

Building Queries
As discussed earlier in this chapter, you build queries using the CFQUERY tag and SQL.

To query the table:

1. Create a new application page.

2. Edit the page so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>Employee List</H1>

4 <CFQUERY NAME="EmpList" DATASOURCE="CompanyInfo">
4 SELECT FirstName, LastName, Salary, Contract
4 FROM Employees
4 </CFQUERY>

</BODY>
</HTML>

3. Save the page as emplist.cfm in myapps under the Web root directory. For
example, the directory path on your machine may be:

C:\INETPUB\WWWROOT\myapps on Windows NT

4. Return to your browser and enter the following URL to view EmpList.cfm:

http://127.0.0.1/myapps/emplist.cfm

5. View source in the browser.

The ColdFusion EmpList data set is created by ColdFusion Server, but only HTML
and text is sent back to the browser. To display the data set on the page, you must
code tags and variables to output the data.

Code Review

The query you just created retrieves data from the CompanyInfo database.

Code Description

<CFQUERY NAME="EmpList"
DATASOURCE="CompanyInfo">

Query the database specified in the
CompanyInfo datasource

SELECT FirstName, LastName,
Salary, Contract
FROM Employees

Get information from the FirstName,
LastName, Salary, and Contract fields in
the Employees table

</CFQUERY> End the CFQUERY block

Chapter 3: Querying a Database 25

Query Notes and Considerations

When creating queries to retrieve data, keep these guidelines in mind:

• Enter the query NAME and DATASOURCE attributes in the begin CFQUERY tag.

• Surround attribute settings with double quotes(").

• Reference the query data by naming the query in the CFOUTPUT tag later on
the page.

• Make sure that a data source exists in the ColdFusion Administrator before you
reference iit n a CFQUERY tag.

• The SQL that you write is sent to the database and performs the actual data
retrieval.

• Columns and tables that you refer to in your SQL statement must exist,
otherwise the query will fail.

Outputting Query Data
After you have defined a query on a page, you can use the CFOUTPUT tag with the
QUERY attribute to define the query variable that you want to output to a page. When
you use the QUERY attribute:

• ColdFusion loops over all the code contained within the CFOUTPUT block,
once for each row returned from a database.

• Reference specific column names within the CFOUTPUT block to output the
data to the page.

• You can place text and HTML tags inside or surrounding the CFOUTPUT block
to format the data on the page.

The CFOUTPUT tag accepts a variety of optional attributes but, ordinarily, you will use
the QUERY attribute to define the name of an existing query.

To output query data on your page:

1. Return to empList.cfm in Studio.

2. Edit the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>Employee List</H1>
<CFQUERY NAME="EmpList" DATASOURCE="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employees

</CFQUERY>
4 <CFOUTPUT QUERY="EmpList">

26 Developing Web Applications with ColdFusion

4 #FirstName#, #LastName#, #Salary#, #Contract#

4 </CFOUTPUT>

</BODY>
</HTML>

3. Save the file as emplist.cfm.

4. View the page in a browser.

A list of employees appears in the browser, with each line displaying one row of
data.

You have created a ColdFusion application page that retrieves and displays data from a
database. At present, the output is raw. You will learn how to format the data in the
next chapter.

Code Review

You now display the results of the query on the page.

Query Output Notes and Considerations

When outputting query results, keep these guidelines in mind:

• Run a CFQUERY before referencing its results using a CFOUTPUT with a
QUERY attribute.

• It’s a good idea to run all queries before all output blocks.

• A query name must exist on the page in order to successfully output its data.

• Surround variable references with pound signs to output their current values to
a page.

• Prefix variables with their variable type — in the case of a query variable, it's the
name of the query.

Code Description

<CFOUTPUT QUERY="EmpList"> Display information retrieved in the
EmpList query

#FirstName#, #LastName#,
#Salary#, #Contract#

Display the value of the FirstName,
LastName, Salary, Contract
fields of the first record

 Insert a line break (go to the next line

Then, keep displaying the fields
you’ve specified for each record,
followed by a line break, until you run
out of records.

</CFOUTPUT> End the CFOUTPUT block

Chapter 3: Querying a Database 27

• When outputting the data itself, you define the variable name using the QUERY
attribute.

• When outputting query properties variables, don’t use the QUERY attribute;
instead, prefix the variable reference with the name of the query, for example,
EmpList.RecordCount.

• Columns must exist and be retrieved to the application in order to output their
values.

• As with other attributes, surround the QUERY value with double quotes (").

• As with any variables that you reference for output, surround column names
with pound signs (#) to tell ColdFusion to output the column’s current values.

• Add a
 tag to the end of the variable references so that ColdFusion will
start a new line for each row that is returned from the query.

Getting Information About Query Results
Each time you query a database with the CFQUERY tag, you get not only the data itself,
but also query properties, as described in the following table::

To output query data on your page:

1. Return to emplist.cfm in Studio.

2. Edit the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>Employee List</H1>
<CFQUERY NAME="EmpList" DATASOURCE="CompanyInfo">

SELECT FirstName, LastName, Salary, Contract
FROM Employees

</CFQUERY>
<CFOUTPUT QUERY="EmpList">

#FirstName#, #LastName#, #Salary#, #Contract#

</CFOUTPUT>

Query Properties

Property Description

RecordCount The total number of records returned by the query.

ColumnList Returns a comma-delimited list of the query columns.

CurrentRow The current row of the query being processed by CFOUTPUT.

28 Developing Web Applications with ColdFusion

4 <CFOUTPUT>
4 The query returned #EmpList.RecordCount# records.
4 </CFOUTPUT>

</BODY>
</HTML>

3. Save the file as emplist.cfm.

4. View the page in a browser.

The number of employees now appears below the list of employees.

Code Review

You now display the number of records retrieved in the query.

Query Properties Notes and Considerations

Keep the following in mind when using query properties:

• Prefix the property with its type — in this case — prefix the property with the
name of the query.

• Reference the query property within a CFOUTPUT block so that ColdFusion
will output the query variable value to the page.

• Surround the query property reference with pound signs (#) so that ColdFusion
knows to replace the property name with its current value.

Code Description

<CFOUTPUT> Display what follows

The query returned Display the text "The query returned"

#EmpList.RecordCount# Display the number of records
retrieved in the EmpList query

records. Display the text "records"

</CFOUTPUT> End the CFOUTPUT block.

C H A P T E R 4

Chapter 4 Retrieving and Formatting the
Data You Want

This chapter explains how to select the data to display in a dynamic Web page. It also
describes how to populate an HTML table with query results and how to use
ColdFusion functions to format and manipulate data.

Contents

• Using Forms to Specify the Data to Retrieve.. 30

• Processing Form Variables on Action Pages... 34

• Dynamically Generating SQL Statements.. 34

• Creating Action Pages .. 35

• Using HTML Tables to Layout Query Results .. 37

• Formatting Individual Data Items .. 38

• Performing Pattern Matching ... 39

• Filtering Data Based on Multiple Conditions .. 39

• Creating Table Joins ... 40

• Building Flexible Search Interfaces .. 40

• Returning Query Results to the User .. 42

30 Developing Web Applications with ColdFusion

Using Forms to Specify the Data to Retrieve
Until now, you’ve retrieved all of the records from a table. However, there are many
instances when you’ll want to retrieve data based on certain criteria. For example, you
may want to see records for everyone in a particular department, everyone in a
particular town whose last name is Smith, or books by a certain author.

You can use forms in ColdFusion applications to allow users to specify what data they
want to retrieve in a query.

When you submit a form, you pass the variables to an associated page, called an action
page, where some type of processing takes place.

Note Because forms are not ColdFusion-specific, the syntax and examples that
follow provide you with just enough detail to get going with ColdFusion.

FORM tag syntax

<FORM ACTION="actionpage.cfm" METHOD="Post">
...

</FORM>

• Use the ACTION attribute to specify an action page to which you pass form
variables for processing.

• Use the METHOD attribute to specify how the variables are submitted from the
browser to the action page on the server.

All ColdFusion forms must be submitted with an attribute setting of
METHOD="Post".

Form Controls

Within the form, you’ll describe the form controls needed to gather and submit user
input. There are a variety of form controls types available. You choose form control
input types based on the type of input the user should provide.

Chapter 4: Retrieving and Formatting the Data You Want 31

To create a form:

1. Create a new application page, using Studio.

2. Edit the page so that it appears as follows:

HTML Form Controls

Control Code

Text control <INPUT TYPE="Text" NAME="ControlName" SIZE="Value" MAXLENGTH="Value">

Radio
buttons

<INPUT TYPE="Radio" NAME="ControlName" VALUE="Value1">DisplayName1
<INPUT TYPE="Radio" NAME="ControlName" VALUE="Value2">DisplayName2
<INPUT TYPE="Radio" NAME="ControlName" VALUE="Value3">DisplayName3

Select box <SELECT NAME="ControlName">
<OPTION VALUE="Value1">DisplayName1
<OPTION VALUE="Value2">DisplayName2
<OPTION VALUE="Value3">DisplayName3

</SELECT>

Check box <INPUT TYPE="Checkbox" NAME="ControlName" VALUE="Yes|No">Yes

Reset button <INPUT TYPE="Reset" NAME="ControlName" VALUE="DisplayName">

Submit
button

<INPUT TYPE="Submit" NAME="ControlName" VALUE="DisplayName">

32 Developing Web Applications with ColdFusion

<HTML>
<HEAD>
<TITLE>Input form</TITLE>
</HEAD>
<BODY>
<!--- define the action page in the form tag. The form variables will
pass to this page when the form is submitted --->

<form action="actionpage.cfm" method="post">

<!-- text box -->
<p>
First Name: <INPUT TYPE="Text" NAME="FirstName" SIZE="20"
MAXLENGTH="35">

Last Name: <INPUT TYPE="Text" NAME="LastName" SIZE="20"
MAXLENGTH="35">

Salary: <INPUT TYPE="Text" NAME="Salary" SIZE="10" MAXLENGTH="10">
</P>

<!-- select box -->
City
<SELECT NAME="City">

<OPTION VALUE="Arlington">Arlington
<OPTION VALUE="Boston">Boston
<OPTION VALUE="Cambridge">Cambridge
<OPTION VALUE="Minneapolis">Minneapolis
<OPTION VALUE="Seattle">Seattle

</SELECT>

<!-- radio buttons -->
<p>
Department:

<input type="radio" name="Department" value="Training">Training

<input type="radio" name="Department" value="Sales">Sales

<input type="radio" name="Department" value="Marketing">Marketing

</p>

<!-- check box -->
<P>
Contractor? <input type="checkbox" name="Contractor" value="Yes"
checked>Yes
</P>

<!-- reset button -->
<INPUT TYPE="Reset" NAME="ResetForm" VALUE="Clear Form">

<!-- submit button -->
<INPUT TYPE="Submit" NAME="SubmitForm" VALUE="Submit">
</FORM>
</BODY>
</HTML>

3. Save the page as formpage.cfm within the myapps directory under your Web root
directory.

Chapter 4: Retrieving and Formatting the Data You Want 33

4. View the form in a browser.

The form appears in the browser.

Remember that you need an action page in order to submit values; you will create
one later in this chapter.

Code Review

A form appears on the page, ready for user input.

Code Description

<FORM ACTION="actionpage.cfm" METHOD="POST"> Gather the information from this form using
the Post method, and do something with it
on the page actionpage.cfm.

<INPUT TYPE="Text" NAME="FirstName" SIZE="20"
MAXLENGTH="35">

Create a text box called FirstName where
users can enter their first name. Make it 20
characters wide, but allow input of up to 35
characters.

<INPUT TYPE="Text" NAME="LastName" SIZE="20"
MAXLENGTH="35">

Create a text box called LastName where
users can enter their first name. Make it 20
characters wide, but allow input of up to 35
characters.

<INPUT TYPE="Text" NAME="Salary" SIZE="10"
MAXLENGTH="10">

Create a text box called Salary where users
can enter a salary to look for. Make it 10
characters wide, and allow input of up to 10
characters.

<SELECT NAME="City">
<OPTION VALUE="Arlington">Arlington
<OPTION VALUE="Boston">Boston
<OPTION VALUE="Cambridge">Cambridge
<OPTION VALUE="Minneapolis">Minneapolis
<OPTION VALUE="Seattle">Seattle

</SELECT>

Create a drop down select box named City
and populate it with the values "Arlington,"
"Boston," "Cambridge," "Minneapolis," and
"Seattle."

<input type="checkbox" name="Contractor"
value="Yes|No" checked>Yes

Create a checkbox that allows users to
specify whether they want to list employees
who are contractors. Have the box checked
by default.

<INPUT TYPE="Reset" NAME="ResetForm"
VALUE="Clear Form">

Create a reset button to allow users to clear
the form. Put the text "Clear Form" on the
button.

<INPUT TYPE="Submit" NAME="SubmitForm"
VALUE="Submit">

Create a submit button to send the values
users enter to the action page for processing.
Put the text "Submit" on the button.

34 Developing Web Applications with ColdFusion

Form Notes and Considerations

• To make the coding process easy to follow, name form controls the same as
target database fields.

• Limit radio buttons to three-to-five mutually exclusive options.

If you need more than that many options, consider a dropdown select box.

• Use select boxes to allow the user to choose multiple items.

• All the data that you collect on a form is automatically passed as form variables
to the associated action page.

• Checkboxes and radio buttons do not pass to action pages unless they are
selected on a form. In fact, if you try to reference these variables on the action
page, you will receive an error if they are not present.

• You can dynamically populate dropdown select boxes using query data. See
“Dynamically Populating Select Boxes” on page 46 for details.

Processing Form Variables on Action Pages
A ColdFusion action page is just like any other application page except that you can
use the form variables that are passed to it from an associated form. A form variable is
passed for every form control that contains a value when the form is submitted.

Note If multiple controls have the same name, one form variable is passed to
the action page. It contains a comma delimited list.

A form variable's name is the name that you assigned to the form control on the form
page. Refer to form variable by name within tags, functions and other expressions on
an action page.

Because form variables extend beyond the local page — their scope is the action page
— prefix them with "form." to explicitly tell ColdFusion that you are referring to a form
variable. For example this code references the LastName form variable for output on
an action page:

<CFOUTPUT>
#Form.LastName#

</CFOUTPUT>

Dynamically Generating SQL Statements
As you've already learned, you can retrieve a record for every employee in a database
table by composing a query like this:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT FirstName, LastName, Contract
FROM Employees

</CFQUERY>

Chapter 4: Retrieving and Formatting the Data You Want 35

But when you want to return information about employees that match user search
criteria, you use the SQL WHERE clause with a SQL SELECT statement to compare a
value against a character string field. When the WHERE clause is processed, it filters
the query data based on the results of the comparison.

For example, to return employee data for only employees with the last name of Allaire,
you would build a query that looks like this:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT FirstName, LastName, Contract
FROM Employees

4 WHERE LastName = ’Allaire’
</CFQUERY>

However, instead of putting the LastName directly in the SQL WHERE clause, you can
use the text the user entered in the form for comparison:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT FirstName, LastName, Salary
FROM Employees

4 WHERE LastName=’#Form.LastName#’
</CFQUERY>

Creating Action Pages

To create an action page for the form:

1. Create a new application page in Studio.

2. Enter the following code:

<HTML>
<HEAD>
<TITLE>Retrieving Employee Data Based on Criteia from Form</TITLE>
</HEAD>

<BODY>
<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employees
WHERE LastName=’#Form.LastName#’

</CFQUERY>
<H4>Employee Data Based on Criteria from Form</H4>
<CFOUTPUT query="GetEmployees">
#FirstName#
#LastName#
#Salary#

</CFOUTPUT>
</BODY>
</HTML>

3. Save the page as actionpage.cfm within the myapps directory.

4. View formpage.cfm in your browser.

36 Developing Web Applications with ColdFusion

5. Enter data for the LastName form control and submit it.

6. Return to the form in your browser.

7. Reset the values.

8. Do not check the checkbox and submit the form again.

An error occurs when the checkbox does not pass to the action page.

You will receive errors if you submit the form without checking the checkbox form
controls. You will learn how to apply conditional logic to your action page to
compensate for this HTML limitation in “Testing for a variable's existence” on
page 51.

Code Review

Form Variable Notes and Considerations

When using form variables, keep the following guidelines in mind:

• A form variable's scope is the action page.

• Prefix form variables with "form." when referencing them on the action page.

• Surround variable values with pound signs (#) for output.

• Checkboxes and radio buttons are only passed to the action page if an option is
selected.

Code Description

<CFQUERY NAME="GetEmployees"
DATASOURCE="CompanyInfo">

Query the datasource CompanyInfo and name
the query GetEmployees.

SELECT FirstName, LastName, Salary
FROM Employees
WHERE LastName=’#Form.LastName#’

Retrieve the FirstName, LastName, and Salary
fields from the Employees table, but only if the
value of the LastName field matches what the
user entered in the LastName text box in the
form on formpage.cfm.

<CFOUTPUT query="GetEmployees"> Display results of the GetEmployees query.

#FirstName#
#LastName#
#Salary#

Display the value of the FirstName, LastName,
and Salary fields for a record, starting with the
first record, then go to the next line. Keep
displaying the records that match the criteria
you specified in the SELECT statement,
followed by a line break, until you run out of
records

</CFOUTPUT> Close the CFOUTPUT block

Chapter 4: Retrieving and Formatting the Data You Want 37

• Form variables for checkboxes and radio buttons generate errors on action
pages if nothing is selected for the form controls.

Using HTML Tables to Layout Query Results
You have displayed each row of data from the Employees table, but the information
was unformatted. You can use HTML tables to control the layout of information on the
page. In addition, you can use CFML functions to format individual pieces of data such
as dates and numeric values.

You can use HTML tables to specify how the results of a query appear on a page. To do
so, you put the CFOUTPUT tag inside the table tags. You can also use the HTML TH tag
to put column labels in a header row. To create a row in the table for each row in the
query results, put the TR block inside the CFOUTPUT tag.

To put the query results in a table:

1. Return to the file emplist.cfm in Studio.

2. Modify the page so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Retrieving Employee Data Based on Criteia from Form</TITLE>
</HEAD>

<BODY>
<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">

SELECT FirstName, LastName, Salary
FROM Employees
WHERE LastName=’#Form.LastName#’

</CFQUERY>
<H4>Employee Data Based on Criteia from Form</H4>

4 <TABLE>
4 <TR>
4 <TH>First Name</TH>
4 <TH>Last Name</TH>
4 <TH>Salary</TH>
4 </TR>

<CFOUTPUT QUERY="GetEmployees">
4 <TR>
4 <TD>#FirstName#</TD>
4 <TD>#LastName#</TD>
4 <TD>#Salary#</TD>
4 </TR>

</CFOUTPUT>
4 </TABLE>

</BODY>
</HTML>

3. Save the page as actionpage.cfm within the myapps directory.

38 Developing Web Applications with ColdFusion

4. View formpage.cfm in your browser.

5. Enter data for the LastName form control and submit it.

6. The records that match the criteria specified in the form appear in a table.

Code Review

Formatting Individual Data Items
You may want to format individual data items. For example, you can format the Salary
field as a monetary value.

To format the Salary using the dollar format, you use the CFML expression
DollarFormat(number).

To change the format of the Salary:

1. Return to actionpage.cfm in Studio.

2. Change the line <TD>#Salary#</TD> to <TD>#DollarFormat(Salary)#</TD>

Code Description

<TABLE> Put data into a table.

<TR>
<TH>First Name</TH>
<TH>Last Name</TH>
<TH>Salary</TH>

</TR>

In the first row of the table, include three
columns, with the headings: First Name, Last
Name, and Salary.

<CFOUTPUT QUERY="GetEmployees"> Get ready to display the results of the
GetEmployees query.

<TR>
<TD>#FirstName#</TD>
<TD>#LastName#</TD>
<TD>#Salary#</TD>

</TR>

Create a new row in the table, with three
columns. For a record, put the value of the
FirstName field, the value of the LastName field,
and the value of the Salary field.

</CFOUTPUT> Keep getting records that matches the criteria,
and display each row in a new table row until
you run out of records.

</TABLE> End of table.

Chapter 4: Retrieving and Formatting the Data You Want 39

Performing Pattern Matching
Use the SQL LIKE operator and SQL wildcard strings in a SQL WHERE clause when you
want to compare a value against a character string field so that the query returns
database information based on commonalities. This is known as pattern matching and
often used to query databases.

For example, to return data for employees whose last name starts with AL and ends
with anything, you would build a query that looks like this:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT FirstName, LastName,
StartDate, Salary, Contract
FROM Employees
WHERE LastName LIKE ’AL%’

</CFQUERY>

• The LIKE operator tells the database that the string that follows should be used
for pattern matching.

• The LIKE operator tells the database that the string that follows should be used
for pattern matching.

• If you placed a wildcard before and after AL, you would retrieve any record in
that column that contains AL.

• Surround strings in SQL statements with single quotes (’).

• When comparing a value against a numeric field, don’t surround the value with
single quotes (’).

Note By default, SQL is not case-sensitive.

Filtering Data Based on Multiple Conditions
Combine a SQL WHERE clause with a SQL AND clause in your queries when you want
to retrieve data based on the results of more than one comparison.

For example, to return data for contract employees who earn more than $50,000, you
would build a query that looks like this:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT FirstName, LastName
StartDate, Salary, Contract
FROM Employees
WHERE Contract = ’Yes’
AND Salary > 50000

</CFQUERY>

40 Developing Web Applications with ColdFusion

Creating Table Joins
Many times, the data that you want to retrieve is maintained in multiple tables. For
example, in the database that you’re working with:

• Department information is maintained in the Departments table. This includes
department ID numbers.

• Employee information is maintained in the Employees table. This also includes
department ID numbers.

To compare and retrieve data from more than one table during a query, use the
WHERE clause to join two tables through common information.

For example, to return employee names, start dates, department names, and salaries
for employees that work for the HR department, you would build a query that looks
like this:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT Departments.Department.Name,
Employees.FirstName,
Employees.LastName,
Employees.StartDate,
Employees.Salary
FROM Departments, Employees
WHERE Departments.Department_ID = Employees.Department_ID
AND Departments.Department_Name = ’HR’

</CFQUERY>

• Prefix each column in the SELECT statement to explicitly state which table the
data should be retrieved from.

• The Department_ID field is the primary key of the Departments table and the
Foreign Key of the Employees table.

Building Flexible Search Interfaces
Frequently, you will want users to optionally enter multiple search criteria.

Wrap conditional logic around the SQL AND clause to build a flexible search interface.
To test for multiple conditions, wrap additional CFIF tags around additional AND
clauses.

For example, to allow users to search for employees by last name, department, or both,
you would build a query that looks like this:

<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT Departments.Department.Name,
Employees.FirstName,
Employees.LastName,
Employees.StartDate,
Employees.Salary
FROM Departments, Employees
WHERE 1=1

Chapter 4: Retrieving and Formatting the Data You Want 41

<CFIF Form.LastName IS NOT "">
AND Employees.LastName = ’Form.LastName’
</CFIF>

</CFQUERY>

Code Review

To build a flexible search interface:

1. Return to actionpage.cfm in Studio.

2. Modify the page so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Retrieving Employee Data Based on Criteria from Form</TITLE>
</HEAD>

<BODY>
<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">

4 SELECT Departments.Department.Name,
4 Employees.FirstName,
4 Employees.LastName,
4 Employees.StartDate,
4 Employees.Salary
4 FROM Departments, Employees
4 WHERE Departments.Department_ID = Employees.Department_ID
4 <CFIF Form.Department_Name IS NOT "">
4 AND Departments.Department_Name = ’Form.Department_Name’
4 </CFQUERY>

<H4>Employee Data Based on Criteia from Form</H4>
<TABLE>
<TR>

<TH>First Name</TH>
<TH>Last Name</TH>

<TH>Salary</TH>

Code Description

SELECT Departments.Department.Name,
Employees.FirstName,
Employees.LastName,
Employees.StartDate,
Employees.Salary
FROM Departments, Employees

WHERE 1=1

Retrieve the fields listed from the Departments
and Employees tables, joining the tables based
on the Department_ID field in each table.

<CFIF Form.LastName IS NOT "">
AND Employees.LastName = ’Form.LastName’
</CFIF>

But if the user specified a last name in the form,
only retrieve the records where the last name is
the same as the one the user entered in the
form.

42 Developing Web Applications with ColdFusion

</TR>
<CFOUTPUT QUERY="GetEmployees">
<TR>

<TD>#FirstName#</TD>
<TD>#LastName#</TD>
<TD>#Salary#</TD>

</TR>
</CFOUTPUT>
</TABLE>
</BODY>
</HTML>

3. Save the file.

4. Test the search interface in your browser.

The returned records will not be displayed because you have not entered that code
yet, however, you will see the number of records returned if you have debugging
enabled.

Returning Query Results to the User
When you build search interfaces, keep in mind that there won’t always be a record
returned. If there is at least one record returned from a query, you will usually format
that data using an HTML table. But to make sure that a search has retrieved records,
you will need to test if any records have been returned using the recordcount variable
in a conditional logic expression in order to display search results appropriately to
users.

For example, to inform the user that no records were found if the number of records
returned for the GetEmployees query is 0, insert the following code before displaying
the data:

<CFIF GetEmployees.RecordCount IS "0">
No records match your search criteria.

<CFELSE>

• Prefix RecordCount with the queryname.

• Add a true procedure that displays a message to the user.

• Add a not true procedure after the CFELSE tag to format the returned data
using an HTML table.

To return search results to users:

1. Return to actionpage.cfm in Studio.

2. Add the code indicated.

<HTML>
<HEAD>
<TITLE>Retrieving Employee Data Based on Criteia from Form</TITLE>
</HEAD>

Chapter 4: Retrieving and Formatting the Data You Want 43

<BODY>
<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">
SELECT Departments.Department.Name,

Employees.FirstName,
Employees.LastName,
Employees.StartDate,
Employees.Salary
FROM Departments, Employees

WHERE Departments.Department_ID = Employees.Department_ID
<CFIF Form.Department_Name IS NOT "">
AND Departments.Department_Name = ’Form.Department_Name’

</CFQUERY>
<H4>Employee Data Based on Criteia from Form</H4>

4 <CFIF GetEmployees.RecordCount IS "0">
4 No records match your search criteria.

4 Please go back to the form and try again.
4 <CFELSE>

<TABLE>
<TR>

<TH>First Name</TH>
<TH>Last Name</TH>
<TH>Salary</TH>

</TR>
<CFOUTPUT QUERY="GetEmployees">
<TR>

<TD>#FirstName#</TD>
<TD>#LastName#</TD>
<TD>#Salary#</TD>

</TR>
</CFOUTPUT>
</TABLE>
</BODY>
</HTML>

3. Save the file.

4. Return to the form, enter search criteria and submit the form.

5. If no records match the criteria you specified, the message displays.

44 Developing Web Applications with ColdFusion

C H A P T E R 5

Chapter 5 Making Variables Dynamic

This chapter explains how to use CFML to dynamically populate forms and
dynamically generate SQL.

Contents

• Dynamically Populating Select Boxes .. 46

• Creating Dynamic Checkboxes and Multiple Select Boxes 47

• Testing for a variable’s existence... 51

• Creating Default Variables with CFPARAM.. 51

• Checking Query Parameters with CFQUERYPARAM 52

• Dynamic SQL.. 53

46 Developing Web Applications with ColdFusion

Dynamically Populating Select Boxes
In the previous chapter, you hard-coded a form’s select box options.

Instead of manually entering the information on a form, you can dynamically populate
a select box with database fields. When you code this way, changes that you make to a
database are automatically reflected on the form page.

To dynamically populate a select box:

• Use the CFQUERY tag to retrieve the column data from a database table.

• Use the CFOUTPUT tag with the QUERY attribute within the SELECT tag to
dynamically populate the OPTIONS of this form control.

To dynamically populate a select box:

1. Open the file formpage.cfm in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Input form</TITLE>
</HEAD>
<BODY>

4 <CFQUERY NAME="GetDepartments" DATASOURCE="CompanyInfo">
4 SELECT Location
4 FROM Departments
4 </CFQUERY>

<!--- define the action page in the form tag. The form variables will
pass to this page when the form is submitted --->

<form action="actionpage.cfm" method="post">

<!-- text box -->
<P>
First Name: <INPUT TYPE="Text" NAME="FirstName" SIZE="20"
MAXLENGTH="35">

Last Name: <INPUT TYPE="Text" NAME="LastName" SIZE="20"
MAXLENGTH="35">

Salary: <INPUT TYPE="Text" NAME="Salary" SIZE="10" MAXLENGTH="10">
</P>

<!-- select box -->
City

4 <SELECT NAME="City">
4 <CFOUTPUT QUERY="GetDepartments">
4 <OPTION VALUE="#GetDepartments.Location#>
4 #GetDepartments.Location#
4 </OPTION>
4 </CFOUTPUT>

Chapter 5: Making Variables Dynamic 47

4 </SELECT>

<!-- radio buttons -->
<P>
Department:

<INPUT TYPE="radio" name="Department" value="Training">Training

<INPUT TYPE="radio" name="Department" value="Sales">Sales

<INPUT TYPE="radio" name="Department" value="Marketing">Marketing

</P>

<!-- check box -->
<P>
Contractor? <input type="checkbox" name="Contractor" value="Yes"
checked>Yes
</P>

<!-- reset button -->
<INPUT TYPE="reset" NAME="ResetForm" VALUE="Clear Form">

<!-- submit button -->
<INPUT TYPE="submit" NAME="SubmitForm" VALUE="Submit">
</FORM>
</BODY>
</HTML>

3. Save the page as formpage.cfm.

4. View formpage.cfm in a browser.

The changes that you just made appear in the form.

Remember that you need an action page to submit values.

Creating Dynamic Checkboxes and Multiple Select Boxes
When an HTML form contains either a list of checkboxes with the same name or a
multiple select box, the user’s entries are made available as a comma-delimited list
with the selected values. These lists can be very useful for a wide range of inputs.

Note If no value is entered for a checkbox or multiple select lists, no variable is
created.The SQL INSERT statement will not work correctly if there are no
values. To correct this problem, make the form fields required, use
Dynamic SQL, or use CFPARAM to establish a default value for the form
field..

Checkboxes

When you put a series of checkboxes with the same name in an HTML form, the
variable that is created contains a comma-delimited list of values. The values can be
either numeric values or alphanumeric strings. These two types of values are treated
slightly differently.

48 Developing Web Applications with ColdFusion

Searching numeric values

Suppose you want a user to select one or more departments using checkboxes. You
query the database to retrieve detailed information on the selected department(s).

Select one or more departments to get information on:

<INPUT TYPE="checkbox"
NAME="SelectedDept"
VALUE="1">
Training

<INPUT TYPE="checkbox"
NAME="SelectedDept"
VALUE="2">
Marketing

<INPUT TYPE="checkbox"
NAME="SelectedDept"
VALUE="3">
HR

<INPUT TYPE="checkbox"
NAME="SelectedDept"
VALUE="4">
Sales

<INPUT TYPE="hidden"
NAME="SelectedDepts_required"
VALUE="You must select at least one organization.">

The text displayed to the user is the name of the department, but the VALUE attribute
of each checkbox corresponds to the underlying database primary key for the
department’s record.

If the user checked the Marketing and Sales items, the value of the SelectedDept form
field would be "2,4." If this parameter were used, the following would be the resulting
SQL statement:

SELECT *
FROM Departments
WHERE Department_ID IN (#form.SelectedDept#)

The statement sent to the database would be:

SELECT *
FROM Departments
WHERE Department_ID IN (2,4)

Searching string values

To search for a database field containing string values (instead of numeric), you must
modify both the checkbox and CFQUERY syntax.

Chapter 5: Making Variables Dynamic 49

The first example searched for department information based on a numeric primary
key field called "Department_ID." Suppose, instead, that the primary key is a database
field called "DepartmentName" that contains string values. In that case, it’s necessary
to make the following modifications:

• Make the value attribute of the checkboxes equal to the string value.

• Enclose the value attribute in single quotes.

<INPUT TYPE="checkbox"
NAME="SelectedDepts"
VALUE="’Training’">
Training

<INPUT TYPE="checkbox"
NAME="SelectedDepts"
VALUE="’Marketing’">
Marketing

<INPUT TYPE="checkbox"
NAME="SelectedDepts"
VALUE="’HR’">
HR

<INPUT TYPE="checkbox"
NAME="SelectedDepts"
VALUE="’Sales’">
Sales

<INPUT TYPE="checkbox"
NAME="SelectedDepts_required"
VALUE="You must select at least one organization.">

If the user checked Marketing and Sales, the value of the SelectedDepts form field
would be ’Marketing’,’Sales’.

Note You must use the ColdFusion PreserveSingleQuotes function in the SQL
statement to prevent ColdFusion from escaping the single quotes in the
form field value:

SELECT *
FROM Departments
WHERE DepartmentName IN
(#PreserveSingleQuotes(form.SelectedDepts)#)

The statement sent to the database would be:

SELECT *
FROM Departments
WHERE DepartmentName IN (’Marketing’,’Sales’)

Multiple select lists

ColdFusion treats multiple select lists (HTML input type SELECT with attribute
MULTIPLE) just like checkboxes. The data made available to your page from any

50 Developing Web Applications with ColdFusion

multiple select list is a comma-delimited list of the entries selected by the user. For
example, a multiple select list contains four entries: Training, Marketing, HR, and
Sales. The user selects Marketing and Sales. The value of the form field variable is then
’Marketing’, ’Sales’.

Just as you can with checkboxes, you can also query with multiple select lists by
searching a database field that contains either numeric values or string values.

Searching numeric values

For example, suppose you want the user to select departments from a multiple select
box. The query retrieves detailed information on the selected department(s):

Select one or more companies to get more information on:
<SELECT Name="SelectDepts" MULTIPLE>

<OPTION VALUE="1">Training
<OPTION VALUE="2">Marketing
<OPTION VALUE="3">HR
<OPTION VALUE="4">Sales

</SELECT>

<INPUT TYPE="hidden"
NAME="SelectDepts_required"
VALUE="You must select at least one department.">

If the user selected the Marketing and Sales items, the value of the SelectDepts form
field would be 2,4.

If this parameter were used in the following SQL statement:

SELECT *
FROM Departments
WHERE Department_ID IN (#form.SelectDepts#)

the statement sent to the database would be:

SELECT *
FROM Departments
WHERE Department_ID IN (2,4)

Searching string values

Suppose you want the user to select departments from a multiple select list. The
database field search is a string field. The query retrieves detailed information on the
selected department(s):

Select one or more departments to get
more information on:
<SELECT Name="SelectDepts" MULTIPLE>

<OPTION VALUE="’Training’">Training
<OPTION VALUE="’Marketing’">Marketing
<OPTION VALUE="’HR’">HR

Chapter 5: Making Variables Dynamic 51

<OPTION VALUE="’Sales’">Sales
</SELECT>

<INPUT TYPE="hidden"
NAME="SelectDepts_required"
VALUE="You must select at least one department.">

If the user selected the Marketing and Sales items, the value of the SelectDepts form
field would be ’Marketing’,’Sales’.

Just as you did when using checkboxes to search database fields containing string
values, use the ColdFusion PreserveSingleQuotes function with multiple select boxes:

SELECT *
FROM Departments
WHERE DepartmentName IN (#PreserveSingleQuotes(form.SelectDepts)#)

The statement sent to the database would be:

SELECT *
FROM Departments
WHERE DepartmentName IN (’Marketing’, ’Sales’)

Testing for a variable’s existence
Before relying on a variable’s existence in an application page, you can test to see if it
exists using the IsDefined function. For example, the following code checks to see if a
Form variable named Order_ID exists:

<CFIF Not IsDefined("FORM.Order_ID")>
<CFLOCATION URL="previous_page.cfm">

</CFIF>

The argument passed to the IsDefined function must always be enclosed in double
quotes. See the CFML Language Reference for more information on the IsDefined
function.

If you attempt to evaluate a variable that has not been defined, ColdFusion will not be
able to process the page. To help diagnose such problems, use the interactive debugger
in ColdFusion Studio or turn debugging on in the ColdFusion Administrator. The
Administrator debugging information shows which variables are being passed to your
application pages.

Creating Default Variables with CFPARAM
Another way to create a variable is to test for its existence and optionally supply a
default value if the variable does not already exist. The following shows the syntax of
the CFPARAM tag:

<CFPARAM NAME="VariableName"
TYPE="data_type"
DEFAULT="DefaultValue">

52 Developing Web Applications with ColdFusion

There are two ways to use the CFPARAM tag, depending on how you want the
validation test to proceed.

• Use CFPARAM with only the NAME attribute to test that a required variable
exists. If it does not exist, the ColdFusion server stops processing the page.

• Use CFPARAM with both the NAME and DEFAULT attributes to test for the
existence of an optional variable. If the variable exists, processing continues
and the value is not changed. If the variable does not exist, it is created and set
to the value of the DEFAULT attribute.

The following example shows how to use the CFPARAM tag to check for the existence
of an optional variable and to set a default value if the variable does not already exist:

<CFPARAM NAME="Form.Contract" DEFAULT="Yes">

Example: Testing for variables

Using CFPARAM with the NAME variable is a way to clearly define the variables that a
page or a custom tag expects to receive before processing can proceed. This can make
your code more readable, as well as easier to maintain and to debug.

For example, the following series of CFPARAM tags indicates that this page expects two
form variables named StartRow and RowsToFetch:

<CFPARAM NAME="Form.StartRow">
<CFPARAM NAME="Form.RowsToFetch">

If the page with these tags is called without either one of the form variables, an error
occurs and the page stops processing.

Example: Setting default values

In this example, CFPARAM is used to see if optional variables exist. If they do exist,
processing continues. If they do not exist, they are created and set to the DEFAULT
value.

<CFPARAM NAME="Cookie.SearchString" DEFAULT="temple">

<CFPARAM NAME="Client.Color" DEFAULT="Grey">

<CFPARAM NAME="ShowExtraInfo" DEFAULT="No">

You can also use CFPARAM to set default values for URL and Form variables, instead of
using conditional logic.

Checking Query Parameters with CFQUERYPARAM
You can use the CFQUERYPARAM tag to check data types of query parameters and
perform data validation.

Chapter 5: Making Variables Dynamic 53

Example: Checking data types

<!--
This example shows the use of CFQUERYPARAM when valid input is given in
Dept_ID.
--->
<HTML>
<HEAD>
<TITLE>CFQUERYPARAM Example</TITLE>
</HEAD>

<BODY>
<H3>CFQUERYPARAM Example</H3>
<CFSET Course_ID=12>
<CFQUERY NAME="getFirst" DataSource="CompanyInfo">

SELECT *
FROM departments
WHERE Dept_ID=<CFQUERYPARAM VALUE="#Dept_ID#"
CFSQLTYPE="CF_SQL_INTEGER">

</CFQUERY>
<CFOUTPUT QUERY="getFirst">
<p>Department Number: #number#

 Description: #descript#
</P>
</CFOUTPUT>
</BODY>
</HTML>

Dynamic SQL
Embedding SQL queries that use dynamic parameters is a powerful mechanism for
linking variable inputs to database queries. However, in more sophisticated
applications, you will often want user inputs to determine not only the content of
queries but also the structure of queries.

Dynamic SQL allows you to dynamically determine (based on runtime parameters)
which parts of a SQL statement are sent to the database. So if a user leaves a search
field empty, for example, you could simply omit the part of the WHERE clause that
refers to that field. Or, if a user does not specify a sort order, the entire ORDER BY
clause could be omitted.

Dynamic SQL is implemented in ColdFusion by using CFIF, CFELSE, CFELSEIF tags to
control how the SQL statement is constructed, for example:

54 Developing Web Applications with ColdFusion

<CFQUERY NAME="queryname"
DATASOURCE="datasourcename">

...Base SQL statement

<CFIF value operator value >
...additional SQL
</CFIF>

</CFQUERY>

First, you need to create an input form, which asks for information about several fields
in the Employees table. Instead of entering information in each field, a user may want
to search on certain fields, or even on only one field. To search for data based on only
the fields the user enters in the form, you use CFIF statements in the SQL statement.

To create the input form:

1. Create a new application page in Studio.

2. Enter the following code:

<HTML>
<HEAD>
<TITLE>Input form</TITLE>
</HEAD>
<BODY>
<!--- Query the Employees table to be able to populate the form --->
<CFQUERY NAME="AskEmployees" DATASOURCE="CompanyInfo">
SELECT

FirstName,
LastName,
Salary,
Contract

FROM Employees
</CFQUERY>

<!--- define the action page in the form tag. The form variables will
pass to this page when the form is submitted --->

<FORM ACTION="getemp.cfm" METHOD="post">

<!-- text box -->
<P>
First Name: <INPUT TYPE="Text" NAME="FirstName" SIZE="20"
MAXLENGTH="35">

Last Name: <INPUT TYPE="Text" NAME="LastName" SIZE="20"
MAXLENGTH="35">

Salary: <INPUT TYPE="Text" NAME="Salary" SIZE="10" MAXLENGTH="10">
</P>

<!-- check box -->
<P>
Contractor? <input type="checkbox" name="Contract" value="Yes" >Yes
if checked
</P>

Chapter 5: Making Variables Dynamic 55

<!-- reset button -->
<INPUT TYPE="reset" NAME="ResetForm" VALUE="Clear Form">

<!-- submit button -->
<INPUT TYPE="submit" NAME="SubmitForm" VALUE="Submit">
</FORM>
</BODY>
</HTML>

3. Save the page as askemp.cfm.

Once you have created the input form, you can then create the action page to process
the user’s request. This action page will determine where the user has entered search
criteria and search based only on those criteria.

To create the action page:

1. Create a new application page in Studio.

2. Enter the following code:

<HTML>
<HEAD>

<TITLE>Get Employee Data</TITLE>
</HEAD>

<BODY>
<CFQUERY NAME="GetEmployees" DATASOURCE="CompanyInfo">

4 SELECT *
4 FROM Employees
4 WHERE 0=0
4
4 <CFIF #Form.FirstName# is not "">
4 AND Employees.FirstName LIKE ’#form.FirstName#%’
4 </CFIF>

4 <CFIF #Form.LastName# is not "">
4 AND Employees.LastName LIKE ’#form.LastName#%’
4 </CFIF>

4 <CFIF #Form.Salary# is not "">
4 AND Employees.Salary >= #form.Salary#
4 </CFIF>

4 <CFIF isDefined("Form.Contract") IS "YES">
4 AND Employees.Contract = ’Yes’
4 <CFELSE>
4 AND Employees.Contract = ’No’
4 </CFIF>

</CFQUERY>

<H3>Employee Data Based on Criteria from Form</H3>

56 Developing Web Applications with ColdFusion

<TABLE>
<TR>

<TH>First Name</TH>
<TH>Last Name</TH>
<TH>Salary</TH>
<TH>Contractor</TH>

</TR>
<CFOUTPUT QUERY="GetEmployees">
<TR>

<TD>#FirstName#</TD>
<TD>#LastName#</TD>
<TD>#DollarFormat(Salary)#</TD>
<TD>#Contract#</TD>

</TR>
</CFOUTPUT>
</TABLE>

</BODY>
</HTML>

3. Save the page as getemp.cfm.

4. Open the file askemp.cfm in your browser and enter criteria into any fields, then
submit the form.

5. The results should meet the criteria you specify.

Code Review

The action page getemp.cfm build a SQL statement dynamically based on what the
user enters in the form page AskEmp.cfm.

CFML Code Description

SELECT *
FROM Employees
WHERE 0=0

Get all the records from the Employees
table as long as 0=0.

The WHERE 0=0 clause has no impact on
the query submitted to the database. But
if none of the conditions is true, it ensures
that the WHERE clause does not result in a
SQL syntax error.

<CFIF #Form.FirstName# is not "">
AND Employees.FirstName LIKE

’#form.FirstName#%’
</CFIF>

If the user entered anything in the
FirstName text box in the form, add "AND
Employees.FirstName LIKE ‘[what the user
entered in the FirstName text box]%'" to the
SQL statement.

Chapter 5: Making Variables Dynamic 57

<CFIF #Form.LastName# is not "">
AND Employees.LastName LIKE

’#form.LastName#%’
</CFIF>

If the user entered anything in the
LastName text box in the form, add "AND
Employees.LastName LIKE ‘[what the user
entered in the LastName text box]%'" to the
SQL statement.

<CFIF #Form.Salary# is not "">
AND Employees.Salary >=

#form.Salary#
</CFIF>

If the user entered anything in the Salary
text box in the form, add "AND
Employees.Salary >= [what the user
entered in the Salary text box]" to the SQL
statement.

<CFIF isDefined("Form.Contract") IS
"YES">

AND Employees.Contract = ’Yes’
<CFELSE>
AND Employees.Contract = ’No’

</CFIF>

If the user checked the Contractor check
box, get data for the employees who are
contractors, otherwise, get data for
employees who are not contractors.

CFML Code Description

58 Developing Web Applications with ColdFusion

C H A P T E R 6

Chapter 6 Updating Your Data

This chapter describes how to insert, update, and delete data in a database with
ColdFusion.

Contents

• Inserting Data... 60

• Creating an HTML Insert Form... 60

• Creating an Action Page to Insert Data... 61

• Updating Data .. 62

• Creating an Update Form .. 63

• Creating an Action Page to Update Data .. 65

• Deleting Data.. 66

• Requiring Users to Enter Values in Form Fields .. 67

• Validating the Data That Users Enter in Form Fields 68

60 Developing Web Applications with ColdFusion

Inserting Data
Inserting data into a database is usually done with two application pages:

• An insert form

• An insert action page

You can create an insert form with CFFORM tags (see “Creating Forms with the
CFFORM Tag” on page 124) or with standard HTML form tags. When the form is
submitted, form variables are passed to a ColdFusion action page that performs an
insert operation (and whatever else is called for) on the specified data source. The
insert action page can contain either a CFINSERT tag or a CFQUERY tag with a SQL
INSERT statement. The insert action page should also contain a message for the end
user.

Creating an HTML Insert Form

To create an insert form:

1. Create a new application page in Studio.

2. Edit the page so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Insert Data Form</TITLE>
</HEAD>

<BODY>
<H2>Insert Data Form</H2>
<FORM ACTION="insertdata.cfm" METHOD="Post">

Employee ID:
<INPUT TYPE="text" NAME="Employee_ID" SIZE="4" MAXLENGTH="4">

First Name:
<INPUT TYPE="text" NAME="FirstName" SIZE="35" MAXLENGTH="50">

Last Name:
<INPUT TYPE="text" NAME="LastName" SIZE="10" MAXLENGTH="10">

Department Number:
<INPUT TYPE="text" NAME="Department_ID" SIZE="4"

MAXLENGTH="4">

Start Date:
<INPUT TYPE="text" NAME="StartDate" SIZE="16" MAXLENGTH="16">

Salary:
<INPUT TYPE="text" NAME="Salary" SIZE="10" MAXLENGTH="10">

Contractor:
<INPUT TYPE="checkbox" name="Contract" value="Yes"

checked>Yes

<INPUT TYPE="reset" NAME="ResetForm" VALUE="Clear Form">
<INPUT TYPE="submit" NAME="SubmitForm" VALUE="Insert Data">

</FORM>
</BODY>

Chapter 6: Updating Your Data 61

</HTML>

3. Save the file as insertform.cfm in the myapps directory.

4. View insertform.cfm in a browser.

Data Entry Form Notes and Considerations

Creating data entry fields for an HTML form is very simple:

• You need only create the HTML form fields for each database field into which
you want to insert data.

• The names of your form fields must be identical to the names of your database
fields.

• You can use the full range of HTML input controls, including list boxes, radio
buttons, checkboxes, and multi-line text boxes in your forms.

• ColdFusion uses the NAME attribute to map HTML form fields to the
corresponding database fields and inserts the data entered by the user into the
appropriate database fields.

Creating an Action Page to Insert Data
There are two ways to create an action page to insert data into a database.

The CFINSERT tag is the easiest way to handle simple inserts from either a CFFORM or
an HTML form.

For more complex inserts from a form submittal you can use a SQL INSERT statement
in a CFQUERY tag instead of a CFINSERT tag. The SQL INSERT statement is more
flexible because you can insert information selectively or use functions within the
statement.

To create an insert action page with CFINSERT:

1. Create a new application page in Studio.

2. Enter the following code:

4 <CFINSERT DATASOURCE="CompanyInfo" TABLENAME="Employees">
<HTML>
<HEAD>

<TITLE>Input Form</TITLE>
</HEAD>
<BODY>
<H1>Employee Added</H1>
<CFOUTPUT>
You have added #Form.FirstName# #Form.LastName# to the Employees
database.
</CFOUTPUT>
</BODY>
</HTML>

62 Developing Web Applications with ColdFusion

3. Save the page. as insertpage.cfm.

4. View insertform.cfm in a browser, enter values, and click the Submit button.

5. The data is inserted into the Employees table and the message appears.

To create an insert page with CFQUERY:

1. Create a new application page in Studio.

2. Enter the following code:

4 <CFQUERY NAME="AddEmployee"
4 DATASOURCE="CompanyInfoB">
4 INSERT INTO Employees (Fi’, ’#Form.LastName#’,
4 ’#Form.Phone#’)
4 </CFQUERY>

<HTML>
<HEADER>

<TITLE>Insert Action Page</TITLE>
</HEADER>

<BODY>
<H1>Employee Added</H1>
<CFOUTPUT>
You have added #Form.FirstName# #Form.LastName# to the Employees
database.
</CFOUTPUT>
</BODY>
</HTML>

3. Save the page. as insertpage.cfm.

4. View isertform.cfm in a browser, enter values, and click the Submit button.

5. The data is inserted into the Employees table and the message appears.

Updating Data
Updating data in a database is usually done with two pages:

• An update form

• An update action page

You can create an update form with CFFORM tags or HTML form tags. The update
form calls an update action page, which can contain either a CFUPDATE tag or a
CFQUERY tag with a SQL UPDATE statement. The update action page should also
contain a message for the end user that reports on the update completion.

Chapter 6: Updating Your Data 63

Creating an Update Form
An update form is similar to an insert form, but there are two key differences:

• An update form contains a reference to the primary key of the record that is
being updated.

A primary key is a field or combination of fields in a database table that
uniquely identifies each record in the table. For example, in a table of employee
names and addresses, only the Employee_ID would be unique to each record.

• Because the purpose of an update form is to update existing data, the update
form is usually populated with existing record data.

The easiest way to designate the primary key in an update form is to include a hidden
input field with the value of the primary key for the record you want to update. The
hidden field indicates to ColdFusion which record to update.

To create an update form:

1. Create a new page in Studio.

2. Edit the page so that it appears as follows:

<CFQUERY NAME="GetRecordtoUpdate"
DATASOURCE="CompanyInfo">
SELECT *

FROM Employees
WHERE Employee_ID = #URL.Employee_ID#

</CFQUERY>

<HTML>
<HEAD>

<TITLE>Update Form</TITLE>
</HEAD>
<BODY>

<CFOUTPUT QUERY="GetRecordtoUpdate">
<FORM ACTION="UpdatePage.cfm" METHOD="Post">
<INPUT TYPE="Hidden" NAME="Employee_ID"

VALUE="#Employee_ID#">

First Name:
<INPUT TYPE="text" NAME="FirstName" VALUE="#FirstName#">

Last Name:
<INPUT TYPE="text" NAME="LastName" VALUE="#LastName#">

Department Number:
<INPUT TYPE="text" NAME="Department_ID"

VALUE="#Department_ID#">

Start Date:
<INPUT TYPE="text" NAME="StartDate" VALUE="#StartDate#">

Salary:
<INPUT TYPE="text" NAME="Salary" VALUE="#Salary#">

Contractor:

64 Developing Web Applications with ColdFusion

<INPUT TYPE="Submit" VALUE="Update Information">
</FORM>
</CFOUTPUT>

</BODY>
</HTML>

3. Save the page. as updatedorm.cfm.

4. View updateform.cfm in a browser.

Code Review

Code Description

<CFQUERY NAME="GetRecordtoUpdate"
DATASOURCE="CompanyInfo">
SELECT *

FROM Employees
WHERE Employee_ID = #URL.Employee_ID#

</CFQUERY>

Query the CompanyInfo
datasource and return the records
in which the employee ID matches
what was entered in the URL.

<CFOUTPUT QUERY="GetRecordtoUpdate"> Display the results of the
GetRecordtoUpdate query.

<FORM ACTION="EmployeeUpdate.cfm" METHOD="Post"> Create a form whose variables will
be process on the
EmployeeUpdate.cfm action page.

<INPUT TYPE="Hidden" NAME="Employee_ID"
VALUE="#Employee_ID#">

Use a hidden input field to pass the
employee ID to the action page.

First Name: <INPUT TYPE="text" NAME="FirstName"
VALUE="#FirstName#">

Last Name: <INPUT TYPE="text" NAME="LastName"
VALUE="#LastName#">

Department Number: <INPUT TYPE="text"
NAME="Department_ID" VALUE="#Department_ID#">

Start Date: <INPUT TYPE="text" NAME="StartDate"
VALUE="#StartDate#">

Salary: <INPUT TYPE="text" NAME="Salary"
VALUE="#Salary#">

Contractor: <INPUT TYPE="checkbox" name="Contract"
value="Yes" checked>Yes

<INPUT TYPE="Submit" VALUE="Update Information">
</FORM>
</CFOUTPUT>

Populate the fields of the update
form.

Chapter 6: Updating Your Data 65

Creating an Action Page to Update Data
You can create an action page to update data with either the CFUPDATE tag or
CFQUERY with the UPDATE statement.

The CFUPDATE tag is the easiest way to handle simple updates from a front end form.
The CFUPDATE tag has an almost identical syntax to the CFINSERT tag.

To use CFUPDATE, you must include all of the fields that make up the primary key in
your form submittal. The CFUPDATE tag automatically detects the primary key fields
in the table you are updating and looks for them in the submitted form fields.
ColdFusion uses the primary key field(s) to select the record to update. It then updates
the appropriate fields in the record using the remaining form fields submitted.

For more complicated updates, you can use a SQL UPDATE statement in a CFQUERY
tag instead of a CFUPDATE tag. The SQL update statement is more flexible for
complicated updates.

To create an update page with CFUPDATE:

1. Create a new application page in Studio.

2. Enter the following code:

4 <CFUPDATE DATASOURCE="CompanyInfo"
TABLENAME="Employees">

<HTML>
<HEAD>

<TITLE>Update Employee</TITLE>
</HEAD>
<BODY>

<H1>Employee Added</H1>
<CFOUTPUT>
You have updated the information for #Form.FirstName# #Form.LastName#
in the Employees database.
</CFOUTPUT>

</BODY>
</HTML>

3. Save the page. as updatepage.cfm.

4. View updateform.cfm in a browser, enter values, and click the Submit button.

5. The data is updated in the Employees table and the message appears.

To create an update page with CFQUERY:

1. Create a new application page in Studio.

2. Enter the following code:

4 <CFQUERY NAME="UpdateEmployee"
4 DATASOURCE="CompanyInfo">

66 Developing Web Applications with ColdFusion

4 UPDATE Employees
4 SET Firstname=’#Form.Firstname#’,
4 LastName=’#Form.LastName#’,
4 Department_ID=’#Form.Department_ID#’
4 StartDate=’#Form.StartDate#’>
4 Salary=#Form.Salary#>

WHERE Employee_ID=#Employee_ID#
</CFQUERY>

<H1>Employee Added</H1>
<CFOUTPUT>
You have updated the information for #Form.FirstName# #Form.LastName#
in the Employees database.
</CFOUTPUT>

3. Save the page. as updatepage.cfm.

4. View updateform.cfm in a browser, enter values, and click the Submit button.

5. The data is updated into the Employees table and the message appears.

Code Review

Deleting Data
Deleting data in a database can be done with a single delete page. The delete page
contains a CFQUERY tag with a SQL delete statement.

To delete one record from a database:

1. Open the file updateform.cfm in Studio.

2. Modify the file by changing the FORM tag so that it appears as follows:

<FORM ACTION="deletepage.cfm" METHOD="Post">

3. Save the modified file as deleteform.cfm.

4. Create a new application page in Studio.

Code Description

<CFQUERY NAME="UpdateEmployee"
DATASOURCE="CompanyInfo">
UPDATE Employees

SET Firstname=’#Form.Firstname#’,
LastName=’#Form.LastName#’,

Department_ID=’#Form.Department_ID#’
StartDate=’#Form.StartDate#’>
Salary=#Form.Salary#>

WHERE Employee_ID=#Employee_ID#
</CFQUERY>

After the SET clause, you must name a table column.
Then, you indicate a constant or expression as the
value for the column.

Be sure to remember the WHERE statement. If you
do not use it, If you do not use it, the SQL UPDATE
statement will apply the new information to every
row in the database.

Chapter 6: Updating Your Data 67

5. Enter the following code:

<CFQUERY NAME="DeleteEmployee"
DATASOURCE="CompanyInfo">
DELETE FROM Employees
WHERE Employee_ID = #URL.EmployeeID#

</CFQUERY>

<HTML>
<HEAD>

<TITLE>Delete Employee Record</TITLE>
</HEAD>
<BODY>
<H3>The employee record has been deleted.</H3>

</BODY>
</HTML>

6. Save the page. as deletepage.cfm.

7. View deleteform.cfm in a browser, enter values, and click the Submit button.

The employee is deleted from the Employees table and the message appears.

To delete several records, you would specify a condition. The following example
demonstrates deleting the records for everyone in the Sales department from the
Employee table. The example assumes that there are several Employees in the sales
department.

DELETE FROM Employees
WHERE Department = ’Sales’

To delete all the records from the Employees table, you would use the following:

DELETE FROM Employees

Note Deleting records from a database is not reversible. Use delete statements
carefully.

Requiring Users to Enter Values in Form Fields
One of the limitations of HTML forms is the inability to define input fields as required.
Because this is a particularly important requirement for database applications,
ColdFusion provides a server-side mechanism for requiring users to enter data in
fields.

To define an input field as required, use a hidden field that has a NAME attribute
composed of the field name and the suffix "_required." For example, to require that the
user enter a value in the FirstName field, use the syntax:

<INPUT TYPE="hidden" NAME="FirstName_required">

If the user leaves the FirstName field empty, ColdFusion rejects the form submittal and
returns a message informing the user that the field is required. You can customize the
contents of this error message using the VALUE attribute of the hidden field. For

68 Developing Web Applications with ColdFusion

example, if you want the error message to read "You must enter your first name," use
the syntax:

<INPUT TYPE="hidden"
NAME="FirstName_required"
VALUE="You must enter your first name.">

Validating the Data That Users Enter in Form Fields
Another limitation of HTML forms is that you cannot validate that users input the type
or range of data you expect. ColdFusion enables you to do several types of data
validation by adding hidden fields to forms. The hidden field suffixes you can use to do
validation are as follows:

Note Adding a validation rule to a field does not make it a required field. You
need to add a separate _required hidden field if you want to ensure user
entry.

Form Field Validation Using Hidden Fields

Field Suffix Value Attribute Description

_integer Custom error
message

Verifies that the user enters a number. If the
user enters a floating point value, it is
rounded to an integer.

_float Custom error
message

Verifies that the user enters a number. Does
not do any rounding of floating point values.

_range MIN=MinValue

MAX=MaxValue

Verifies that the numeric value entered is
within the specified boundaries. You can
specify one or both of the boundaries
separated by a space.

_date Custom error
message

Verifies that a date has been entered and
converts the date into the proper ODBC date
format. Will accept most common date forms,
for example, 9/1/98; Sept. 9, 1998).

_time Custom error
message

Verifies that a time has been correctly entered
and converts the time to the proper ODBC
time format.

_eurodate Custom error
message

Verifies that a date has been entered in a
standard European date format and converts
into the proper ODBC date format.

Chapter 6: Updating Your Data 69

To validate the data users enter in the Insert Form

1. Open the file insertform.cfm in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Insert Data Form</TITLE>
</HEAD>

<BODY>
<H2>Insert Data Form</H2>
<FORM ACTION="insertdata.cfm" METHOD="Post">

<INPUT TYPE="hidden"
NAME="DeptID_integer"
VALUE="The department ID must be a number.">

<INPUT TYPE="hidden"
NAME="StartDate_date"
VALUE="Enter a valid date as the start date.">

<INPUT TYPE="hidden"
NAME="Salary_float"
VALUE="The salary must be a number.">

Employee ID:
<INPUT TYPE="text"

NAME="Employee_ID"
SIZE="4"
MAXLENGTH="4">

First Name:
<INPUT TYPE="text"

NAME="FirstName"
SIZE="35"
MAXLENGTH="50">

Last Name:
<INPUT TYPE="text"

NAME="LastName"
SIZE="10"
MAXLENGTH="10">

Department Number:
<INPUT TYPE="text"

NAME="Department_ID" SIZE="4"
MAXLENGTH="4">

Start Date:
<INPUT TYPE="text"

NAME="StartDate" SIZE="16"
MAXLENGTH="16">

Salary:
<INPUT TYPE="text"

NAME="Salary"
SIZE="10"
MAXLENGTH="10">

Contractor:
<INPUT TYPE="checkbox"

NAME="Contract"
VALUE="Yes" CHECKED>Yes

70 Developing Web Applications with ColdFusion

<INPUT TYPE="reset"
NAME="ResetForm"
VALUE="Clear Form">

<INPUT TYPE="submit"
NAME="SubmitForm"
VALUE="Insert Data">

</FORM>
</HTML>

3. Save the file.

The VALUE attribute is optional. A default message displays if no value is supplied.

When the form is submitted, ColdFusion scans the form fields to find any validation
rules you specified. The rules are then used to analyze the user’s input. If any of the
input rules are violated, ColdFusion sends an error message to the user that explains
the problem. The user then must go back to the form, correct the problem and
resubmit the form. ColdFusion will not accept form submission until the entire form is
entered correctly.

Because numeric values often contain commas and dollar signs, these characters are
automatically stripped out of fields with _integer, _float, or _range rules before they
are validated and saved to the database.

Note If you use CFINSERT or CFUPDATE and you specified columns in your
database that are numeric, date, or time, form fields that insert data into
these fields are automatically validated. You can use the hidden field
validation functions for these fields to display a custom error message.

C H A P T E R 7

Chapter 7 Reusing Code

This chapter describes how to reuse common code with CFINCLUDE, and create
custom CFML tags that encapsulate common code.

Contents

• Ways to Reuse Code ... 72

• Reusing Common Code with CFINCLUDE.. 72

• About Custom Tags in CFML... 73

• Using Existing Custom Tags .. 73

• Writing Custom CFML Tags... 73

• Passing Attribute Values between Custom Tags .. 74

• Nesting Custom Tags.. 77

• Passing Data Between Nested Custom Tags .. 78

• Executing Custom Tags.. 82

• Installing Custom Tags... 85

• Managing Custom Tags ... 85

72 Developing Web Applications with ColdFusion

Ways to Reuse Code
ColdFusion provides several different ways to reuse code. If you are using ColdFusion
Studio, you can write code snippets, which you can copy into templates. For more
information on writing code snippets, see Using ColdFusion Studio. You can include a
template within another template with the CFINCLUDE tag. In addition, you can
create custom tags in CFML. Unlike included templates, these custom tags act as other
tags do, allowing you to pass parameters to them. Included templates, on the other
hand, behave just as though you typed the included code directly into the calling page.

Reusing Common Code with CFINCLUDE
Often times, you’ll use some of the same elements in multiple pages; for example,
navigation, headers, and footer code.

Instead of copying and maintaining the same code from page to page, ColdFusion
allows you to store the code in one page and then refer to it in many pages. This way,
you can modify one file; the changes appear throughout an entire application.

Use the CFINCLUDE tag to automatically include an existing file in the current page.
The file to include is the template. The page that calls the template is also known as the
calling page. Each time the calling page is requested, the template’s file contents are
included in that page for processing.

Refer to the CFML Language Reference for CFINCLUDE syntax.

To reference code in a calling page:

1. Open the file askemp.cfm in Studio.

2. Include logo.cfm in this page:

<CFINCLUDE TEMPLATE="logo.cfm">

3. Save the page.

4. Open getemp.cfm in Studio.

5. Include logo.cfm file in this page:

<CFINCLUDE TEMPLATE="Logo.cfm">

6. View askemp.cfm in a browser, then submit the form so that you display
getemp.cfm.

The logo should appear on both pages.

Note The file logo.cfm must be in the same directory where you saved
askemp.cfm and getemp.cfm. If it isn’t, make sure it is in a directory that
has a mapping defined in ColdFusion Administrator, or move it to the
appropriate directory.

Chapter 7: Reusing Code 73

About Custom Tags in CFML
Custom tags wrap functionality in a page that can be called from a ColdFusion
application page. ColdFusion custom tags built in CFML allow for rapid application
development and code re-use while offering off-the-shelf solutions to many
programming chores.

An online RealVideo title called "Creating Custom Tags" is available at the Allaire Alive
section of our Web site. It presents an overview of custom tags as a component
architecture for the emerging Web platform and outlines the creation and use of CFML
custom tags.

Using Existing Custom Tags
Before creating a custom tag in CFML, you will probably want to visit the Custom Tag
section of the Allaire Developer Exchange at . Tags are grouped in several broad
categories and are downloadable as freeware, shareware, or commercial software. You
can quickly view each tag’s syntax and usage information. The Gallery contains a
wealth of background information on custom tags and an online discussion forum for
tag topics.

Tag names with the CF_ preface are CFML custom tags; those with the CFX_ preface
are ColdFusion Extensions written in C++. For more information about the CFX tags,
see Chapter 18, “Building Custom CFAPI Tags,” on page 275.

If you don't find a tag that meets your specific needs, you want to create your own
custom tags in CFML.

Writing Custom CFML Tags
Writing a custom tag in CFML is no different from writing any CFML template. You can
use all CFML constructs, as well as HTML.

Custom tags are stored either in the current directory or under the customtags
directory. You call them using the CF_ prefix. Beyond that, you are free to use any
naming convention that fits your development practice. Unique descriptive names
make it easy for you and others to find the right tag. For example, the tag name
CF_getweather invokes the file getweather.cfm

If you are concerned about possible name conflicts when invoking a custom tag or if
the application must use a variable to dynamically call a custom tag at runtime, the
CFMODULE element provides a solution.

Note While tag names in templates are case-insensitive, custom tag file names
must be lower case on UNIX.

74 Developing Web Applications with ColdFusion

Defining attributes

CFML custom tags support both required and optional attributes. Attributes are
defined as name-value pairs. Custom tag attributes conform to CFML coding
standards:

• ColdFusion passes any attributes in the ATTRIBUTES scope.

• Use the CFPARAM tag at the top of a custom tag to test for and assign defaults
for each attribute that may be passed from a calling template.

• Use the ATTRIBUTES.attribute_name syntax when initializing passed attributes
to distinguish them from local ones.

• Attributes are case-insensitive.

• Attributes may be listed in any order within a tag.

• Attribute = value pairs for a tag must be separated by a space.

• Passed values that contain spaces must be enclosed in double-quotes.

Passing Attribute Values between Custom Tags
Because custom tags are individual templates, variables and other data aren’t
automatically shared between a custom tag and the calling template. To pass data, you
define attributes for the custom tag, just as in standard CFML coding.

To pass data from the calling template to the custom tag, use the ATTRIBUTES scope.
Conversely, to pass values back to the calling template, use the CALLER scope. You can
also access variables already set on the calling page in the custom tag by simply
prefixing the variable with the ’CALLER.’ prefix.

To create a custom tag:

1. Create a new application page (the calling page) in Studio.

2. Modify the file so that it appears as follows:

Chapter 7: Reusing Code 75

<HTML>
<HEAD>

<TITLE>Enter Name</TITLE>
</HEAD>

<BODY>
<!--- Enter a name, which could also be done in a form --->
<!--- This example simply uses a cfset --->

4 <CFSET NameYouEntered="Smith">

<!--- display the current name --->
<CFOUTPUT>
Before you leave this page, you’re #NameYouEntered#.

</CFOUTPUT>

<!--- go to the custom tag --->
4 <CF_GETMD NAME="#NameYouEntered#">

<!--- come back from custom tag --->

<!--- display the results of the custom tag --->
<CFOUTPUT>
You are now #DOCTOR#.
</CFOUTPUT>

</BODY>
</HTML>

3. Save the page as callingpage.cfm.

4. Create another new page (the custom tag) in Studio.

5. Enter the following code:

<HTML>
<HEAD>

<TITLE>GetMD Custom Tag</TITLE>
</HEAD>

<BODY>
<!--- get the value of the varible NAME from the calling page --->
<!--- put the text "Doctor " in front of the name --->
<!--- create a variable called DOCTOR, make its value "Doctor NAME" -
-->
<!--- and make its scope CALLER so that you can pass it back to the
calling page --->

<CFPARAM VALUE="Attributes.Name" DEFAULT="Who"

<CFSET CALLER.DOCTOR="Doctor " & "#ATTRIBUTES.NAME#">

</BODY>
</HTML>

6. Save the page as getmd.cfm.

76 Developing Web Applications with ColdFusion

7. Open the file callingpage.cfm in your browser.

The calling page uses the getmd custom tag and displays the results.

Code Review

Tip Be careful not to overwrite variables that might already exist on the
calling page. You should adopt a naming convention to minimize the
chance of overwriting variables. For example, prefix the returned variable
with customtagname_, with customtagname being the name of the
custom tag.

Note Data pertaining to the HTTP request or to the current application is
visible. This includes the variables in FORM, URL, CGI, COOKIES,
SERVER, APPLICATION, SESSION, and CLIENT scopes.

The Request scope is a reserved variable/scope that allows you to store data pertaining
to the complete hierarchy of custom tags used in a single page request. It is a structure
named "request." The variable is available to all templates: base, includes, and custom
tags. Collaborating custom tags that are not nested in a single tag can exchange data
via the request structure. You should assign a unique name for each variable. You
should store data in structures nested inside the request scope.

Code Description

<CFSET NameYouEntered="Smith"> In the calling page, create a variable
NameYouEntered and assign it the value
"Smith."

<CF_GETMD NAME="#NameYouEntered#"> In the calling page, call the getMD
custom tag and pass it the NAME
parameter whose value is the value of
the variable NameYou Entered.

<CFPARAM VALUE="Attributes.Name"
DEFAULT="Who"

Assign the value "Who" to Name if it has
no value.

<CFSET CALLER.DOCTOR="Doctor " &
"#ATTRIBUTES.NAME#">

See below. (It is helpful to look at this
code from right to left.)

#ATTRIBUTES.NAME# Get the value of the variable NAME from
the calling page

<CFSET DOCTOR="Doctor " &
"#ATTRIBUTES.NAME#">

Create a variable called DOCTOR, make
its value "Doctor NAME"

<CFSET CALLER.DOCTOR="Doctor " &
"#ATTRIBUTES.NAME#">

Make the variable’s scope CALLER so
that you can pass it back to the calling
page

Chapter 7: Reusing Code 77

Nesting Custom Tags
ColdFusion lets you turn a custom tag into a special kind of container that can enclose
additional custom tags, which allows you to nest tags. Base tags are also know as
ancestors or parent tags, while the tags that base tags call are known as sub tags,
descendants, or child tags.

You can create multiple levels of nesting by closing a sub tag. In this case, the sub tag
becomes the base tag for its own sub tags. Any tag with an end tag present can be an
ancestor to another tag.

Nested custom tags operate through three modes of processing, which are exposed to
the base tags through the variable ThisTag.ExecutionMode:

• The start mode, in which the base tag is processed for the first time.

• The inactive mode, in which sub tags and other code contained within the base
tag are processed.

No processing occurs in the base tag during this phase.

• The end mode, in which the base tag is processed a second time.

Associating sub tags with the base tag

While the ability to create nested custom tags is a tremendous productivity gain,
keeping track of complex nested tag hierarchies can become a chore. A simple
mechanism, the CFASSOCIATE tag, lets the parent know what the children are up to.
By adding this tag to a sub tag, you enable communication of its attributes to the base
tag.

Terms to Describe the Relationship Between Nested Tags

Calling tag Tag that is nested
within the calling tag

Notes

base tag sub tag A base tag is an ancestor that
has been explicitly associated
with a descendant with
CFASSOCIATE.

ancestor descendant An ancestor is any tag that
contains other tags between its
start and end tags.

parent child "Parent" and "child" are
synonyms for "ancestor" and
"descendant."

78 Developing Web Applications with ColdFusion

Passing Data Between Nested Custom Tags
A key custom tag feature is the ability of collaborating custom tags to exchange
complex data without user intervention and without violating the encapsulation of a
tag’s implementation outside the circle of its collaborating tags. The following issues
need to be addressed:

• What data should be accessible?

• Which tags can communicate to which tags?

• How are the source and targets of the data exchange identified?

• What CFML mechanism is used for the data exchange?

What data is accessible?

To enable developers to obtain maximum productivity in an environment with few
restrictions, CFML custom tags can expose all their data to collaborating tags.

When you develop custom tags, you should document all variables that collaborating
tags can access and/or modify. When your custom tags collaborate with other custom
tags, you should make sure that they do not modify any undocumented data.

To preserve encapsulation, put all tag data access and modification operations into
custom tags. For example, rather than simply documenting that the variable
MyQueryResults in a tag’s implementation holds an important query result set and
expecting users of the custom tag to manipulate MyQueryResults directly, create
another nested custom tag that manipulates MyQueryResult. This protects the users of
the custom tag from changes in the tag’s implementation.

Where is data accessible?

Two custom tags can be related in a variety of ways in a page. Ancestor and descendant
relationships are important because they relate to the order of tag nesting.

A tag’s descendants are inactive while the page is executed, that is, they have no
instance data. The tag’s data access is therefore restricted to ancestors only. Ancestor
data will be available from the current page and from the whole runtime tag context
stack. The tag context stack is the path from the current tag element back up the
hierarchy of nested tags, including those in included pages and custom tag references,
to the start of the base page for the request. CFINCLUDE tags and custom tags will
appear on the tag context stack.

High-level data exchange

There are many cases in which descendant tags are used only as a means for data
validation and exchange with an ancestor tag, such as CFHTTP/CFHTTPPARAM and
CFTREE/CFTREEITEM. You can use the CFASSOCIATE tag to encapsulate this
processing.

Chapter 7: Reusing Code 79

When CFASSOCIATE is encountered in a sub tag, the sub tag’s attributes are
automatically saved in the base tag. The attributes are in a structure appended to the
end of an array whose name is ‘ThisTag.collection_name'. The default value for the
DataCollection attribute is ‘AssocAttribs'. This attribute should be used only in cases
where the base tag can have more than one type of sub tag. It is convenient for keeping
separate collections of attributes, one per tag type.

CFASSOCIATE performs the following operations:

<!--- Get base tag instance data --->
<CFSET data = getBaseTagData(baseTag).thisTag>

<!--- Create a string with the attribute collection name --->
<CFSET collectionName = ’data.#dataCollection#"’>

<!--- Create the attribute collection, if necessary --->
<CFIF not isDefined(collectionName)>

<CFSET "#collectionName#" = arrayNew(1)>
</CFIF>

<!--- Append the current attributes to the array --->
<CFSET temp=arrayAppend(evaluate(collectionName), attributes)>

The CFML code accessing sub-tag attributes in the base tag could look like the
following:

<!--- Protect against no sub-tags --->
<CFPARAM Name=’thisTag.assocAttribs’ default=#arrayNew(1)#>

<!--- Loop over the attribute sets of all sub tags --->
<CFLOOP index=i from=1

to=#arrayLen(thisTag.assocAttribs)#>

<!--- Get the attributes structure --->
<CFSET subAttribs = thisTag.assocAttribs[i]>
<!--- Perform other operations --->

</CFLOOP>

Ancestor data access

The ancestor's data is represented by a structure object that contains all the ancestor's
data.

The following set of functions provide access to ancestral data:

• GetBaseTagList() — Returns a comma-delimited list of uppercased ancestor
tag names. An empty string is returned if this is a top-level tag. The first element
of a non-empty list is the parent tag.

• GetBaseTagData(TagName, InstanceNumber=1) — Returns an object that
contains all the variables, scopes, etc. of the nth ancestor with a given name. By
default, the closest ancestor is returned. If there is no ancestor by the given
name or if the ancestor does not expose any data (such as CFIF), an exception is
thrown.

80 Developing Web Applications with ColdFusion

Example: Ancestor data access

This example was snipped from a custom tag.

<CFIF thisTag.executionMode is ’start’>
<!--- Get the tag context stack
 The list will look something like
"CFIF,MYTAGNAME..." --->
<CFSET ancestorList = getBaseTagList()>

<!--- Output your own name because CFIF is
the first element of the tag context stack --->
<CFOUTPUT>
I’m custom tag #ListGetAt(ancestorlist,2)#<P>
</CFOUTPUT>

<!--- Determine whether you’re nested inside a loop --->
<CFSET inLoop = ListFindNoCase(ancestorList,’CFLOOP’)>
<CFIF inLoop neq 0>

I’m running in the context of a CFLOOP tag.<P>
</CFIF>

<!--- Determine whether you are nested inside
a custom tag. Skip the first two elements of the
ancestor list, i.e., CFIF and the name of the
custom tag I’m in --->
<CFSET inCustomTag = ’’>
<CFLOOP index=elem

list=#ListRest(ListRest(ancestorList))#>
<CFIF (Left(elem, 3) eq ’CF_’)>

<CFSET inCustomTag = elem>
<CFBREAK>

</CFIF>
</CFLOOP>

<CFIF inCustomTag neq ’’>
<!--- Say you are there --->
<CFOUTPUT>

I’m running in the context of a custom
tag named #inCustomTag#.<P>

</CFOUTPUT>

<!--- Get the tag instance data --->
<CFSET tagData = getBaseTagData(inCustomTag)>

<!--- Find out the tag’s execution mode --->
I’m located inside the
<CFIF tagData.thisTag.executionMode neq ’inactive’>

template because the tag is in
its start or end execution mode.

<CFELSE>
body

</CFIF>
<P>

Chapter 7: Reusing Code 81

<CFELSE>
<!--- Say you are lonely --->
I’m not nested inside any custom tags. :^(<P>

</CFIF>

</CFIF>

Passing Custom Tag Arguments via CFML Structures

Attributes can be passed to custom tags via the reserved attribute
ATTRIBUTECOLLECTION. ATTRIBUTECOLLECTION must reference a structure.

Syntax

CFMODULE

<CFMODULE TEMPLATE=template
OTHERATTR1=value
ATTRIBUTECOLLECTION=structure
OTHERATTR2=value>

Shorthand

<CF_MYCUSTOMTAG OTHERATTR1=value
ATTRIBUTECOLLECTION=structure
OTHERATTR2=value>

The key/value pairs contained within the structure specified by
ATTRIBUTECOLLECTION will be copied into the ATTRIBUTES scope. This has
essentially the same effect as specifying these attributes in the custom tag’s attribute
list.

ATTRIBUTECOLLECTION may be freely mixed with other attributes within the custom
tag’s attribute list.

The reserved attribute name ATTRIBUTECOLLECTION

Custom tag processing reserves ATTRIBUTECOLLECTION to refer to the structure
holding a collection of custom tag attributes. If ATTRIBUTECOLLECTION does not
refer to such a collection, the custom tag processor will raise a TEMPLATE exception.

A custom tag invoked by the two examples above may refer to #attributes.x# and
#attributes.y# to access the attributes passed via structure.

If the called custom tag uses a CFASSOCIATE tag to save its attributes in the base tag,
the attributes passed via structure will be saved as independent attribute values, with
no indication that they were aggregated into a structure by the custom tag’s caller.

82 Developing Web Applications with ColdFusion

Examples

Via CFMODULE
<CFSET zort=StructNew()>
<CFSET zort.X = "-X-">
<CFSET zort.Y = "-Y-">
<CFMODULE TEMPLATE="testtwo.cfm"

a="blab"
attributecollection=#zort#
foo="16">

Via shorthand
<CFSET zort=StructNew()>
<CFSET zort.X = "-X-">
<CFSET zort.Y = "-Y-">
<CF_TESTTWO a="blab" attributecollection=#zort# foo="16">

Accessing attributes within the custom tag

If testtwo.cfm contains this CFML:

---custom tag ---

<CFOUTPUT>#attributes.a# #attributes.x# #attributes.y#

#attributes.foo#</cfoutput>

--- end custom tag ---

Its output will be:

---custom tag ---
blab -X- 12 16
--- end custom tag ---

Executing Custom Tags

Tag instance data

During the execution of a custom tag template, ColdFusion keeps some data related to
the tag instance. The ThisTag scope is used to preserve this data with a unique
identifier. The behavior is similar to the File scope.

The following variables are generated by the ThisTag scope:

• ExecutionMode — valid values are "start" and "end."

• HasEndTag — used for code validation, it distinguishes between custom tags
that have and don't have end tags for ExecutionMode=start. The name of the
Boolean value is ThisTag.HasEndTag.

• GeneratedContent — can be processed as a variable.

Chapter 7: Reusing Code 83

• AssocAttribs — holds the attributes of all nested tags if CFASSOCIATE was used
them.

Pattern of execution

The same CFML template is executed for both the start and end tag of a custom tag.

Modes of execution

ColdFusion invokes a custom tag template in either of two modes:

• Start tag execution

• End tag execution

If an end tag is not explicitly provided and shorthand empty element syntax
(<TagName …/>) is not used, the custom tag template will be invoked only once in
start tag mode. If a tag must have an end tag provided, use ThisTag.HasEndTag during
start tag execution to validate this.

Specifying execution modes

A variable with the reserved name ThisTag.ExecutionMode will specify the mode of
invocation of a custom tag template. The variable will have one of the following values:

• Start — start tag execution

• End — end tag execution

During the execution of the body of the custom tag, the value of the ExecutionMode
variable is going to be inactive. In this framework, the template of a custom tag that
wants to perform some processing in both modes may look something like the
following:

<CFIF ThisTag.ExecutionMode is ’start’>
<!--- Start tag processing --->

<CFELSE>
<!--- End tag processing --->

</CFIF>

CFSWITCH can also be used:

<CFSWITCH expression=#ThisTag.ExecutionMode#>
<CFCASE value= ’start’>

<!--- Start tag processing --->
</CFCASE>
<CFCASE value=’end’>

<!--- End tag processing --->
</CFCASE>

</CFSWITCH>

84 Developing Web Applications with ColdFusion

Terminating tag execution

CFEXIT terminates execution of a custom tag. CFEXIT’s METHOD attribute specifies
where execution continues. CFEXIT can specify that processing continues from the
first child of the tag or continues immediately after the end tag marker.

The METHOD attribute can also be used to specify that the tag body should be
executed again. This enables custom tags to act as high-level iterators, emulating
CFLOOP behavior.

The following table summarizes CFEXIT behavior:

Access to generated content

Custom tags can access and modify the generated content of any of its instances using
the ThisTag.GeneratedContent variable. In this context, the term generated content
means the portion of the results that is generated by the body of a given tag. This
includes all results generated by descendant tags, too. Any changes to the value of this
variable will result in changes to the generated content.

ThisTag.GeneratedContent is always empty during the processing of a start tag. Any
output generated during start tag processing is not considered part of the tag’s
generated content.

As an example, consider a tag that comments out the HTML generated by its
descendants. Its implementation could look something like this:

CFEXIT Behavior in a Custom Tag

METHOD Attribute Value Location of CFExit Call Behavior

ExitTag (default) Base template Acts like CFABORT

ExecutionMode=start Continue after end tag

ExecutionMode=end Continue after end tag

ExitTemplate Base template Acts like CFABORT

ExecutionMode=start Continue from first child
in body

ExecutionMode=end Continue after end tag

Loop Base template Error

ExecutionMode=start Error

ExecutionMode=end Continue from first child
in body

Chapter 7: Reusing Code 85

<CFIF ThisTag.ExecutionMode is ’end’>
<CFSET ThisTag.GeneratedContent =

’<!--#ThisTag.GeneratedContent#-->’>
</CFIF>

Installing Custom Tags
Custom tags are just like other .cfm files except that they must be installed in a specific
location to be accessible from the calling template. Because ColdFusion loads the first
instance it finds of the custom tag called by a template, you should avoid placing
copies of a custom tag in different locations.

Local tags

The ColdFusion engine first searches for a custom tag in the directory of the calling
template. This allows you to keep a custom tag file in the same directory as the page
that uses it.

Shared tags

To share a custom tag among applications in multiple directories, place it in the
Custom Tags folder under your ColdFusion installation directory, for example
C:\CFUSION\CustomTags. You can create sub-folders to organize custom tags.
ColdFusion searches recursively for the Custom Tags directory, stepping down through
any existing subdirectories until the custom tag is found.

Managing Custom Tags
If you deploy custom tags in a multi-developer environment or distribute your tags
publicly, you may want to make use of additional ColdFusion capabilities:

• An advanced invocation syntax to resolve possible name conflicts

• Advanced security

• Template encoding

Resolving file name conflicts

To avoid errors caused by duplicate custom tag file names, use the CFMODULE tag in
the calling template. Note that only one of the required attributes can be used in a
given instance of the tag.

86 Developing Web Applications with ColdFusion

Securing Custom Tags

ColdFusion’s security framework enables you to selectively restrict access to individual
tags or to tag directories. This can be an important safeguard in team development.

To avoid name conflicts, you can register custom tags as a security resource on the
ColdFusion Administrator Advanced Security page. See Administering ColdFusion
Serverfor details.

Encoding Custom Tags

You can use the command-line utility cfencode to encode any ColdFusion application
template. By default, the utility is installed in the /cfusion/bin directory. It is
especially useful for securing custom tag code before distributing it.

cfencode uses the following syntax:

cfencode infile outfile [/r /q] [/h "message"] /v"2"

CFMODULE Attributes

Attribute Description

Template Required if the NAME attribute is not used. Specifies a relative path to
the cfm file. Same as TEMPLATE attribute in CFINCLUDE. Note that the
directory must have a mapping defined in ColdFusion Administrator

Example: <CFMODULE TEMPLATE="../MyTag.cfm"> identifies a
custom tag file in the parent directory.

Name Required if Template attribute is not used. Use period -separated
names to uniquely identify a sub-directory under the Custom Tags
root directory.

Example: <CFMODULE NAME="Allaire.Alive.GetUserOptions">
identifies the file GetUserOptions.cfm in Custom
Tags\Allaire.Alive directory under the ColdFusion root
directory.

Attributes Optional. You can list the custom tag’s attributes.

Chapter 7: Reusing Code 87

The following options are supported:

Note While it is possible to encode binary files with cfencode, it is not
recommended.

cfencode Command Line Options

Option Description

input file Name of the file you want to encode. cfencode will not process an
encoded file.

output file Path and filename of the output file.

Warning: If you don’t specify an output file name, a warning message
asks if you want to continue, in which case the encoded file will
overwrite the source file.

/r Recursive, when used with wildcards, recurses through subdirectories
to encode files.

/q Suppresses warning messages.

/h Header, allows custom header to be written to the top of the encoded
file(s).

/v Required parameter that allows encoding using a specified version
number. Use "1" for pages you want to be able to run on ColdFusion
3.x. Use "2" for pages you want to run strictly on ColdFusion 4.0 and
later.

88 Developing Web Applications with ColdFusion

C H A P T E R 8

Chapter 8 Debugging and Error Handling

ColdFusion includes sophisticated debugging and code validation tools. This
chapter gives an overview of the debugging options available in the ColdFusion
Administrator and how to enable CFML attribute validation.

In addition, the ColdFusion Server offers a means to catch and process exceptions in
ColdFusion application pages, through the CFTRY, CFCATCH, and CFTHROW tags.

ColdFusion Studio provides interfaces for debugging application pages and for
dynamically validating multiple levels of HTML and CFML code. For information on
using these features, see Using ColdFusion Studio.

Contents

• Debug Settings in the ColdFusion Administrator ... 90

• CFML Code Validation... 91

• Troubleshooting Common Problems ... 91

• Generating Custom Error Messages (CFERROR)... 93

• Overview of Exception Handling in ColdFusion ... 94

• Exception Information in CFCATCH .. 97

• Exception handling strategies ... 100

• Exception handling example... 100

• Custom Exception Types ... 102

90 Developing Web Applications with ColdFusion

Debug Settings in the ColdFusion Administrator
ColdFusion can provide important debugging information for every application page
requested by a browser. When enabled, debugging output is shown in a block following
normal page output.

For detailed information on the debugging and logging settings in the ColdFusion
Administrator, see Administering ColdFusion Server .

Note By default, when you enable any of these options, debug output becomes
visible to all users. You can, however, restrict debug output by using the
Restrict debug output to selected IP address form at the bottom of the
Debug Settings page.

Generating debug information for an individual page

You can view the parameters and CGI environment variables for an individual
application page without turning on the global debug settings in the ColdFusion
Administrator. Simply append the parameter "mode=debug" to the end of the URL.

www.myserver.com/cfdocs/test.cfm?mode=debug

Generating debug information for an individual query

You can view debug information for an individual query by putting the DEBUG
attribute into the opening CFQUERY tag:

<CFQUERY NAME="TestQuery" DATASOURCE="CompanyInfo" DEBUG>
SELECT * FROM TestTable

</CFQUERY>

When this query runs, it places the debug information into the output page where the
query is placed.

Error messages

If ColdFusion is unable to fulfill a request because of an error, it returns a diagnostic
message to the user. The message includes a link that allows the user to email a report
of the error to the site administrator. You enable this feature in the Mail Logging page
of the ColdFusion Administrator. Errors are written to a log file for later review.

ColdFusion returns:

• Database errors, including the ODBC error code, the extended error message
returned fromt the ODBC driver, the name of the data source, and the SQL
statement submitted to the database.

• Syntax error, including the line of the application page file on which the error
occurred.

• System-related errors, such as out of memory conditions, or file or disk access
errors.

Chapter 8: Debugging and Error Handling 91

Tip If you get a message that does not explicitly identify the cause of the
error, check on key system parameters like available memory and disk
space.

For information on using the Logging settings and Mail Logging settings, see
Administering ColdFusion Server.

CFML Code Validation
The ColdFusion Application Server features two modes of attribute checking for
processing application pages: strict and relaxed. Allaire recommends that you always
use the strictest possible level of CFML validation. To enable strict validation, open the
ColdFusion Administrator Server Settings page and check the "Enable Strict Attribute
Validation" box.

The code validator inspects all code before execution begins. In addition, attribute
validation is generally performed at p-code time and not at execution. The exceptions
to this rule are tags with a "switch" attribute, such as ACTION= or METHOD=, for
which the value is provided at runtime. These instances are validated at runtime. There
are two implications:

• There will be a slight performance penalty due to runtime attribute validation.

• The CFML syntax checker will not be able to detect an invalid attribute
combination — in this case because it does not execute the CFML page it
checks.

Although dynamically providing an action can save a few lines of code, you should
avoid this practice in the interest of a more complete validation and faster application
performance.

Tip If a commercially purchased custom tags fails to run, try turning off the
"Enforce Strict Attribute Validation" setting in the ColdFusion
Administrator. If the tag continues to generate errors, you should contact
the tag's vendor.

The CFML Syntax checker application page is:

webroot/cfdocs/cfmlsyntaxcheck.cfm.

Troubleshooting Common Problems
The following section describes a few common problems that you may encounter and
ways to resolve them.

ODBC data source configuration

Problem: ODBC driver manager cannot make a connection to the database.

92 Developing Web Applications with ColdFusion

Connection errors may include problems with the location of files, network
connections, and database client library configuration.

First, verify that you can connect to the database by clicking the Verify button on the
ODBC Data Sources page of the ColdFusion Administrator. If you are unable to make a
simple connection from that page, you need to work with your database and/or driver
vendor to solve the problem.

Problem: Data source does not exist or name is incorrectly specified.

Create data sources before you refer to them in your application source files. Also,
check the spelling of the data source name.

HTTP/URL

Problem: ColdFusion cannot correctly decode the contents of your form submission.

The METHOD in forms sent to the ColdFusion server must be Post, for example:

<FORM ACTION="test.cfm" METHOD="Post">

Problem: The browser complains when you include spaces in URLs.

URLs cannot have embedded spaces. Use a plus sign (+) wherever you want to include
a space. ColdFusion correctly translates the + sign into a space.

A common scenario in which this error occurs is when you dynamically generate your
URL from database text fields that may have embedded spaces. To avoid this problem,
include only numeric values in the dynamically generated portion of URLs.

Or, you can use the URLEncodedFormat function, which automatically replaces
spaces with + signs.

CFML syntax errors

Problem: You get an error message you don’t understand.

Make sure all your CFML tags have matching end tags where appropriate. It is a
common error to omit the end tag for the CFQUERY, CFOUTPUT, CFTABLE, or CFIF
tag.

When developing pages in ColdFusion Studio, use the Tag Completion feature, which
adds an editing tag each time you create an opening tag.

Problem: Invalid attribute or value.

If you use an invalid attribute or attribute values, ColdFusion returns an error message.
To prevent such syntax errors, use the ColdFusion syntax validation tools in
ColdFusion Studio.

Problem: Mismatched quotes and escape characters.

Check strings in attributes and expressions for proper placement of single and double
quotes. Color coding in ColdFusion Studio can help you spot improper quote
placement.

Chapter 8: Debugging and Error Handling 93

Generating Custom Error Messages (CFERROR)
ColdFusion displays error pages that can help you to debug your application. There are
four types of errors in ColdFusion:

• REQUEST — Request errors occur when a application page is requested and
there is an error in the page's code.

• VALIDATION — Validation errors occur when a user violates the form field
validation rules during a form submittal.

• EXCEPTION — Exception errors handle exceptions.

• MONITOR — Sets up an exception monitor.

By default, ColdFusion returns a standard page for these errors. But you may want to
customize the error pages that are returned, to make them consistent with the look
and feel of your application. Custom error pages also allow you to control the error
information that users see, as well as offering work-arounds or ways for users to report
the errors.

You set the custom error application pages with the CFERROR tag. You can set the
custom error application pages page-by-page, but because custom error pages
generally apply to an entire application, it is more efficient to include the CFERROR tag
in the Application.cfm file. After you create a custom error page, you must include
the CFERROR tag in your application's Application.cfm page. See “Understanding
the Web Application Framework” on page 184 for more information.

For information on the syntax of the CFERROR tag, see the CFML Language Reference.

Creating an error application page

The error application page is a file that includes HTML and the parameters associated
with the error. The error application page cannot use any CFML tags.

The parameters associated with an error depend on the type of error. All the error
parameters use the Error prefix (for example, Error.Diagnostics).

See the CFML Language Reference for more information on the error variables and on
using the CFERROR tag.

The following examples show the two types of custom error pages.

Example of a request error

The following example shows a custom error page for a request error:

<HTML>
<HEAD>

<TITLE>Products - Error</TITLE>
</HEAD>
<BODY>

<CFOUTPUT>
<H2>Sorry</H2>

94 Developing Web Applications with ColdFusion

<P>An error occurred when you requested this page.
Please email the Webmaster to report this error.
We will work to correct the problem and apologize
for the inconvenience.</P>

<TABLE BORDER=1>
<TR><TD>Error Information

#Error.DateTime#

#Error.Template#

#Error.RemoteAddress#

#Error.HTTPReferer#

</TD></TR></TABLE>

</CFOUTPUT>
</BODY>
</HTML>

Example of a validation error

The following example shows a custom error page for a validation error.

<HTML>
<HEAD>

<TITLE>Products - Error</TITLE>
</HEAD>
<BODY>

<H2>Oops</H2>

<P>You failed to complete all the fields
in the form. The following problems occurred:</P>

#Error.InvalidFields#

</BODY>
</HTML>

Overview of Exception Handling in ColdFusion
Ordinarily, when ColdFusion encounters an error, it stops processing. However, you
can use ColdFusion’s exception handling tags to catch and process exceptions in
ColdFusion pages. Exceptions include any event that disrupts the normal flow of
instructions in a ColdFusion page, such as failed database operations, missing include
files, or developer-specified events.

In order for your code to handle an exception, the tags in question must appear within
a CFTRY block. It’s a good idea to enclose an entire application page in a CFTRY block,
and use a CFCATCH blocks to trap potential errors. When an exception occurs within
the CFTRY block, processing is ’thrown’ to the CFCATCH block.

Chapter 8: Debugging and Error Handling 95

Note For cases when the error handler is not able to successfully handle the
thrown error, use the CFRETHROW tag within a <CFCATCH> block.

<CFTRY>
... Add code here ...

<CFCATCH TYPE="exception type1">
... Add exception processing code here ...
</CFCATCH>
<CFCATCH TYPE="exception type2">
... Add exception processing code here ...
</CFCATCH>
<CFCATCH TYPE="Any">
... Add exception processing code here ...
</CFCATCH>

</CFTRY>

To catch errors in a single problematic SQL statement, for example, you might narrow
the focus by using a CFTRY block with a CFCATCH TYPE="Database" tag, outputting
the CFCATCH.State information as well.

Note Do not attempt to enclose an entire application in a CFTRY block by
putting the CFTRY tag in Application.cfm because you can’t be sure that
there will be a matching CFTRY end tag.

See the CFML Language Reference for information on the CFTRY, CFCATCH,
CFRETHROW, and CFTHROW tags.

Types of recoverable exceptions supported

ColdFusion Server supports several types of recoverable exceptions. Use the TYPE
attribute in the CFCATCH tag to determine which type of exception to catch.

96 Developing Web Applications with ColdFusion

Types of recoverable exceptions

Type Tag(s) Notes

Application-defined
exception events

CFTHROW
CFCATCH TYPE="Application"
CFCATCH TYPE="Any"
a CFCATCH block that has no TYPE
attribute

Raise exceptions using the
CFTHROW tag (with an optional
diagnostic message), then catch
using CFCATCH.

If you specify the type to be
"APPLICATION," the CFCATCH tag
catches only those custom
exceptions that have been specified
as having the APPLICATION type in
the CFTHROW tag that defines
them.

Database failures CFCATCH TYPE="Database"
CFCATCH TYPE="Any"

Catch failed database operations,
such as failed SQL statements, ODBC
problems, and so on.

Template errors CFCATCH TYPE="Template"
CFCATCH TYPE="Any"

Catch general application page
errors.

The tags that throw an exception of
TYPE="TEMPLATE" are CFINCLUDE,
CFMODULE, and CFERROR.

Missing included file
errors

CFCATCH TYPE="MissingInclude"
CFCATCH TYPE="Any"

Catch errors for missing included
files.

Object exceptions CFCATCH TYPE="Object" Catch exceptions in ColdFusion
code that works with objects.

Security exceptions CFCATCH TYPE="Security" Raise catchable exceptions in
ColdFusion code that works with
security.

Expression exceptions CFCATCH TYPE="Expression" Catch exceptions when an
expression fails evaluation.

Locking exceptions CFCATCH tag with TYPE="Lock" Catch failed locking operations,
such as when a CFLOCK critical
section times out or fails at runtime.

Custom exceptions CFCATCH
TYPE="your_custom_exception_type
"

Specify a custom type as well as one
of the predefined types.

Unexpected internal
exceptions

 CFCATCH TYPE="Any" Catch unexpected exceptions

Chapter 8: Debugging and Error Handling 97

Specifying the type as ANY causes the ColdFusion Application Server to catch internal
exceptions, memory allocation errors, and access violations, which you may not be
prepared to handle.

Applications can optionally use the CFTHROW tag to raise custom exceptions. Such
exceptions are caught with any of the following type specifications:

• TYPE="custom_exception_type"

• TYPE="APPLICATION"

• TYPE="ANY"

The custom_exception_type type designates the name of a user-defined type specified
with the CFTHROW tag.

An exception raised within a CFCATCH block cannot be handled by the CFTRY block
that immediately encloses the CFCATCH tag.

Exception Information in CFCATCH
Within a CFCATCH block, the active exception’s properties can be accessed as
variables:

Exception Property Variables

Property variable Description

CFCATCH.TYPE The exception’s type, returned as a string:

CFCATCH.MESSAGE The exception’s diagnostic message, if one was
provided. If no diagnostic message is available, this is
an empty string.

CFCATCH.DETAIL A detailed message from the CFML interpreter. This
message, which contains HTML formatting, can help to
determine which tag threw the exception.

CFCATCH.EXTENDEDINFO A custom error message. This is returned only for
CFCATCH tags where TYPE="APPLICATION" or a
custom type.

98 Developing Web Applications with ColdFusion

Tag context information

The ColdFusion Administrator’s debugging settings page allows you to"Enable CFML
stack trace." When this setting is enabled, CFCATCH blocks make available an array of
structures called CFCATCH.TagContext. Each structure represents one level of the
ColdFusion runtime’s active tag context at the time when the ColdFusion interpreter
detected the exception.

The structure at position 1 of the array represents the outermost tag in the stack of tags
that were executing when the interpreter detected the exception. The structure at
position ArrayLen(CFCATCH.TAGCONTEXT) represents the currently executing tag at
the time the interpreter detected the exception.

The TagContext structures have the following attributes:

TEMPLATE — The pathname of the application page that contains the tag.

LINE and COLUMN — The tag's line number and column number within the
application page.

Note Turn off "Enable CFML stack trace" to avoid having production servers
expend resources creating a traceback stack by default. When this setting
is disabled, CFCATCH.TAGCONTEXT is a zero-length array.

CFCATCH.ERRORCODE Any exception that is a part of the CFML exception
hierarchy supplies a value for this variable.

For TYPE="Application" CFTHROW tags may
supply a value for this code via the ERRORCODE
attribute. For
Type="Database"CFCATCH.ERRORCODE has the
same value as CFCATCH.SQLSTATE. Otherwise,
the value of CFCATCH.ERRORCODE is the empty
string.

CFCATCH.TAGCONTEXT Provides the name and position of each tag in the tag
stack and the full path names of the files that contain
the tags in the tag stack.

Exception Property Variables (Continued)

Property variable Description

Chapter 8: Debugging and Error Handling 99

Database exceptions

For database exceptions, ColdFusion supplies some additional diagnostic information.

The following variables are available whenever the exception type is database:

Expression exceptions

Locking exceptions

For exceptions related to CFLOCK sections, there is additional information available

within the CFCATCH block:

Property variable Description

CFCATCH.NATIVEERRORCODE The native error code associated with this
exception. Database drivers typically provide
error codes to assist in the diagnosis of failing
database operations. The values assumed by
CFCATCH.NATIVEERRORCODE are driver-
dependent. If no error code is provided, the
value of NativeErrorCode is -1.

CFCATCH.SQLSTATE The SQLSTATE code associated with this
exception. Database drivers typically provide
error codes to assist in the diagnosis of failing
database operations. The values assumed by
CFCATCH.SQLSTATE are driver-dependent. If no
SQLSTATE value was provided, the value of
SQLSTATE is -1.

Property variable Description

CFCATCH.ERRNUMBER An internal expression error number, valid
only when TYPE="Expression"

Property variable Description

CFCATCH.LOCKNAME The name of the affected lock. This is set to
"anonymous" if the lock name is not known.

CFCATCH.LOCKOPERATION The operation that failed. This is set to
"unknown" if the failed operation is unknown.

100 Developing Web Applications with ColdFusion

MissingInclude exceptions

For exceptions related to missing files, where the type of exception is MissingInclude,

the following variable is available:

Exception handling strategies
Use CFTRY with CFCATCH to handle exceptions based on their point of origin within
an application page, or based on diagnostic information.

Use the CFTRY tag with one or more CFCATCH blocks to define a ColdFusion block for
exception handling. When an application page raises an error condition, the
ColdFusion server checks the stack of currently active blocks for a corresponding
CFCATCH handler. At extremes, an exception-prone tag might be enclosed in a
specialized combination of CFTRY and CFCATCH to immediately isolate the tag’s
exceptions, or to use CFTRY with CFCATCH TYPE="Any" at a main processing level to
gracefully terminate a subsystem’s processing in case of an unexpected error.

Exception handling example
The following example shows CFTRY and CFCATCH, using a sample data source called
company and a sample included file, includeme.cfm.

If an exception occurs during the CFQUERY statement’s execution, the application
page flow switches to the CFCATCH TYPE="Database" exception handler. It then
resumes with the next statement after the CFTRY block, once the CFCATCH
TYPE="Database" handler completes.

Similarly, the CFCATCH TYPE="MissingInclude" block handles exceptions raised by
the CFINCLUDE tag. Any unknown, but possibly recoverable, exceptions are handled
by the CFCATCH TYPE="Any" block.

<!--- Wrap code you want to check in a CFTRY block --->

4 <CFTRY>
<CFQUERY NAME="test" DATASOURCE="company">

SELECT DepartmentID, FirstName, LastName
FROM employees
WHERE employeeID=#EmpID#

</CFQUERY>

<HTML>
<HEAD>

Property variable Description

CFCATCH.MISSINGFILENAME The name of the file missing in an exception of
type MissingInclude.

Chapter 8: Debugging and Error Handling 101

<TITLE>Test CFTRY/CFCATCH</TITLE>
</HEAD>

<BODY>
<HR>
<CFINCLUDE TEMPLATE="includeme.cfm">
<CFOUTPUT QUERY="test">
<P>Department: #DepartmentID#
<P>Last Name: #LastName#
<P>First Name: #FirstName#
</CFOUTPUT>

<HR>

<!--- Use CFCATCH to test for missing included files. --->
<!--- Print Message and Detail error messages. --->
<!--- Block executes only if a MissingInclude exception is thrown. --->

4 <CFCATCH TYPE="MissingInclude">
<H1>Missing Include File</H1>
<CFOUTPUT>

Message: #CFCATCH.Message#
Detail: #CFCATCH.Detail#
File name: #CFCATCH.MissingFilename#

</CFOUTPUT>

4 </CFCATCH>

<!--- Use CFCATCH to test for database errors.--->
<!--- Print error messages. --->
<!--- Block executes only if a Database exception is thrown. --->

4 <CFCATCH TYPE="Database">
<H1>Database Error</H1>
<CFOUTPUT>

Message: #CFCATCH.Message#
Native error code: #CFCATCH.NativeErrorCode#
SQLState: #CFCATCH.SQLState#
Detail: #CFCATCH.Detail#

</CFOUTPUT>

4 </CFCATCH>

<!--- Use CFCATCH with TYPE="Any" --->
<!--- to find unexpected exceptions. --->

4 <CFCATCH TYPE="Any">
<H1>Other Error: #CFCATCH.Type#</H1>

<CFOUTPUT>

102 Developing Web Applications with ColdFusion

Message: #CFCATCH.message#
Detail: #CFCATCH.Detail#

</CFOUTPUT>

4 </CFCATCH>
4 </CFTRY>

</BODY>
</HTML>

Custom Exception Types
The TYPE attribute allows a CFTHROW tag to throw an exception of a specific type,
which can be caught by a CFCATCH tag that has a matching TYPE attribute.

A CFTHROW tag without a TYPE attribute will throw a TYPE="Application" exception.

Naming conventions

A naming convention for custom exception types follows a convention that is similar
to Java class naming conventions: domain name in reverse order, followed by project
identifiers, as in this example:

<CFTHROW
TYPE="COM.Allaire.ProjectName"
ERRORCODE="Dodge14B">

The predefined exception types, except for TYPE="APPLICATION" are reserved; for
example, <CFTHROW TYPE="Database"> will be rejected.

A CFCATCH tag can specify a custom type as well as one of the predefined types. For
example, to catch the exception thrown above, you would use this syntax:

<CFCATCH TYPE="COM.Allaire.ProjectName">

ColdFusion uses the catch type as a pattern to find a catch handler. For example,

<CFTHROW TYPE="MyApp.BusinessRuleException.InvalidAccount">

would try to find:

<CFCATCH TYPE="MyApp.BusinessRuleException.InvalidAccount">
<CFCATCH TYPE="MyApp.BusinessRuleException">
<CFCATCH TYPE="MyApp">

The type comparison is case-insensitive. To match types exactly, rather than
performing pattern matching, use the CFSETTING attribute
CATCHEXCEPTIONSBYPATTERN=No.

C H A P T E R 9

Chapter 9 Handling Complex Data
with Structures

ColdFusion supports dynamic multidimensional arrays. This chapter explains the
basics of creating and handling arrays. It also provides several examples showing
how arrays can enhance your ColdFusion application code.

ColdFusion also supports structures for managing lists of key-value pairs. This
chapter explains the basics of creating and working with structures.

Contents

• About Arrays ... 104

• Creating an Array.. 105

• Basic Array Techniques.. 106

• Referencing Elements in Dynamic Arrays.. 107

• Populating Arrays with Data.. 108

• Populating an Array from a Query .. 110

• Array Functions .. 111

• About Structures... 113

• Creating and Using Structures .. 114

• Structure Example.. 117

• Using Structures as Associative Arrays ... 119

• Structure Functions ... 120

104 Developing Web Applications with ColdFusion

About Arrays
Traditionally, an array is a tabular structure used to hold data, much like a spreadsheet
table with clearly defined limits and dimensions. A 2-dimensional (2D) array is like a
simple table. In ColdFusion, you typically use arrays to temporarily store data. For
example, if your site allows users to order goods online, their shopping cart contents
can be stored in an array. This allows you to make changes easily without committing
the information, which the user may change before completing the transaction, to a
database.

Conventional fixed-size 2D array

A 3-dimensional array is like a cube made up of individual cells.

ColdFusion arrays differ somewhat from traditional arrays because they are dynamic.
For example, in a conventional array, array size is constant and symmetrical, whereas
in a ColdFusion 2D array you can have ’columns’ of differing lengths based on the data
that has been added or removed.

Chapter 9: Handling Complex Data with Structures 105

ColdFusion dynamic 2D array

A ColdFusion 2D array is actually a 1D array that contains a series of additional 1D
arrays. Each of the arrays that make up a column can expand and contract
independently of any other column.

The following terms will help you understand subsequent discussions of ColdFusion
arrays:

• Array dimension — The relative complexity of the array structure.

• Index — The position of an element in a dimension, ordinarily surrounded by
square brackets: my1Darray[1], my2Darray[1][1], my3Darray[1][1][1].

• Array element — Data stored in an array index.

The syntax my2darray[1][3]="Paul" is the same as saying 'My2dArray is a two
dimensional array and the value of the array element index [1][3] is "Paul".'

Dynamic arrays expand to accept data you add to them and contract as you remove
data from them.

Creating an Array
In ColdFusion, you declare an array by assigning a variable name to the new array as
follows:

<CFSET mynewarray=ArrayNew(x)>

where x is the number of dimensions (from 1 to 3) in the array you want to create.

Once created, you can add data to the array, in this case using a form variable:

<CFSET mynewarray[3]=Form.emailaddress>

Data in an array is referenced by index number, in the following manner:

#My1DArray[index1]#

#My2DArray[index1][index2]#

#My3DArray[index1][index2][index3]#

106 Developing Web Applications with ColdFusion

Multidimensional Arrays

ColdFusion supports dynamic multidimensional arrays. When you declare an array
with the ArrayNew function, you can specify up to three dimensions. However, you can
increase an array’s dimensions by nesting arrays as array elements:

<CFSET myarray=ArrayNew(1)>
<CFSET myotherarray=ArrayNew(2)>
<CFSET biggerarray=ArrayNew(3)>

<CFSET biggerarray[1][1][1]=myarray>
<CFSET biggerarray[1][1][1][10]=some_value>
<CFSET biggerarray[2][1][1]=myotherarray>
<CFSET biggerarray[2][1][1][4][2]=some_value>

<CFSET biggestarray=ArrayNew(3)>
<CFSET biggestarray[3][1][1]=biggerarray>
<CFSET biggestarray[2][1][1][2][3][1]=some_value>

Basic Array Techniques
To use arrays in ColdFusion, as in other languages, you need to first declare the array,
specifying its dimension. Once it’s declared, you can add array elements, which you
can then reference by index.

As an example, say you declare a one-dimensional array called "firstname:"

<CFSET firstname=ArrayNew(1)>

At first, the array firstname holds no data and is of an unspecified length. Now you
want to add data to the array:

<CFSET firstname[1]="Coleman">
<CFSET firstname[2]="Charlie">
<CFSET firstname[3]="Dexter">

Once you’ve added these names to the array, it has a length of 3:

<CFSET temp=ArrayLen(firstname)>
<!--- temp=3 --->

If you remove data from an index, the array resizes dynamically:

<CFSET temp=ArrayDeleteAt(firstname, 2)>
<!--- "Charlie" has been removed from the array --->

<CFOUTPUT>
The firstname array is #ArrayLen(firstname)#
indexes in length

</CFOUTPUT>

<!--- Now the array has a length of 2, not 3 --->

The array now contains:

Chapter 9: Handling Complex Data with Structures 107

firstname[1]=Coleman
firstname[2]=Dexter

Adding elements to an array

You can add elements to an array by simply defining the value of an array element:

<CFSET myarray[1]=form.variable>

But you can also employ a number of array functions to add data to an array. You can
use ArrayAppend to create a new array index at the end of the array, ArrayPrepend to
create a new array index at the beginning of the array, and ArrayInsertAt to insert an
array index and data. When you insert an array index with ArrayInsertAt, as with
ArrayDeleteAt, all indexes to the right of the new index are recalculated to reflect the
new index count.

For more information about these array functions, see the CFML Language Reference.

Note Because ColdFusion arrays are dynamic, if you add or delete an element
from the middle of an array, subsequent index positions all change.

Referencing Elements in Dynamic Arrays
In ColdFusion, array indexes are counted starting with position 1, which means that
position 1 is referenced as firstname[1].

Let’s add to the current firstname array example. For 2D arrays, you reference an index
by specifying two coordinates: myarray[1][1].

<!--- This example adds a 1D array to a 1D array --->

<CFSET firstname=ArrayNew(1)>

<CFSET firstname[1]="Coleman">
<CFSET firstname[2]="Charlie">
<CFSET firstname[3]="Dexter">

<!--- First, declare the array --->

<CFSET fullname=ArrayNew(1)>

<!--- Then, add the firstname array to
index 1 of the fullname array --->

<CFSET fullname[1]=firstname>

<!--- Now we’ll add the last names for symmetry --->

<CFSET fullname[2][1]="Hawkins">
<CFSET fullname[2][2]="Parker">
<CFSET fullname[2][3]="Gordon">

108 Developing Web Applications with ColdFusion

<CFOUTPUT>
#fullname[1][1]# #fullname[2][1]#

#fullname[1][2]# #fullname[2][2]#

#fullname[1][3]# #fullname[2][3]#

</CFOUTPUT>

Additional referencing methods

You can reference array indexes in the standard way: myarray[x] where x is the index
you want to reference. You can also use ColdFusion expressions inside the square
brackets to reference an index. The following are valid ways of referencing an array
index:

<CFSET myarray[1]=expression>
<CFSET myarray[1 + 1]=expression>
<CFSET myarray[arrayindex]=expression>

Populating Arrays with Data
One-dimensional arrays can store any values, including queries, structures, and other
arrays. You can use a number of functions to populate an array with data, including
ArraySet, ArrayAppend, ArrayInsertAt, and ArrayPrepend. These functions are useful
for adding data to an existing array. In addition, several basic techniques are important
to master:

• Populating an array with ArraySet

• Populating an array with CFLOOP

• Populating an array from a query

Populating an array with ArraySet

You can use the ArraySet function to populate a 1D array, or one dimension of a multi-
dimensional array, with some initial value such as an empty string or 0 (zero). This can
be useful if you need to create an array of a certain size, but don’t need to add data to it
right away. Array indexes need to contain some value, such as an empty string, in order
to be referenced.

Use ArraySet to initialize all elements of an array to some value:

ArraySet (arrayname, startrow, endrow, value)

This example initializes the array myarray, indexes 1 to 100, with an empty string.

ArraySet (myarray, 1, 100, "")

Populating an array with CFLOOP

A common and very efficient method for populating an array is by creating a looping
structure that adds data to an array based on some condition using CFLOOP.

Chapter 9: Handling Complex Data with Structures 109

In the following example, a simple one-dimensional array is populated with the names
of the months using a CFLOOP. A second CFLOOP is used to output data in the array to
the browser.

<CFSET months=ArrayNew(1)>

<CFLOOP INDEX="loopcount" FROM="1" TO="12">

<CFSET months[loopcount]=MonthAsString(loopcount)>

</CFLOOP>

<CFLOOP INDEX="loopcount" FROM="1" TO="12">

<CFOUTPUT>
#months[loopcount]#

</CFOUTPUT>

</CFLOOP>

Using Nested Loops for 2D and 3D Arrays

To output values from 2D and 3D arrays, you need to employ nested loops to return
array data. With a 1D array, a single CFLOOP is sufficient to output data, as in the
example just above. With arrays of dimension greater than one, you need to maintain
separate loop counters for each array level.

Nesting CFLOOPs for a 2D array

The following example shows how to handle nested CFLOOPs to output data from a 2D
array:

<P>The values in my2darray are currently:

<CFLOOP INDEX="OuterCounter"
FROM="1" TO="#ArrayLen(my2darray)#">

<CFLOOP INDEX="InnerCounter" FROM="1"
TO="#ArrayLen(my2darray[OuterCounter])#">

<CFOUTPUT>
[#OuterCounter#][#InnerCounter#]:
#my2darray[OuterCounter][InnerCounter]#

</CFOUTPUT>

</CFLOOP>

</CFLOOP>

Nesting CFLOOPs for a 3D array

For 3D arrays, you simply nest an additional CFLOOP:

110 Developing Web Applications with ColdFusion

<P>My3darray’s values are currently:

<CFLOOP INDEX="Dim1"
FROM="1" TO="#ArrayLen(my3darray)#">

<CFLOOP INDEX="Dim2"
FROM="1" TO="#ArrayLen(my3darray[Dim1])#">

<CFLOOP INDEX="Dim3" FROM="1"
TO="#ArrayLen(my3darray[Dim1][Dim2])#">

<CFOUTPUT>
[#Dim1#][#Dim2#][#Dim3#]:
#my3darray[Dim1][Dim2][Dim3]#

</CFOUTPUT>

</CFLOOP>

</CFLOOP>

</CFLOOP>

Populating an Array from a Query
When populating an array from a query, keep the following things in mind:

• Query data cannot be added to an array all at once. A looping structure is
generally required to populate an array from a query.

• Query column data can be referenced using array-like syntax. For example,
myquery.col_name[1] references data in the first row in the column col_name.

You can use a CFSET tag to define values for array indexes, as in the following example:

<CFSET arrayname[x]=queryname.column[row]>

In the following example, a CFLOOP is used to place four columns of data from a
sample data source into an array, "myarray."

<!--- Do the query --->

<CFQUERY NAME="test" DATASOURCE="cfsnippets">
SELECT EMPLOYEE_ID, LASTNAME,
FIRSTNAME, EMAIL
FROM EMPLOYEES

</CFQUERY>

<!--- Declare the array --->

<CFSET myarray=ArrayNew(2)>

<!--- Populate the array row by row --->

<CFLOOP QUERY="TEST">

Chapter 9: Handling Complex Data with Structures 111

<CFSET myarray[CurrentRow][1]=test.employee_id[CurrentRow]>
<CFSET myarray[CurrentRow][2]=test.LASTNAME[CurrentRow]>
<CFSET myarray[CurrentRow][3]=test.FIRSTNAME[CurrentRow]>
<CFSET myarray[CurrentRow][4]=test.EMAIL[CurrentRow]>

</CFLOOP>

<!--- Now, create a loop to output the array contents --->

<CFSET Total_Records=Test.RecordCount>

<CFLOOP INDEX="Counter" FROM=1 TO="#Total_Records#">

<CFOUTPUT>
ID: #MyArray[Counter][1]#,
LASTNAME: #MyArray[Counter][2]#,
FIRSTNAME: #MyArray[Counter][3]#,
EMAIL: #MyArray[Counter][4]#

</CFOUTPUT>

</CFLOOP>

Array Functions
The following functions are available for creating, editing, and handling arrays:

Array Functions

Function Description

ArrayAppend Appends an array index to the end of a specified array.

ArrayAvg Returns the average of the values in the specified array.

ArrayClear Deletes all data in a specified array.

ArrayDeleteAt Deletes data from a specified array at the specified index.

ArrayInsertAt Inserts data in a specified array at the specified index.

ArrayIsEmpty Returns TRUE if the specified array is empty of data.

ArrayLen Returns the length of the specified array.

ArrayMax Returns the largest numeric value in the specified array.

ArrayMin Returns the smallest numeric value in the specified array.

ArrayNew Creates a new array of specified dimension.

ArrayPrepend Adds an array element to the beginning of the specified array.

112 Developing Web Applications with ColdFusion

For more information about each of these functions, see the CFML Language
Reference.

ArrayResize Resets an array to a specified minimum number of elements.

ArraySet Sets the elements in a 1D array in a specified range to a specified
value.

ArraySort Returns the specified array with elements sorted numerically or
alphanumerically.

ArraySum Returns the sum of values in the specified array.

ArraySwap Swaps array values in the specified indexes.

ArrayToList Converts the specified one dimensional array to a list, delimited with
the character you specify.

IsArray Returns TRUE if the value is an array.

ListToArray Converts the specified list, delimited with the character you specify,
to an array.

Array Functions (Continued)

Function Description

Chapter 9: Handling Complex Data with Structures 113

About Structures
ColdFusion supports the creation and handling of structures, which enable developers
to create and maintain key-value pairs. A structure lets you build a collection of related
variables that are grouped under a single name. Structures can also be used as
associative arrays. You can define ColdFusion structures dynamically.

You can use structures to refer to related string values as a unit rather than individually.
To maintain employee lists, for example, you can create a structure that holds
personnel information such as name, address, phone number, ID number, etc. Then
you can refer to this collection of information as a structure called employee rather
than as a collection of individual variables.

Structure notation

There are three types of notation for structures:

Types of Structure Notation

Notation Description

Objects.property Use to refer to values in a structure. So a property,
prop, of an object, obj, can be referred to as obj.prop.
This notation is useful for simple assignments, as in
this example:

depts.John="Sales"

Use this notation only when the property names
(keys) are known in advance and they are strings,
with no special characters, numbers, or spaces. You
cannot use the dot notation when the property, or
key, is dynamic.

Associative arrays If the key name is not known in advance, or contains
spaces, numbers or special characters, you can use
associative array notation. This uses structures as
arrays with string indexes, for example,
depts["John"] or depts["John Doe"]="Sales."

See “Using Structures as Associative Arrays” on page
119 for more information.

Structure functions The structure functions should be used when the
simpler syntax styles described above cannot be
used, for example when dynamic keys are required.
The sections in this chapter describe how to use the
structure functions.

114 Developing Web Applications with ColdFusion

Creating and Using Structures
This section explains how to use the structure functions to create and use structures in
ColdFusion. The sample structure is called employee, and is used to add new
employees to a corporate information system.

Creating structures

You create structures by assigning a variable name to the structure with the StructNew
function:

<CFSET mystructure=StructNew()>

For example, to create a structure named employee, use this syntax:

<CFSET employee=StructNew()>

Now the structure exists and you can add data to it.

Adding data to structures

After you’ve created a structure, you add key-value pairs to the structure using the
StructInsert function:

<CFSET value=StructInsert(structure_name, key, value
[, AllowOverwrite])>

The AllowOverwrite parameter is optional and can be either TRUE or FALSE. It can be
used to specify whether an existing key should be overwritten or not. The default is
FALSE.

When adding string values to a structure, enclose the string in quotation marks. For
example, to add a key, John, with a value, Sales, to an existing structure called
Departments, use this syntax:

<CFSET value=StructInsert(Departments, "John", "Sales")>

To change the value associated with a specific key, use the StructUpdate function. For
example, if John moves from the Sales department to the Marketing department, you
would use this syntax to update the Departments associative array:

<CFOUTPUT>
Personnel moves: #StructUpdate(Departments, "John", "Marketing")#
</CFOUTPUT>

Example of adding data to a structure

The following example shows how to add content to a sample structure named
employee, building the content of the value fields dynamically using form variables:

Chapter 9: Handling Complex Data with Structures 115

<CFSET rc=StructInsert(employee, "firstname", "#FORM.firstname#")>
<CFSET rc=StructInsert(employee, "lastname", "#FORM.lastname#")>
<CFSET rc=StructInsert(employee, "email", "#FORM.email#")>
<CFSET rc=StructInsert(employee, "phone", "#FORM.phone#")>
<CFSET rc=StructInsert(employee, "department", "#FORM.department#")>

Finding information in structures

To find the value associated with a specific key, use the StructFind function:

StructFind(structure_name, key)

Example

The following example shows how to generate a list of keys defined for a structure.

<CFLOOP COLLECTION=#department# ITEM="person">
<CFOUTPUT>
Key - #person#

Value - #StructFind(department,person)#

</CFOUTPUT>

Note that the StructFind function is case-insensitive. When you enumerate key-value
pairs using a loop, the keys appear in uppercase.

Getting information about structures

To find out if a given value represents a structure, use the IsStruct function:

IsStruct(variable)

This function returns TRUE if variable is a structure.

Structures are not indexed numerically, so to find out how many name-value pairs
exist in a structure, use the StructCount function, as in this example:

StructCount(employee)

To discover whether a specific Structure contains data, use the StructIsEmpty function:

StructIsEmpty(structure_name)

This function returns TRUE if the structure is empty and FALSE if it contains data.

Finding a specific key

To learn whether a specific key exists in a structure, use the StructKeyExists function.

StructKeyExists(structure_name, key)

If the name of the key is known in advance, you can use the ColdFusion function
IsDefined, as in this example:

<CFSET temp=IsDefined("structure_name.key")>

116 Developing Web Applications with ColdFusion

But if the key is dynamic, or contains special characters, you must use the
StructKeyExists function:

<CFSET temp=StructKeyExists(structure_name, key)>

Getting a list of keys in a structure

To get a list of the keys in a CFML structure, you use the StructKeyList function:

<CFSET temp=StructKeyList(structure_name, [delimiter])>

The delimiter can be any delimiter, but the default is a comma (,).

The StructKeyArray function returns an array of keys in a structure:

<CFSET temp=StructKeyArray(structure_name)>

Note The StructKeyList and StructKeyArray functions do not return keys in any
particular order. Use the ListSort or ArraySort function to sort the results.

Copying structures

To copy a structure, use the StructCopy function. This function takes the name of the
structure you want to copy and returns a new structure with all the keys and values of
the named structure.

StructCopy(structure)

This function throws an exception if structure doesn’t exist.

Use the StructCopy function when you want to create a physical copy of a structure.
You can also use assignment to create a copy by reference.

Deleting structures

To delete an individual name-value pair in a structure, use the StructDelete function:

StructDelete(structure_name, key [, indicatenotexisting])

This deletes the named key and its associated value. Note that the indicatenotexisting
parameter indicates whether the function returns FALSE if the named key does not
exist. The default is FALSE, which means that the function returns Yes regardless of
whether key exists. If you specify TRUE for this parameter, the function returns Yes if
key exists and No if it does not.

You can also use the StructClear function to delete all the data in a structure but keep
the structure instance itself:

StructClear(structure_name)

Chapter 9: Handling Complex Data with Structures 117

Structure Example
Structures are particularly useful for grouping together a set of variables under a single
name. In the following example files, structures are used to collect information from a
form, structinsert.cfm, and to submit that information to a custom tag at
addemployee.cfm.

These example files show how you can use a structure to pass information to a custom
tag, named CF_ADDEMPLOYEE.

Example file structinsert.cfm

<!--- This example shows how to use the StructInsert
 function. It calls the CF_ADDEMPLOYEE custom tag,
 which uses the addemployee.cfm file. --->
<HTML>
<HEAD>
<TITLE>Add New Employees</TITLE>
</HEAD>

<BODY>
<H1>Add New Employees</H1>

<!--- Establish parameters for first time through --->

<CFPARAM NAME="FORM.firstname" DEFAULT="">
<CFPARAM NAME="FORM.lastname" DEFAULT="">
<CFPARAM NAME="FORM.email" DEFAULT="">
<CFPARAM NAME="FORM.phone" DEFAULT="">
<CFPARAM NAME="FORM.department" DEFAULT="">

<!--- If all form fields are passed, create structure
named employee and add values --->

<CFIF #FORM.FIRSTNAME# EQ "">
 <P>Please fill out the form.
<CFELSE>
 <CFOUTPUT>
 <CFSCRIPT>
 employee=StructNew();
 StructInsert(employee, "firstname", "#FORM.firstname#");
 StructInsert(employee, "lastname", "#FORM.lastname#");
 StructInsert(employee, "email", "#FORM.email#");
 StructInsert(employee, "phone", "#FORM.phone#");
 StructInsert(employee, "department", "#FORM.department#");
 </CFSCRIPT>

 <P>First name is #StructFind(employee, "firstname")#</P>
 <P>Last name is #StructFind(employee, "lastname")#</P>
 <P>EMail is #StructFind(employee, "email")#</P>
 <P>Phone is #StructFind(employee, "phone")#</P>
 <P>Department is #StructFind(employee, "department")#</P>
 </CFOUTPUT>

118 Developing Web Applications with ColdFusion

 <!--- Call the custom tag that adds employees --->

 <CF_ADDEMPLOYEE EMPINFO="#employee#">
</CFIF>

<HR>
<FORM ACTION="structinsert.cfm" METHOD="Post">
<P>First Name:
<INPUT NAME="firstname" TYPE="text" HSPACE="30" MAXLENGTH="30">
<P>Last Name:
<INPUT NAME="lastname" TYPE="text" HSPACE="30" MAXLENGTH="30">
<P>EMail:
<INPUT NAME="email" TYPE="text" HSPACE="30" MAXLENGTH="30">
<P>Phone:
<INPUT NAME="phone" TYPE="text" HSPACE="20" MAXLENGTH="20">
<P>Department:
<INPUT NAME="department" TYPE="text" HSPACE="30" MAXLENGTH="30">

<P>
<INPUT TYPE="Submit" VALUE="OK">
</FORM>

</BODY>
</HTML>

Example file addemployee.cfm

<P>This file is an example of a custom tag used
to add employees. Employee information is passed
through the employee structure (the EMPINFO attribute).
In UNIX, you must also add the Emp_ID.

<CFSWITCH EXPRESSION="#ThisTag.ExecutionMode#">
<CFCASE VALUE="start">

<CFIF StructIsEmpty(attributes.EMPINFO)>
<CFOUTPUT>Error. No employee data was passed.</CFOUTPUT>

<CFEXIT METHOD="ExitTag">
<CFELSE>
<!--- Add the employee --->
<!--- In UNIX, you must also add the Emp_ID --->

<CFQUERY NAME="AddEmployee" DATASOURCE="cfsnippets">
INSERT INTO Employees
(FirstName, LastName, Email, Phone, Department)
VALUES
<CFOUTPUT>
(
’#StructFind(attributes.EMPINFO, "firstname")#’ ,
’#StructFind(attributes.EMPINFO, "lastname")#’ ,
’#StructFind(attributes.EMPINFO, "email")#’ ,
’#StructFind(attributes.EMPINFO, "phone")#’ ,
’#StructFind(attributes.EMPINFO, "department")#’

Chapter 9: Handling Complex Data with Structures 119

)
</CFOUTPUT>

</CFQUERY>
</CFIF>

<CFOUTPUT><HR>Employee Add Complete</CFOUTPUT>
</CFCASE>

</CFSWITCH>

Using Structures as Associative Arrays
You can also use structures as associative arrays. When used as associative arrays,
structures index repetitive data by string keys rather than by integers.

You might use structures to create an associative array that matches people’s names
with their departments. In this example, a structure named Departments includes an
employee named John, listed in the Sales department. To access John’s department,
you would use the syntax, Departments["John"].

A structure’s key must be a string. The values associated with the key can be anything:

• a string

• an integer

• an array

• another structure

Looping through structures

The following example shows how you can loop through a structure to output its
contents. Note that when you enumerate key-value pairs using a loop, the keys appear
in upper-case.

<!--- Create a structure and loop through its contents --->

<CFSET Departments=StructNew()>

<CFSET val=StructInsert(Departments, "John", "Sales")>
<CFSET val=StructInsert(Departments, "Tom", "Finance")>
<CFSET val=StructInsert(Departments, "Mike", "Education")>

<!--- Build a table to display the contents --->

<CFOUTPUT>

<TABLE cellpadding="2" cellspacing="2">
<TR>
<TD>Employee</TD>
<TD>Department</TD>
</TR>

<!--- In CFLOOP, use ITEM to create a variable

120 Developing Web Applications with ColdFusion

called person to hold value of key as loop runs --->

<CFLOOP COLLECTION=#Departments# ITEM="person">

<TR>
<TD>#person#</TD>
<TD>#Departments[person]#</TD>
</TR>

</CFLOOP>

</TABLE>
</CFOUTPUT>

Structure Functions
There are several functions that help you create and manage structures in ColdFusion
applications.

Structure Functions

Function Description

IsStruct Returns TRUE if the specified variable is a structure.

StructClear Removes all data from the specified structure.

StructCopy Returns a new structure with all the keys and values of the
specified structure.

StructCount Returns the number of keys in the specified structure.

StructDelete Removes the specified item from the specified structure.

StructFind Returns the value associated with the specified key in the
specified structure.

StructInsert Inserts the specified key-value pair into the specified
structure.

StructIsEmpty Indicates whether the specified structure contains data.
Returns TRUE if the structure contains no data, and FALSE if it
does contain data.

StructKeyArray Returns an array of keys in the specified structure.

StructKeyExists Returns TRUE if the specified key is in the specified structure.

StructKeyList Returns a list of keys in the specified structure.

Chapter 9: Handling Complex Data with Structures 121

Note that in all cases, except StructDelete, an exception will be thrown if the referenced
key or structure does not exist.

For more information on these functions, see the CFML Language Reference.

StructNew Returns a new structure.

StructUpdate Updates the specified key with the specified value.

Structure Functions (Continued)

Function Description

122 Developing Web Applications with ColdFusion

C H A P T E R 1 0

Chapter 10 Building Dynamic Forms

This chapter shows you how to use the CFFORM tag to enrich your forms with
sophisticated graphical controls, including several Java applet-based controls. These
controls can be enabled without the need to code Java directly.

Contents

• Creating Forms with the CFFORM Tag... 124

• Input Validation with CFFORM Controls ... 126

• Input Validation with JavaScript ... 127

• Building Tree Controls with CFTREE.. 129

• Structuring Tree Controls .. 132

• Embedding URLs in a CFTREE ... 134

• Creating Data Grids with CFGRID .. 135

• Creating an Updateable Grid .. 137

• Building Slider Bar Controls .. 142

• Building Text Entry Boxes.. 142

• Building Drop-Down List Boxes.. 143

• Embedding Java Applets.. 144

124 Developing Web Applications with ColdFusion

Creating Forms with the CFFORM Tag
You’ve already learned how to use HTML forms to gather user input. (See “Using
Forms to Specify the Data to Retrieve” on page 30.) This chapter shows you how to use
the CFFORM tag to create dynamic forms in CFML. In addition to HTML control types,
you can use CFFORM to create forms that contain controls such as:

• Text boxes in which you can specify the appearance such as fonts and colors

• Java applet based controls, inclusing trees, sliders, and grids

• Other Java applets that act as form elements

With CFFORM, you gain the advantage of access to these Java applet-based controls
without having to know the Java language, and, you don't have to juggle CFOUTPUT
tags and HTML FORM tags to reference ColdFusion variables in your forms.

In addition, most CFFORM controls offer input validation attributes you can use to
validate a user's entry, selection, or interaction. This means you don't have to write
separate CFML code specifically for input validation as you do in HTML forms.

Using HTML in a CFFORM

You can use the HTML FORM tag in combination with the CFFORM tag. ColdFusion
generates HTML forms dynamically from CFFORM tags and passes through to the
browser any HTML code it finds in the form. You can use the PASSTHROUGH attribute
of the CFFORM, CFINPUT, and CFSELECT tags to enter any HTML attributes that are
not explicitly allowed in these tags. The attribute values will be passed through to the
HTML generated by these form tags. You can also replace your existing HTML FORM
tags with CFFORM and your forms will work fine.

CFFORM controls

Forms created using CFFORM use one or more of the following controls:

CFFORM Controls

Control Description

CFGRID A Java applet-based control used to create a data grid you can
populate from a query or by defining the contents of individual
cells. Grids can also be used to insert, update, and delete records
from a data source.

CFSLIDER A Java applet-based control used to define a slider.

CFINPUT Used to place radio buttons, check boxes, text input boxes, and
password entry boxes.

Chapter 10: Building Dynamic Forms 125

Improving performance with ENABLECAB

The CFFORM ENABLECAB attribute allows you to improve the performance of Java-
applet based CFFORM controls. When you use ENABLECAB, ColdFusion prompts the
end user to accept a download of the Java classes needed for the CFFORM controls that
use them. CAB files are digitally signed using VeriSign digital IDs to ensure file security.

Note The ENABLECAB attribute is supported only for MS Internet Explorer
clients that have Authenticode 2.0 installed. Authenticode 2.0 can be
downloaded from http://www.microsoft.com/Windows/ie/security/
authent2.asp.

Browsers that disable Java

Since each of the Java applet-based controls, CFGRID, CFSLIDER, CFTEXTINPUT, and
CFTREE require a Java applet to run, browsers that do not support Java or that have
disabled Java execution will not execute the forms that contain these controls. Using
the NOTSUPPORTED attribute, ColdFusion allows you to present an error message
rather than the blank applet space that appears in the browser. This attribute is
available in each of the Java applet-based controls as well as the CFAPPLET tag. You
use NOTSUPPORTED to specify the message you want to appear, formatted as HTML,
when an application page is loaded by a browser that does not support Java.

CFTREE and
CFTREEITEM

Java applet-based controls used to define a tree control and
individual tree control items.

CFTEXTINPUT A Java applet-based control used to define a text input box.

CFSELECT Used to define a drop-down list box.

CFAPPLET Used to embed your own Java applets.

CFFORM Controls (Continued)

Control Description

126 Developing Web Applications with ColdFusion

Input Validation with CFFORM Controls
The CFINPUT and CFTEXTINPUT tags include the VALIDATE attributes which allows
you to specify a valid data type entry for the control. You can validate user entries on
the following data types.

When you specify an input type in the VALIDATE attribute, ColdFusion tests for the
specified input type when the form is submitted and submits form data only on a
successful match. A true value is returned on successful form submission, false if
validation fails.

Input Validation Controls

VALIDATE Entry Description

Date Verifies US date entry in the form mm/dd/yyy.

Eurodate Verifies valid European date entry in the form dd/mm/
yyyy.

Time Verifies a time entry in the form hh:mm:ss.

Float Verifies a floating point entry.

Integer Verifies an integer entry.

Telephone Verifies a telephone entry. Telephone data must be
entered as ###-###-####. The hyphen separator (-) can
be replaced with a blank. The area code and exchange
must begin with a digit between 1 and 9.

Zipcode (U.S. formats only) Number can be a 5-digit or 9-digit
zip in the form #####-####. The hyphen separator (-)
can be replaced with a blank.

Creditcard Blanks and dashes are stripped and the number is
verified using the mod10 algorithm.

Social_security_number Number must be entered as ###-##-####. The hyphen
separator (-) can be replaced with a blank.

Chapter 10: Building Dynamic Forms 127

Input Validation with JavaScript
In addition to native ColdFusion input validation using the VALIDATE attribute of the
CFINPUT and CFTEXTINPUT tags, the following tags support the ONVALIDATE
attribute , which allows you to specify a JavaScript function to handle your CFFORM
input validation:

• CFINPUT

• CFSLIDER

• CFTEXTINPUT

• CFTREE

JavaScript objects passed to the validation routine

The following JavaScript objects are passed by ColdFusion to the JavaScript function
you specify in the ONVALIDATE attribute:

• form_object

• input_object

• object_value

Handling failed validation

The ONERROR attribute allows you to specify a JavaScript function you want to
execute in the event of a failed validation. For example, if you specify a JavaScript
function to handle input validation in the ONVALIDATE attribute you can also specify
a JavaScript function in the ONERROR attribute to handle a failed validation, which
returns a false value. ONERROR is available in the following CFFORM tags:

• CFINPUT

• CFSELECT

• CFSLIDER

• CFTEXTINPUT

• CFTREE

When you specify a JavaScript routine in the ONERROR attribute, ColdFusion passes
the following JavaScript objects to the specified routine:

• form_object

• input_object

• object_value

• error message text

128 Developing Web Applications with ColdFusion

To use JavaScript to validate form data:

1. Create a new file in Studio.

2. Edit the page so that it appears as follows:

<HTML>
<HEAD>

<TITLE>JavaScript Validation</TITLE>

4 <SCRIPT>
<!--

function testbox(form) {
4 Ctrl = form.inputbox1;
4 if (Ctrl.value == "" || Ctrl.value.indexOf (’@’, 0) == -1) {
4 return (false);
4 } else
4 return (true);
4 }

//-->
</SCRIPT>

</HEAD>

<BODY>
<H2>JavaScript validation test</H2>

<P>Please enter your email address:</P>
<CFFORM NAME="UpdateForm"

ACTION="update.cfm" >

<CFINPUT TYPE="text"
NAME="inputbox1"
REQUIRED="YES"

4 ONVALIDATE="testbox"
MESSAGE="Sorry, invalid entry."
SIZE="10"
MAXLENGTH="10">

<INPUT TYPE="Submit" VALUE=" Update... ">
</CFFORM>

</BODY>
</HTML>

3. Save the page as validjs.cfm.

4. View validjs.cfm in your browser.

When you enter an invalid email address, an error appears. Even if you enter a
valide email address, and Error 404 appears because you haven’t created the
action page update.cfm.

Chapter 10: Building Dynamic Forms 129

Code Review

See the following Web site for information on JavaScript validation scripts:

• http://www.dannyg.com/javascript

Building Tree Controls with CFTREE
The CFTREE form lets you display hierarchical information in a space-saving
collapsible tree populated from data source queries. To build a tree control with
CFTREE, you use individual CFTREEITEM tags to populate the control. You can specify
one of six built-in icons to represent individual items in the tree control.

To create and populate a tree control from a query:

1. Open a new file named tree1.cfm in Studio.

2. Modify the page so that it appears as follows:

<CFQUERY NAME="engquery" DATASOURCE="CompanyInfo">
SELECT FirstName + ’ ’ + LastName AS FullName
FROM EMPLOYEES

</CFQUERY>
<CFFORM NAME="form1" ACTION="submit.cfm"

METHOD="Post">
4 <CFTREE NAME="tree1"
4 REQUIRED="yes"
4 HSCROLL="no"
4 VSCROLL="yes">
4 <CFTREEITEM VALUE=FullName

Code Description

<SCRIPT>
<!--

function testbox(form) {
Ctrl = form.inputbox1;
if (Ctrl.value == "" || Ctrl.value.indexOf

(’@’, 0) == -1) {
return (false);
} else

return (true);
}

//-->
</SCRIPT>

JavaScript code to test for
valid entry in text box.

ONVALIDATE="testbox" Text box control
parameter that calls the
JavaScript test.

130 Developing Web Applications with ColdFusion

4 QUERY="engquery"
4 QUERYASROOT="yes"
4 IMG="folder,document">
4 </CFTREE>

</CFFORM>

3. Save the page and view it in your browser.

Code Review

Grouping output from a query

In a similar query, you may want to organize your employees by the department. In
this case, you separate column names with commas in the CFTREEITEM VALUE
attribute

To organize the tree based on ordered results of a query:

1. Open a new file named tree2.cfm in Studio.

2. Modify the page so that it appears as follows:

<!--- CFQUERY with an ORDER BY clause --->
<CFQUERY NAME="deptquery" DATASOURCE="CompanyInfo">

SELECT Department_ID, FirstName + ’ ’ + LastName
AS FullName
FROM EMPLOYEES
ORDER BY Department_ID

</CFQUERY>

Code Description

<CFTREE NAME="tree1" Create a tree and name it tree1.

REQUIRED="yes" Specify that a user must select
an item in the tree.

HSCROLL="no" Don’t allow horizontal scrolling.

VSCROLL="yes"> Allow vertical scrolling.

<CFTREEITEM VALUE=FullName
QUERY="engquery"

Create an item in the tree and
put the results of the query
named engquery in it.

QUERYASROOT="yes" Specify the query name as the
root level of the tree control.

IMG="folder,document" Use the images "folder" and
"document" that ship with
ColdFusion in the tree structure.

Chapter 10: Building Dynamic Forms 131

<!--- Build the tree control --->
<CFFORM NAME="form1" ACTION="submit.cfm"

METHOD="Post">

<CFTREE NAME="tree1"
HSCROLL="no"
VSCROLL="no"
BORDER="yes"
HEIGHT="350"
REQUIRED="yes">

<CFTREEITEM VALUE="Department_ID, FullName"
QUERY="deptquery"
QUERYASROOT="Department_ID"
IMG="cd,folder">

</CFTREE>

<INPUT TYPE="Submit" VALUE="Submit">
</CFFORM>

3. Save the page and view it in your browser.

Code Review

Note that the comma-separated items in the IMG and the VALUE attributes
correspond. If you leave out the IMG attribute, ColdFusion uses the folder image for all
levels in the tree.

CFTREE form variables

The CFTREE tag allows you to force a user to select an item from the tree control by
setting the REQUIRED attribute to YES. With or without the REQUIRED attribute,
ColdFusion passes two form variables to the application page specified in the CFTREE
ACTION attribute:

• form.treename.node — Returns the node of the user selection.

Code Description

ORDER BY Department_ID Order the query results by department.

<CFTREEITEM
VALUE="Department_ID, FullName"

Popluate the tree with the Department ID, and
under each department, the Full Name for each
employee in the department

QUERYASROOT="Department_ID" Make the Department ID the root of the tree

IMG="cd,folder"> Use the ColdFusion-supplied images CD and
Folder.

132 Developing Web Applications with ColdFusion

• form.treename.path — Returns the complete path of the user selection, in the
form: root\node1\node2\node_n\value

The root part of the path is only returned if you set the COMPLETEPATH attribute tof
CFTREE to YES; otherwise, the path value starts with the first node.

In the previous example, if the user selects the name "John Allen" in this tree, the
following form variables are returned by ColdFusion:

form.tree1.node = John Allen
form.tree1.path = Department_ID\3\John Allen

You can specify the backslash character used to delimit each element of the path form
variable in the CFTREE DELIMITER attribute.

Input validation

Although, the CFTREE does not include a VALIDATE attribute, you can use the
REQUIRED attribute to force a user to select an item from the tree control. In addition,
you can use the ONVALIDATE attribute to specify the JavaScript code to perform
validation.

Structuring Tree Controls
Tree controls built with CFTREE can be very complex. Knowing how to specify the
relationship between multiple CFTREEITEM entries will help you handle even the
most labyrinthine of CFTREE constructs.

Note The following tree examples all use the result set from folllowing query.
To run any of the tree examples, insert the query into your test template:

<!--- CFQUERY with an ORDER BY clause --->
<CFQUERY NAME="deptquery" DATASOURCE="CompanyInfo">

SELECT Department_ID, FirstName + ’ ’ + LastName
AS FullName
FROM EMPLOYEES
ORDER BY Department_ID

</CFQUERY>

Example: One-level tree control

This example consists of a single root and a number of individual items:

<CFFORM NAME="form1" ACTION="submit.cfm">
<CFTREE NAME="tree1">

<CFTREEITEM VALUE="FullName"
QUERY="deptquery"
QUERYASROOT="Department">

</CFTREE>

<INPUT TYPE="submit" VALUE="Submit">
</CFFORM>

Chapter 10: Building Dynamic Forms 133

Example: Multi-level tree control

When populating a CFTREE, you manipulate the structure of the tree by specifying a
TREEITEM parent. In this example, every TREEITEM, except the top level, specifies a
parent. The PARENT attribute allows your CFTREE to show the relationships between
elements in the tree control.

<CFFORM NAME="form1" ACTION="cfform_submit.cfm"
METHOD="Post">

<CFTREE NAME="tree1" HSCROLL="no" VSCROLL="no"
BORDER="no">
<CFTREEITEM VALUE="Divisions">
<CFTREEITEM VALUE="Development"

PARENT="Divisions" IMG="folder">
<CFTREEITEM VALUE="Product One"

PARENT="Development">
<CFTREEITEM VALUE="Product Two"

PARENT="Development">
<CFTREEITEM VALUE="GUI"

PARENT="Product Two" IMG="document">
<CFTREEITEM VALUE="Kernel"

PARENT="Product Two" IMG="document">
<CFTREEITEM VALUE="Product Three"

PARENT="Development">
<CFTREEITEM VALUE="QA"

PARENT="Divisions" IMG="folder">
<CFTREEITEM VALUE="Product One"

PARENT="QA">
<CFTREEITEM VALUE="Product Two" PARENT="QA">
<CFTREEITEM VALUE="Product Three"

PARENT="QA">
<CFTREEITEM VALUE="Support"

PARENT="Divisions" IMG="fixed">
<CFTREEITEM VALUE="Product Two"

PARENT="Support">
<CFTREEITEM VALUE="Sales"

PARENT="Divisions" IMG="cd">
<CFTREEITEM VALUE="Marketing"

PARENT="Divisions" IMG="document">
<CFTREEITEM VALUE="Finance"

PARENT="Divisions" IMG="element">
</CFTREE>

</CFFORM>

Image names in a CFTREE

When you use the TYPE="Image" attribute, ColdFusion attempts to display an image
corresponding to the value in the column, which can be a built-in ColdFusion image
name, or an image of your choice in the cfide\classes directory or subdirectory,
referenced with a relative URL.

134 Developing Web Applications with ColdFusion

The built-in image names are:

• cd

• computer

• document

• element

• folder

• floppy

• fixed

• remote

Embedding URLs in a CFTREE
The HREF attribute in the CFTREEITEM tag allows you to designate tree items as links.
To use this feature in a CFTREE, you simply define the destination of the link in the
HREF attribute of CFTREEITEM.

To embed links in a CFTREE:

1. Open a new file named tree3.cfm in Studio.

2. Modify the page so that it appears as follows:

<CFFORM ACTION="submit.cfm">

<CFTREE NAME="oak"
HIGHLIGHTHREF="yes"
HEIGHT="100"
WIDTH="200"
HSPACE="100"
VSPACE="6"
HSCROLL="no"
VSCROLL="no"
BORDER="no"
DELIMITER="?">

<CFTREEITEM VALUE="Important Links">
<CFTREEITEM VALUE="Allaire Home"

PARENT="Important Links"
IMG="document"

4 HREF="http://www.allaire.com">
<CFTREEITEM VALUE="Allaire Forums"

PARENT="Important Links"
IMG="document"

4 HREF="http://forums.allaire.com">
</CFTREE>

</CFFORM>

3. Save the page and view it in your browser.

Chapter 10: Building Dynamic Forms 135

Code Review

Specifying which tree items to send to the action page

When a user selects a tree item and submits the form, the CFTREEITEMKEY variable is
appended to the URL passed to the application page specified in the CFFORM
ACTION attribute, in the form:

http://myserver.com?CFTREEITEMKEY=selected_value

You can disable this key by setting the APPENDKEY attribute in the CFTREE tag to No.

Creating Data Grids with CFGRID
The CFGRID tag allows you to build CFFORM grid controls. A grid control resembles a
spreadsheet table and can contain data populated from a CFQUERY or from other
sources of data. As with other CFFORM tags, CFGRID offers a wide range of data
formatting options as well as the option of validating user selections with a JavaScript
validation script.

You can also do the following with CFGRID:

• Sort data in the grid alphanumerically

• Update , insert and delete data

• Embed images in the grid

When users select grid data and submit the form, ColdFusion passes the selection
information as form variables to the application page specified in the CFFORM
ACTION attribute.

Just as the CFTREE tag uses CFTREEITEM, CFGRID uses the CFGRIDCOLUMN tag.
You define a wide range of row and column formatting options, as well as a query
name, selection options, and so on. You use the CFGRIDCOLUMN tag to define
individual columns in the grid.

Code Description

HREF="http://www.allaire.com"> Make the node of the tree a link.

HREF="http://forums.allaire.com" Make the node of the tree a link.

Note HREF can refer to the name of
a column in a query if the tree item
is populated from that query.

136 Developing Web Applications with ColdFusion

Populating a grid from a query

To populate a grid from a query:

1. Open a new file named grid1.cfm in Studio.

2. Edit the file so that it appears as follows:

<CFQUERY NAME="empdata" DATASOURCE="CompanyInfo">
SELECT * FROM Employees

</CFQUERY>

<CFFORM NAME="Form1" ACTION="submit.cfm" METHOD="Post">

<CFGRID NAME="employee_grid" QUERY="empdata"
SELECTMODE="single">

<CFGRIDCOLUMN NAME="Employee_ID">
<CFGRIDCOLUMN NAME="LastName">
<CFGRIDCOLUMN NAME="Department_ID">

</CFGRID>

<INPUT TYPE="Submit" VALUE="Submit">
</CFFORM>

Note Use the CFGRIDCOLUMN DISPLAY="No" attribute to hide columns
you want to retrieve from a data source but not expose to an end
user.

3. Save the file and view it in your browser.

Chapter 10: Building Dynamic Forms 137

Code Review

Note If you specify a CFGRID tag with a QUERY attribute defined and no
corresponding CFGRIDITEM attributes the default grid that is created
contains all the columns in the query.

Creating an Updateable Grid
You can build grids to allow users to edit data within them. Users can edit individual
cell data, as well as insert, update, or delete rows. To enable grid editing, you specify
SELECTMODE="EDIT" in the CFGRID tag and enable the INSERT or DELETE
attributes in CFGRID.

You can then use either of two ways to use an updateable grid to make changes to your
ColdFusion data sources.

• Create a page to which you pass the CFGRID form variables and in that page
perform CFQUERY operations to update data source records.

• Pass grid edits to a page that includes the CFGRIDUPDATE tag, which passes
data directly to the data source.

Although using CFQUERY gives you complete control over interactions with your data
source, CFGRIDUPDATE provides a much simpler interface for operations that do not
require the same level of control.

Code Description

<CFGRID NAME="employee_grid"
QUERY="empdata"

Create a grid named "employee_grid"
and popluate it with the results of the
query "empdata"

SELECTMODE="single"> Allow the user to select only one cell.

<CFGRIDCOLUMN NAME="Employee_ID"> Put the contents of the Employee_ID
column in the query results in the first
column of the grid

<CFGRIDCOLUMN NAME="LastName"> Put the contents of the LastName
column in the query results in the
second column of the grid

<CFGRIDCOLUMN NAME="Department_ID"> Put the contents of the
Department_ID column in the query
results in the third column of the grid

138 Developing Web Applications with ColdFusion

Editing data in a CFGRID

To enable grid editing, you use the SELECTMODE="EDIT" attribute. When enabled, a
user can edit cell data and insert or delete grid rows. When a CFFORM containing a
CFGRID is submitted, data about changes to grid cells are stored in one-dimensional
arrays you can reference like any other ColdFusion array.

To make the grid editable:

1. Open the file grid1.cfm in Studio.

2. Edit the file so that it appears as follows:

<CFQUERY NAME="empdata" DATASOURCE="CompanyInfo">
SELECT * FROM Employees

</CFQUERY>

<CFFORM NAME="GridForm"
ACTION="handle_grid.cfm">

<CFGRID NAME="employee_grid"
HEIGHT=170
WIDTH=400
HSPACE=10
VSPACE=6
ALIGN="LEFT"
SELECTCOLOR="white"
SELECTMODE="edit"
ROWHEADERS="YES"
ROWHEADERWIDTH=25
ROWHEADERALIGN="right"
COLHEADERS="YES"
QUERY="empdata"
GRIDDATAALIGN="left"
BGCOLOR="yellow"
INSERT="YES"
DELETE="YES"
SORT="YES"
MAXROWS=60>

<CFGRIDCOLUMN NAME="Employee_ID"
HEADER="Employee ID"
WIDTH=80
ITALIC="NO"
HEADERALIGN="center"
HEADERITALIC="NO"
HEADERBOLD="YES"
DISPLAY="NO">

<CFGRIDCOLUMN NAME="LastName"
HEADER="Last Name"
WIDTH=80
ITALIC="NO"
HEADERALIGN="center"

Chapter 10: Building Dynamic Forms 139

HEADERITALIC="NO"
HEADERBOLD="YES"
DISPLAY="YES"
SELECT="YES">

<CFGRIDCOLUMN NAME="Department_ID"
HEADER="Department"
WIDTH=240
ITALIC="No"
HEADERALIGN="center"
HEADERITALIC="No"
HEADERBOLD="Yes"
BOLD="Yes"
DISPLAY="Yes">

</CFGRID>

<INPUT TYPE="Submit" VALUE="Submit">

</CFFORM>

3. Save the file as grid2.cfm.

To update the data source with CFQUERY:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Catch submitted grid values</TITLE>
</HEAD>
<BODY>

<H3>Grid values for FORM.employee_grid row updates</H3>

<CFIF IsDefined("form.employee_grid.rowstatus.action")>

<CFLOOP INDEX = "Counter" FROM = "1" TO =
#ArrayLen(form.employee_grid.rowstatus.action)#>

<CFOUTPUT>
The row action for #Counter# is:
#form.employee_grid.rowstatus.action[Counter]#

</CFOUTPUT>

<CFIF form.employee_grid.rowstatus.action[Counter] IS "D">

<CFQUERY NAME="DeleteExistingEmployee"
DATASOURCE="CompanyInfo">
DELETE FROM Employees
WHERE

Employee_ID=#form.employee_grid.original.Employee_ID[Counter]#

140 Developing Web Applications with ColdFusion

</CFQUERY>

<CFELSEIF form.employee_grid.rowstatus.action[Counter] IS "U">

<CFQUERY NAME="UpdateExistingEmployee"
DATASOURCE="CompanyInfo">
UPDATE Employees
SET
LastName=’#form.employee_grid.LastName[Counter]#’,
Department_ID=#form.employee_grid.Department_ID[Counter]#
WHERE

Employee_ID=#form.employee_grid.original.Employee_ID[Counter]#
</CFQUERY>

<CFELSEIF form.employee_grid.rowstatus.action[Counter] IS "I">

<CFQUERY NAME="InsertNewEmployee"
DATASOURCE="CompanyInfo">
INSERT into Employees
(Employee_ID, LastName, Department_ID)
VALUES (#form.employee_grid.Employee_ID[Counter]#,
’#form.employee_grid.LastName[Counter]#’,

#form.employee_grid.Department_ID[Counter]#)
</CFQUERY>

</CFIF>
</CFLOOP>

</CFIF>

</BODY>
</HTML>

3. Save the file as handle_grid.cfm.

4. View grid2.cfm in your browser, make changes to the grid, and then submit them.

To update the data source with CFQUERY

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<CFGRIDUPDATE GRID="Employee_grid"
DATASOURCE="CompanyInfo"
TABLENAME="Employees"
KEYONLY="NO">

3. Save the file as handle_grid.cfm.

4. View grid2.cfm in your browser, make changes to the grid, and then submit them.

Chapter 10: Building Dynamic Forms 141

How user edits are stored

The following arrays are created to keep track of edits to grid rows and cells:

For example, you have an updateable CFGRID called "mygrid" consisting of two
displayable columns, col1, col2, and one hidden column, col3. When an end user
selects and changes data in a row, arrays are created to store the original values for all
columns as well as the new column values for rows that have been updated, inserted,
or deleted.

mygrid.col1[row_index]
mygrid.col2[row_index]
mygrid.col3[row_index]
mygrid.original.col1[row_index]
mygrid.original.col2[row_index]
mygrid.original.col3[row_index]

Where row_index is the array index containing the grid data.

If the end user makes a change to a single cell in col2, you can reference the edit
operation, the original cell value, and the edited cell value in the following arrays:

<CFSET edittype = mygrid.RowStatus.Action[1]>

<CFSET new_value = mygrid.col2[1]>

<CFSET old_value = mygrid.original.col2[1]>

Multi-row edits

The use of arrays to track changes allows ColdFusion to manage changes to more than
one row in a CFGRID. ColdFusion coordinates entries in the arrays used to store edit
type (Update, Insert, or Delete), with arrays that store original grid data and edited grid
data. For each grid cell edit, an entry is created in the RowStatus array, and
corresponding entries are made in the arrays that store the new cell value and the
original cell value.

Arrays Used to Store Grid Cell Edit Information

Array reference Description

gridname.colname [row_index] Stores the new value of an edited
grid cell

gridname.Original.colname [row_index] Stores the original value of the
edited grid cell

gridname.RowStatus.Action [row_index] Stores the edit type made against
the edited grid cell.

142 Developing Web Applications with ColdFusion

Building Slider Bar Controls
You can use the CFSLIDER control to create a slider control and define a wide range of
formatting options for slider label text, , colors for the groove in which the slider knob
moves, label font name, size, boldface, italics, and color, as well as slider scale
increments, range, positioning, and behavior.

As with CFTREE and CFGRID, input valication can be serviced with a JavaScript
specified in the ONVALIDATE attribute.

To create a slider control:

1. Create a new file in Studio.

2. Modify the file so that it appears a follows:

<CFFORM NAME="Form1" ACTION="submit.cfm"
METHOD="Post">

<CFSLIDER NAME="myslider"
GROOVECOLOR="black"
BGCOLOR="white"
TEXTCOLOR="black"
FONT="Trebuchet MS"
BOLD="yes"
RANGE="0,1000"
SCALE="10"
VALUE="640"
FONTSIZE="24"
LABEL="Slider %value%"
WIDTH="400">

</CFFORM>

3. Save the file as slider.cfm and view it in your browser.

CFSLIDER form variable

The value of the form variable passed from a CFSLIDER control to a ColdFusion
application page is determined by the position of the slider on the scale. The form
variable is passed as:

slider_name=slider_value

In the earlier example, the form variable would have been passed as:

myslider=slider_value

Building Text Entry Boxes
The CFTEXTINPUT tag is similar to the HTML INPUT=text tag. With CFTEXTINPUT,
however, you can also specify font and alignment options, as well as enable input

Chapter 10: Building Dynamic Forms 143

validation methods using either a JavaScript or the VALIDATE attribute in
CFTEXTINPUT.

The following example shows a basic CFTEXTINPUT control. This example validates a
date entry, which means that a user must enter a valid date in the form mm/dd/yy. For a
complete list of validation formats, refer to the CFML Language Reference.

Please enter a date:
<CFFORM NAME="Form1"

ACTION="cfform_submit.cfm"
METHOD="Post">

<CFTEXTINPUT NAME="entertext"
VALUE="mm/dd/yy"
MAXLENGTH="10"

4 VALIDATE="date"
FONT="Trebuchet MS">

<INPUT TYPE="Submit"
VALUE="Submit">

</CFFORM>

CFTEXTINPUT form variable

The value of the form variable passed from a CFTEXTINPUT control to a ColdFusion
application page is determined by the entry in the CFTEXTINPUT control. The form
variable is passed as:

textinput_name=textinput_value

In the example just above, the form variable would have been passed as:

entertext=textinput_value

So in the destination application page, the form variable is referenced as #entertext#

Building Drop-Down List Boxes
The drop-down list box you can create with CFSELECT is similar to the HTML SELECT
tag. However, CFSELECT gives you more control over user inputs, error handling, and
allows you to populate the selection list from a query.

When you populate a CFSELECT with data from a query, you only need to specify the
name of the query that is supplying data for the CFSELECT and the query column
name for each list element you want to display.

144 Developing Web Applications with ColdFusion

To populate a drop-down list box with query data using CFSELECT:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<CFQUERY NAME="getNames"
DATASOURCE="CompanyInfo">
SELECT * FROM Employees

</CFQUERY>

<CFFORM NAME="Form1" ACTION="submit.cfm"
METHOD="Post">

<CFSELECT NAME="employeeNames"
QUERY="getNames"
VALUE="Employee_ID"
DISPLAY="FirstName"
REQUIRED="yes"
MULTIPLE="yes"
SIZE="8">

</CFSELECT>

<INPUT TYPE="Submit"
VALUE="Submit">

</CFFORM>

3. Save the file as selectbox.cfm and view it in your browser.

Note that because the MULTIPLE attribute is used, the user can select multiple entries
in the select box. Also, because the VALUE tag specifies the primary key for the
Employee table, this data is used in the form variable that is passed to the application
page specified in ACTION.

Embedding Java Applets
The CFAPPLET tag allows you to embed Java applets in a CFFORM. To use CFAPPLET,
you must first register your Java applet using the ColdFusion Administrator Applets
page. In the Administrator, you define the interface to the applet, encapsulating it so
that each invocation of the CFAPPLET tag is very simple.

CFAPPLET offers several advantages over using the HTML APPLET tag:

• Return values — Since CFAPPLET requires a form field name attribute, you can
avoid having to code additional JavaScript to capture the applet's return values.
You can reference return values like any other ColdFusion form variable:
form.variablename.

• Ease of use — Since the applet's interface is defined in the Administrator, each
instance of the CFAPPLET tag in your pages only needs to reference the applet's
name and specify a form variable name.

Chapter 10: Building Dynamic Forms 145

• Parameter options — You can override parameter values you defined in the
Administrator by specifying the parameter value pair in CFAPPLET. Unless
overridden, ColdFusion uses the parameter value pairs you defined in the
Administrator.

When an applet is registered, enter just the applet source and the form variable name:

<CFAPPLET APPLETSOURCE="Calculator"
NAME="calc_value">

By contrast, with the HTML APPLET tag, you'd have to invoke all the applet's
parameters every time you wanted to use it in a ColdFusion page.

Registering a Java applet

Before you can use a Java applet in your ColdFusion pages, you must first register the
applet in the Administrator.

To register a Java applet:

1. Open the ColdFusion Administrator by clicking on the Administrator icon in the
ColdFusion Program group and entering the Administrator password (if required).

2. Click the Applets button to open the Registered Applets page.

3. Enter a name for the applet you want to register and click Register New Applet.
Enter the information your applet requires, and choose the height, width, vertical
and horizontal space, and alignment you want.

Applet registration fields are explained in the following table.

Applet Registration Fields

Field Description

Codebase Enter the base URL of the applet: the directory that
contains the applet components. The applet class files
must be located within the web browser root directory.
Example:

http://servername/classes

Code This is the name of the file that contains the applet
subclass. The filename is relative to the codebase URL.
The *.class file extension is not required.

Method Enter the method name in the applet that returns a
string value. You use this method name in the NAME
attribute of the CFAPPLET tag to populate a form
variable with the method’s value. If the applet has no
method, leave this field blank.

146 Developing Web Applications with ColdFusion

Click Create to complete the process.

Using CFAPPLET to embed an applet

Once you’ve registered an applet, you can use the CFAPPLET tag to place the applet in
a ColdFusion page. The CFAPPLET tag has two required attributes, APPLETSOURCE
and NAME. Since the applet has been registered, and each applet parameter defined
with a default value, you can invoke the applet with a very simple form of the
CFAPPLET tag:

<CFAPPLET APPLETSOURCE="appletname" NAME="form_variable">

Overriding alignment and positioning values

To override any of the values defined in the Administrator for the applet, you can use
the optional CFAPPLET parameters to specify custom values. For example, the
following CFAPPLET tag specifies custom spacing and alignment values:

Height Enter a measurement in pixels for the vertical space for
the applet.

Width Enter a measurement in pixels for the horizontal space
for the applet.

Vspace Enter a measurement in pixels for the space above and
below the applet.

Hspace Enter a measurement in pixels for the space on each
side of the applet.

Align Choose the alignment you want.

Java Not Supported Message This message is displayed by browsers that do not
support Java applets. If you want to override this
message, you specify a different message in the
CFAPPLET NOTSUPPORTED attribute.

Parameter Name Enter a name for a required applet parameter. Your Java
applet will typically provide the parameter name
needed to use the applet. Enter each parameter in a
separate parameter field.

Value For every parameter you enter, define a default value.
Your applet documentation will provide guidelines on
valid entries.

Applet Registration Fields (Continued)

Field Description

Chapter 10: Building Dynamic Forms 147

<CFAPPLET APPLETSOURCE="myapplet"
NAME="applet1_var"
HEIGHT=400
WIDTH=200
VSPACE=125
HSPACE=125
ALIGN="left">

Overriding parameter values

You can also override the values you assigned to applet parameters in the
Administrator by providing new values for any parameter. Note that in order to
override a parameter, you must have already defined the parameter and a default value
for it in the ColdFusion Administrator Applets page.

<CFAPPLET APPLETSOURCE="myapplet"
NAME="applet1_var"
Param1="registered parameter"
Param2="registered parameter">

Handling form variables from an applet

The CFAPPLET tag requires you to specify a form variable name for the applet. This
variable, referenced like other ColdFusion form variables, form.variable_name
holds the value the applet method provides when it is executed in the CFFORM.

Not all Java applets return values. Some, like many graphical widgets, do not return a
specific value; they do their flipping, spinning, fading, exploding, and that’s that. For
this kind of applet, the method field in the Administrator remains empty. Other
applets, however, do have a method that returns a value. You can only use one method
for each applet you register. If an applet includes more than one method that you want
to access, you can register the applet with a unique name an additional time for each
method you want to use.

To reference a Java applet return value in your application page:

1. Specify the name of the method in the Register New Applet page of the ColdFusion
Administrator.

2. Specify the method name in the NAME attribute of the CFAPPLET tag when you
code your CFFORM.

When your page executes the applet, a form variable is created with the name you
specified. If you don’t specify a method, no form variable is created.

148 Developing Web Applications with ColdFusion

C H A P T E R 1 1

Chapter 11 Indexing and Searching Data

You can provide a full-text search capability for documents and data sources on a
ColdFusion site by enabling the Verity search engine.

Contents

• Searching a ColdFusion Web Site.. 150

• Supported File Types.. 151

• Support for International Languages ... 152

• Steps in Creating a Searchable Data Source... 153

• Creating a Collection ... 153

• Populating and Indexing a Collection .. 157

• Building a Search Interface ... 159

• Indexing database query results ... 162

• Indexing CFLDAP Query Results .. 163

• Indexing CFPOP Query Results... 164

• Using Query Expressions... 165

• Composing Search Expressions .. 168

• Searching with Wildcards .. 170

• Operators and Modifiers.. 171

• Managing Collections .. 180

150 Developing Web Applications with ColdFusion

Searching a ColdFusion Web Site
Until now, you’ve searched for records in databases based on the value of particular
fields using ODBC. However, to efficiently search through paragraphs of text or files of
varying types requires full-text search capabilites. The Verity, Inc. search engine is
bundled with ColdFusion to provide full-text indexing and searching.

The ColdFusion online documentation employs Verity to allow you to search the
installed document set.

Here are some of the possible uses for Verity in ColdFusion:

• Index your Web site and provide a generalized search mechanism, such as a
form interface, for executing searches.

• Index specific directories containing documents for subject-based searching.

• Index CFQUERY result sets, giving your end users the ability to search against
the data. Since collections are made up of data optimized for retrieval, this
method is much faster than performing multiple database queries to return the
same data.

• Index CFLDAP and CFPOP query results.

• Manage and search collections generated outside of ColdFusion using native
Verity tools. This additional capability requires only that the full path to the
collection be specified in the index command.

• Index email generated by ColdFusion application pages and create a searching
mechanism for the indexed messages.

• Build collections of inventory data and make those collections available for
searching from your ColdFusion application pages.

• Support international users in a range of languages from both the CFINDEX
and CFSEARCH tags.

Advantages of using Verity

Verity can index the output from queries so that you or an end user can search against
the result sets. This has a clear advantage in speed of execution because pointers to the
result sets are stored in a Verity index that is optimized for searching. You can reduce
the programming overhead of query constructs by allowing users to construct their
own queries and execute them directly. You need only be concerned with presenting
the output to the client browser.

Verity can index database text fields, such as notes and product descriptions, that
cannot be effectively indexed by native database tools.

When indexing collections containing documents in Adobe Acrobat (PDF) format,
Verity scans for the document title (if one has been entered in Acrobat Exchange). The
document title displays in the search results list.

Indexing Web pages returns the URL for each document. This is a valuable document
management feature.

Chapter 11: Indexing and Searching Data 151

Online Verity training

A video titled "Creating Search Engines with Verity" is available at http://
alive.allaire.com. The video gives an overview of the Verity implementation in
ColdFusion and illustrates the development process with sample code.

The video is part of Allaire Alive, an educational service that offers Web videos on
topics specific to ColdFusion development and application deployment as well as
broader industry issues. The titles are available free for online viewing or download.

Supported File Types
The ColdFusion Verity implementation supports a wide array of document types. This
means you can index Web pages, ColdFusion applications, and many binary
document types and produce search results that include summaries of these
documents.The following table lists the supported document types.

Supported File Types

Documents Versions Type

Text files

HTML, CFML, DBM, SGML, XML, N/A Text

ANSI, ASCII, Plain Text N/A Text

Word processors

Adobe Acrobat (PDF) all Binary

Adobe FrameMaker (MIF) all Binary

Aplix Words 4.2 Binary

Corel WordPerfect for Windows 5.x 6, 7, 8 Binary

Corel WordPerfect for Macintosh 2, 3 Binary

Lotus Ami Pro 2, 3 Binary

Lotus Ami Pro Write Plus all Binary

Lotus Word Pro 96, 97 Binary

Microsoft Office 95, 97 Binary

MS Rich Text Format (RTF) 1.x, 2.0 Binary

MS Word for Windows 2, 6, 95, 97 Binary

152 Developing Web Applications with ColdFusion

Support for International Languages
The ColdFusion International Language Search Pack can be purchased and installed to
index data in any the following languages:

• Danish

• Dutch

• Finnish

• French

• German

• Italian

• Norwegian

• Portuguese

MS Word for DOS 4, 5, 6 Binary

MS Word for Macintosh 4.0, 5.0, 6.0 Binary

MS Notepad, WordPad all Binary

MS Write, MS Works all Binary

XYWrite 4.12 Binary

Spreadsheets

Corel QuattroPro 7, 8 Binary

Lotus 1-2-3 for DOS/Windows 2.0, 3.0, 4.0, 5.0, ’96, ’97 Binary

Lotus 1-2-3 for OS/2 2 Binary

MS Excel 3, 4, 5, ’95, ’97 Binary

MS Works all Binary

Presentation

Corel Presentations 7.0, 8.0 Binary

Lotus Freelance 96, 97 Binary

MS PowerPoint 4.0, 95, 97 Binary

Supported File Types (Continued)

Documents Versions Type

Chapter 11: Indexing and Searching Data 153

• Spanish

• Swedish

The default language for Verity collections is English. To index data in one of the
supported languages, you must select the language from the drop-down list when you
create a collection on the ColdFusion Administrator Verity page. You must then enter
the selected language as a value of the LANGUAGE attribute in both the CFINDEX and
CFSEARCH tags used against that collection.

To order the Language Pack, contact Allaire Customer Service or visit our online store
at http://www.allaire.com/store. The default installation directory for the
dictionaries is in \cfusion\verity\common.

Steps in Creating a Searchable Data Source
There are several steps in creating a searchable data source:

1. Create a collection.

This can be done either through the ColdFusion Administrator or
programmatically.

2. Populate and index the collection

This involves selecting the data and generating the index.

3. Design a search interface and a results page so that users can access the
searchable data source.

Creating a Collection
The Verity engine performs searches against collections. A collection is a special
database created by Verity that contains pointers to the indexed data that you specify
for that collection. ColdFusion’s Verity implementation supports collections of three
basic data types:

• Text files such as HTML pages and CFML templates.

• Binary documents (see the Supported File Types list).

• Result sets returned from CFQUERY, CFLDAP, and CFPOP queries.

You can build a collection from individual documents or an entire directory tree.
Collections can be stored anywhere, so you have a lot of flexibility in accessing indexed
data. This adds enormous value to any content-rich Web site.

ColdFusion provides twodifferent ways to create a Verity collection. You can:

• Make selections on the ColdFusion Administrator Verity page

• Code the CFCOLLECTION tag

154 Developing Web Applications with ColdFusion

Using the ColdFusion Administrator to create a collection

To create a new collection:

1. Open the ColdFusion Administrator Verity page.

If you checked the option to install the ColdFusion Documentation, the
documentation collection is listed by default. The Verity engine is used to search
our online documents.

2. In the Add a Collection section, enter a name for the collection.

3. Enter a path for the location of the new collection.

By default, new collections are added to \Cfusion\Verity\Collections\.

4. If you have an International Language Search Pack installed, you can select a
language for the collection from the drop-down list.

5. Click Create a new collection, then click Apply.

When the collection is created, the name and full path of the new collection
appear in the Verity Collections list at the top of the page.

You can easily enable access to a collection on the network by creating a local reference
(an alias) for that collection. It only needs to be a valid Verity collection; it doesn’t
matter whether it was created within ColdFusion or another tool.

To add an existing collection:

1. In the Add a Collection section, enter the collection alias.

2. Enter the full path to the collection.

3. Select Language if needed.

4. Click Map an existing collection.

5. Click Apply.

If the collection is subsequently moved, the alias path must be updated. The Delete
command, when used on a mapped collection, only deletes the alias.

Creating a collection with the CFCOLLECTION tag

Creating and maintaining collections from a CFML application eliminates the need to
access the ColdFusion Administrator. This can be an advantage when you need to
schedule these tasks or to allow users to perform them without exposing the
Administrator to users.

To create a simple collection form page:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>

Chapter 11: Indexing and Searching Data 155

<HEAD>
<TITLE>Collection Creation Input Form</TITLE>

</HEAD>

<BODY>
<H2>Specify a collection</H2>
<FORM ACTION="collectioncreateaction.cfm" METHOD="POST">

<P>Collection name: <INPUT TYPE="text" NAME="CollectionName"
SIZE="25"></P>

<P>What do you want to do with the collection?</P>
<INPUT TYPE="radio"

NAME="CollectionAction"
VALUE="Create" checked>Create

<INPUT TYPE="radio"
NAME="CollectionAction"
VALUE="Repair">Repair

<INPUT TYPE="radio"
NAME="CollectionAction"
VALUE="Optimize">Optimize

</P>
<INPUT TYPE="submit"

NAME="submit"
VALUE="Submit">

</FORM>

</BODY>
</HTML>

3. Save the file as collectioncreateform.cfm.

Note that this file simply shows how the form variables are used and does not perform
error checking.

156 Developing Web Applications with ColdFusion

To create a collection action page:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>CFCOLLECTION</TITLE>
</HEAD>

<BODY>
<H2>Collection creation</H2>

<CFOUTPUT>

<CFSWITCH EXPRESSION=#FORM.CollectionAction#>
<CFCASE VALUE="Create">

<CFCOLLECTION ACTION="Create"
COLLECTION="#FORM.CollectionName#"
PATH="C:\CFUSION\Verity\Collections\">
<P>The collection #FORM.CollectionName# is created.

</CFCASE>

<CFCASE VALUE="Repair">
<CFCOLLECTION ACTION="REPAIR"
COLLECTION="#FORM.CollectionName#">
<P>The collection #FORM.CollectionName# is repaired.

</CFCASE>

<CFCASE VALUE="Optimize">
<CFCOLLECTION ACTION="OPTIMIZE"
COLLECTION="#FORM.CollectionName#">
<P>The collection #FORM.CollectionName# is optimized.

</CFCASE>

<CFCASE VALUE="Delete">
<CFCOLLECTION ACTION="DELETE"
COLLECTION="#FORM.CollectionName#">
<P>Collection deleted.

</CFCASE>
</CFSWITCH>

</CFOUTPUT>
</BODY>
</HTML>

3. Save the file as collectioncreateaction.cfm.

4. View the file collectioncreateform.cfm in your browser, enter values and
submit the form.

Chapter 11: Indexing and Searching Data 157

Populating and Indexing a Collection
At this point, the new collection is just an empty shell. To populate the collection with
indexed data, you can use either of two methods:

• The CF Administrator

• The CFINDEX tag

You can use the Verity Wizard in ColdFusion Studio to create the templates to
make yur documents searchable. To run the wizard, click File > New and select
the Verity Wizard from the CFML tab of the New Document dialog.

Note You can index and search against Verity collections created outside of
ColdFusion by using the EXTERNAL attribute of CFINDEX and
CFSEARCH.

Selecting an indexing method

Use the following guidelines to determine which method to use.

Using ColdFusion Administrator

To use ColdFusion Administrator to index a collection:

1. Select a collection name in the Verity Collections box.

2. Click Index to open the index page. The selected collection name appears at the
top of the page.

3. Enter a single file type or multiple file types separated by commas.

4. Type in the directory path for the collection or click Browse Server and navigate to
the directory in which to begin the index.

Using the CF Administrator or CFINDEX

Use the Administrator if Use the CFINDEX tag if

You want to index document files. You want to index ColdFusion query results.

The collection won’t be updated very
frequently.

You need to dynamically populate or update
a collection from a ColdFusion application
page.

You want to generate the collection
without writing any CFML code.

Your collection needs to be updated
frequently.

You want to generate a one-time
collection.

Your collection needs to be updated by other
people.

158 Developing Web Applications with ColdFusion

5. Check the Recursively index subdirectories box if you want to extend the indexing
operation to all directories below the selected path.

6. Optionally, you can enter a Return URL to prepend to all indexed files. This allows
you to easily create a link to any of the files in the index. A typical entry might be
something like http://localhost/wwwroot/.

7. If the International Language Search Pack is installed, you can select one of the
supported languages.

8. Click Update to begin the indexing process. The time required to generate the
index depends on the number and size of the selected files in the path.

As you can see, this interface allows you to easily build a very specific index based on
the file extension and path information you enter. In most cases, you do not need to
change your server file structures to accommodate the generation of indices.

In your ColdFusion application, you can populate and search multiple collections,
each of which can be designed to focus on a specific group of documents or queries,
according to subject, document type, location, or any other logical grouping. Searches
can be performed against multiple collections, giving you lots of flexibility in designing
your search interface.

Using CFINDEX

To select which collection to index:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Select the Collection to Index</TITLE>
</HEAD>

<H2>Pick which index you want to build</H2>

<FORM METHOD="Post" ACTION="collectionindexaction.cfm">
<P>Enter the collection you want to populate:
<INPUT TYPE="text" NAME="IndexColl" SIZE="25" MAXLENGTH="35"></P>
<P>Enter the location of the files in the collection:
<INPUT TYPE="text" NAME="IndexDir" SIZE="50" MAXLENGTH="100"></P>

<INPUT TYPE="submit" NAME="submit" VALUE="Index">

</FORM>

</BODY>
</HTML>

3. Save the file as collectionindexform.cfm

Chapter 11: Indexing and Searching Data 159

To use CFINDEX to index a collection:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>Creating Index</TITLE>
</HEAD>
<BODY>
<H2>Indexing Complete</H2>

<CFINDEX COLLECTION="#Form.IndexColl#"
KEY="#Form.IndexDir#"
ACTION="REFRESH"
TYPE="PATH"
URLPATH="#Form.IndexDir#"
EXTENSIONS=".htm, .html"
RECURSE="Yes"
LANGUAGE="English">

<CFOUTPUT>
The collection #Form.IndexColl# has been indexed.

</CFOUTPUT>
</BODY>
</HTML>

3. Save the file as collectionindexaction.cfm

4. View collectionindexform.cfm in your browser, enter values, and then click
Index.

Building a Search Interface
Now that you’ve created and indexed a searchable data source, you need to build a
search interface to allow users to access the data source. The CFSEARCH tag provides
users with a set of operators and modifiers to create sophisticated query expressions.
We’ll explore these options in detail below, but first let’s take a look at getting a basic
search application up and running.

Using the Verity wizard in Studio

To quickly create a search application for an existing collection, click the File > New
command in ColdFusion Studio and select the Verity Wizard in the CFML tab of the
New Document dialog. The wizard creates a set of application pages based on the
entries you make in the wizard dialogs.

You can customize the search interface by adding instructional text for users and
applying styles to the form pages.

160 Developing Web Applications with ColdFusion

Basic search operations

To search the collection:

1. Create a new file in Stuio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Select the collection to search</TITLE>
</HEAD>

<BODY>
<H2>Search</H2>

<FORM METHOD="Post" ACTION="collectionsearchaction.cfm">
<P>Enter the collection you want to search:
<INPUT TYPE="text" NAME="collection" SIZE="25" MAXLENGTH="35"></

P>
<P>Select the type of search:

<INPUT TYPE=radio

NAME=type
VALUE=Simple checked> Simple

<INPUT TYPE=radio
NAME=type
VALUE=Explicit> Explicit

<P>Enter a search string:</P>
<INPUT TYPE=text

NAME=searchstring SIZE=50>

<P><INPUT TYPE=submit
NAME=search1
VALUE="Search">

<INPUT TYPE=reset
VALUE="Reset">

</FORM>

</BODY>
</HTML>

3. Save the file as collectionsearchform.cfm.

To present the results of the search to the user:

1. Create a new file in Stuio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Search output template</TITLE>
</HEAD>

Chapter 11: Indexing and Searching Data 161

<BODY>
<CFSEARCH NAME="Search1"

COLLECTION="#form.collection#"
FORM TYPE="#form.type#"
CRITERIA="#form.searchstring#">

<H2>Search Results</H2>

<CFOUTPUT>
#Search1.RecordCount# found out of
#Search1.RecordsSearched# searched.

</CFOUTPUT>

<HR NOSHADE>
<CFOUTPUT QUERY="Search1">

#Search1.title#

</CFOUTPUT>

<HR NOSHADE>
</BODY>
</HTML>

3. Save the file as collectionsearchaction.cfm.

4. View the file collectionsearchform.cfm in your browser, enter values in the
form, then submit it.

Summarization

As part of the indexing process, Verity automatically produces a summary of every
document file or query result set. The default summarization selects the best
sentences, based on internal rules, up to a maximum of 500 characters.
Summarization information is returned by default with every CFSEARCH operation.
For more information on this topic, see the Allaire Knowledge Base article, "Custom1,
Custom2 and Summary Fields" (ID# 1081) on our Web site at http://www.allaire.com/
Support/KnowledgeBase/SearchForm.cfm.

To access the summary, invoke the property in the following form:

#search_query.Summary#

For example, in a search operation where the value of the NAME attribute is
"mysearch" the following CFML outputs the summary of the search results:

<CFOUTPUT QUERY="mysearch">
#Summary#

</CFOUTPUT>

For information on an advanced summarization technique, see the Allaire Knowledge
Base article, "Synchronizing information stored in Verity Collection Document Fields
with Corresponding Data from a Database" (ID# 1161) on our Web site at http://
www.allaire.com/Support/KnowledgeBase/SearchForm.cfm.

162 Developing Web Applications with ColdFusion

CFSEARCH properties

Three properties are generated for each CFSEARCH query that provide information
about a particular query:

• RecordCount — The total number of records returned by the query.

• CurrentRow — The current row of the query being processed by CFOUTPUT.

• RecordsSearched — The total number of records in the index that were
searched. If no records were returned in the search, this property returns a null
value.

Indexing database query results
Indexing the result set from a ColdFusion query involves an extra step not required
when indexing documents. You need to code the query and output parameters, then
point the CFINDEX tag at the result set from a CFQUERY, CFLDAP, or CFPOP query.

To index a ColdFusion query:

1. Create the collection on the ColdFusion Administrator Verity page.

2. Execute a query and output the data.

3. Populate the collection using the CFINDEX tag.

To populate a collection from a CFQUERY you specify a KEY, which corresponds to the
primary key of the data source, and the BODY, the column in which you want to
conduct searches. The following extract shows only the CFQUERY and CFINDEX parts
of the process.

<!--- Select the entire table --->
<CFQUERY NAME="Messages"

DATASOURCE="MyMail">
SELECT *

FROM Messages
</CFQUERY>

<!--- Output the result set --->
<CFOUTPUT QUERY="Messages">

#Message_ID#, #Subject#, #Title#, #MessageText#

</CFOUTPUT>

<!--- Index the result set --->
<CFINDEX COLLECTION="DBINDEX"

ACTION="UPDATE"
TYPE="CUSTOM"
BODY="MessageText"
KEY="Message_ID"
TITLE="Subject"
QUERY="Messages">

Chapter 11: Indexing and Searching Data 163

This CFINDEX statement specifies the MessageText column as the core of the
collection and names the table’s primary key, the Message_ID column, as the KEY
value. Note that the TITLE attribute names the Subject column. The TITLE attribute
can be used to designate an output parameter.

To index more than one column in a collection, enter a comma-separated list of
column names for values of the BODY attribute, such as:

BODY=FirstName,LastName,Company

Advantages of indexing a data source

The main advantage of performing searches against a Verity collection over using
CFQUERY alone is that the database is indexed in a form that provides faster access.
Use this technique instead of CFQUERY in the following cases:

• You want to index textual data. Verity collections containing textual data can be
searched much more efficiently with CFINDEX than searching a database with
CFQUERY.

• You want to give your users access to data without interacting directly with the
data source itself.

• You want to improve the speed of queries.

• You want your end users to run queries but not update a database table.

• You do not want to expose your data source.

Indexing CFLDAP Query Results
The widespread use of the Lightweight Directory Access Protocol to build searchable
directory structures, both internally and across the Web, provides ColdFusion
developers with new opportunities to add value to the sites they create. Contact
information or other data from an LDAP-accessible server can be indexed and
searched by users. Remember to create the collection in the Administrator.

Two things to remember when creating an index from an LDAP query:

• Because LDAP structures vary greatly, you must know the server’s directory
schema and the exact name of every LDAP attribute you intend to use in a
query.

• The records on an LDAP server can be subject to frequent change. You may
want to re-index the collection before processing a search request.

In the example below, the search criterion is records with a telephone number in the
617 area code. Generally, LDAP servers use the Distinguished Name (dn) attribute as
the unique identifier for each record, so that is used as the KEY value for the index.

164 Developing Web Applications with ColdFusion

<!--- Run the LDAP query --->
<CFLDAP NAME="OrgList"

SERVER="myserver"
ACTION="query"
ATTRIBUTES="o, telephonenumber, dn, mail"
SCOPE="onelevel"
FILTER="(|(O=a*) (O=b*))"
SORT="o"
START="c=US">

<!--- Output query result set --->
<CFOUTPUT QUERY="OrgList">

DN: #dn#

O: #o#

TELEPHONENUMBER: #telephonenumber#

MAIL: #mail#

=============================

</CFOUTPUT>

<!--- Index the result set --->

<CFINDEX ACTION="update"
COLLECTION="ldap_query"
KEY="dn"
TYPE="custom"
TITLE="o"
QUERY="OrgList"
BODY="telephonenumber">

<!--- Search the collection --->
<!--- Use the wildcard * to contain the search string --->
<CFSEARCH COLLECTION="ldap_query"

NAME="s_ldap"
CRITERIA="*617*">

<!--- Output returned records --->
<CFOUTPUT QUERY="s_ldap">

#Key#, #Title#, #Body#

</CFOUTPUT>

Indexing CFPOP Query Results
The contents of mail servers are generally quite volatile; specifically, the
MessageNumber is reset as messages are added and deleted. To avoid mismatches
between the unique MessageNumber identifiers on the server and in the Verity
collection, it’s a good idea to re-index the collection before processing a search.

As with the other query types, you need to provide a unique value for the KEY attribute
and enter the data fields to index in the BODY attribute.

Chapter 11: Indexing and Searching Data 165

<!--- Run POP query --->
<CFPOP ACTION="getall"

NAME="p_messages
SERVER="mail.mycompany.com"
USERNAME="user1"
PASSWORD="user1">

<!--- Output POP query result set --->
<CFOUTPUT QUERY="p_messages">

#MESSAGENUMBER#

#FROM#

#TO#

#SUBJECT#

#BODY#

=========================

<!--- Index result set --->
<CFINDEX ACTION="update"

COLLECTION="pop_query"
KEY="messagenumber"
TYPE="custom"
TITLE="subject"
QUERY="p_messages"

BODY="body">

<!--- Search messages for the word "action" --->
<CFSEARCH COLLECTION="pop_query"

NAME="s_messages"
CRITERIA="action">

<!--- Output search result set --->
<CFOUTPUT QUERY=" s_messages">

#Key#, #Title#

</CFOUTPUT>

The CFSEARCH code in the examples above uses the basic attributes needed to search
a collection. The next section expands on the capabilities of this tag for more detailed
input and output options.

Using Query Expressions
When you search a Verity collection, you use the CFSEARCH tag in a ColdFusion
application page. Use the CRITERIA attribute to specify the query expression you want
to pass to the search engine.

You can build two types of query expressions: simple and explicit. A simple query
expression is typically a word or words. An explicit query expression can employ a
number of operators and modifiers to refine the search. Although an explicit query can
employ operators and modifiers, all aspects of the search must be explicitly invoked. A
simple query expression is somewhat more powerful since it employs operators by
default. You can assemble an explicit query expression programmatically or simply

166 Developing Web Applications with ColdFusion

pass a simple query expression to the search engine directly from an HTML input
form.

The Verity query language provides many operators and modifiers for composing
queries. The following search techniques can be used in searching a Verity collection:

• Word searches

• Proximity searches

• Concept–based

• Field searches in which documents are match based on matching predefined
custom attributes

• Scoring operators

Simple query expressions

Simple queries allow end users to enter simple, comma-delimited strings and use
wildcard characters. You can enter multiple words separated by commas, in which
case the comma is treated like a logical OR. If you omit the commas, the query
expression is treated as a phrase.

Ordinarily, operators are employed in explicit query expressions. Operators are
normally surrounded by angle brackets < >. However, you can use the AND, OR, and
NOT operators in a simple query without using angle brackets.

A simple query employs the STEM operator and the MANY modifier. STEM searches
for words that derive from those entered in the query expression, so that entering
"find" will return documents that contain "find," "finding," "finds," etc. The MANY
modifier forces the documents returned in the search to be presented in a list based on
a relevancy score.

Explicit query expressions

Explicit queries can be constructed using a variety of operators, which are described
below. Most operators in an explicit query expression are surrounded by angle brackets
< >. You can use the AND, OR, and NOT operators without angle brackets.

Expression syntax

You can use either simple or explicit syntax when stating simple query syntax. The
syntax you use determines whether the search words you enter will be stemmed, and
whether the words that are found will contribute to relevance-ranked scoring.

Simple syntax

When you use simple syntax, the search engine implicitly interprets single words as if
they were modified by the MANY and STEM operators. By implicitly applying the
MANY modifier, the search engine calculates each document's score based on the

Chapter 11: Indexing and Searching Data 167

density of the search term in the searched documents. The more frequent the
occurrence of a word in a document, the higher the document’s score.

As a result, the search engine ranks documents according to word density as it searches
for the word you specify, as well as words that have the same stem. For example,
"films," "filmed," and "filming" are stemmed variations of the word "film." To search
for documents containing the word "film" and its stem words, you can enter the word
"film" without modification. When documents are ranked by relevance, they appear in
a list with the most relevant documents at the top.

Explicit syntax

When you use explicit syntax, the search engine interprets the search terms you enter
as literals. For example, by entering the word "film" (including quotation marks) using
explicit syntax, the stemmed versions of the word "film", "films," "filmed," and
"filming" are ignored.

The following table shows all operators available for conducting searches of
ColdFusion Verity collections.

Verity Search Operators

< CONTAINS PHRASE

<= ENDS SENTENCE

= MATCHES STARTS

> NEAR STEM

>= NEAR/N SUBSTRING

Accrue OR WILDCARD

AND PARAGRAPH WORD

168 Developing Web Applications with ColdFusion

Special characters

A number of characters are handled in particular ways by the search engine.

A backslash (\) removes special meaning from whatever character follows it. To enter a
literal backslash in a query, use two in succession, such as this examples:

<FREETEXT>("\"Hello\", said Packard.")
"backslash (\\)"

Composing Search Expressions
The following rules apply for composing search expressions.

Precedence rules

Expressions are read from left to right. The AND operator takes precedence over OR
operators. However, terms enclosed in parenteses are evaluated first. When the search
engine encounters nested parentheses, it starts with the innermost term:

Prefix and infix notation

Search strings that use any operator other than evidence operators can be defined in
prefix notation or infix notation. This means that either of the following expressions is
valid:

• AND (a,b)

This is prefix notation

• a AND b

This is infix notation

Special Search Characters

Characters Description

, () [These characters end a text token.

= > <! These characters also end a text token. They are terminated by an
associated end character.

’ @ ‘ < {[! These characters signify the start of a delimited token. They are
terminated by an associated end character.

Chapter 11: Indexing and Searching Data 169

When prefix notation is used, precedence is handled explicitly within the expression.
The following example means: "Look for documents that contain b and c first, then
documents that contain a":

OR (a, AND (b,c))

When infix notation is used, precedence is implicit in the expression. For example, the
AND operator takes precedence over the OR operator.

Commas in expressions

If an expression includes two or more search terms within parentheses, a comma is
required as a separator between each element. The following example means: Look for
documents that contain any combination of a and b together. Note that in this
example, angle brackets are used with the OR operator.

<OR> (a, b)

Delimiters in expressions

Angle brackets < >, double quotation marks " ", and backslashes \ are used to delimit
various elements in a query expression.

Angle brackets for operators

Left and right angle brackets < > are reserved for designating operators and modifiers.
They are optional for the AND, OR, and NOT operators, but required for all other
operators.

Double quotation marks in expressions

You use double quotation marks to search for a word that is otherwise reserved as an
operator, such as AND, OR, and NOT.

Backslashes in expressions

To include a backslash \ in a search, insert two backslashes for each backslash
character you want to search for, such as C:\\CFUSION\\BIN.

170 Developing Web Applications with ColdFusion

Searching with Wildcards
This table shows the wildcard characters for searching Verity collections.

Searching for wildcards as literals

To search for a wildcard character in your collection, you need to escape the character
with a backslash (\). For example:

To match a literal asterisk, you precede the * with two backslashes: "a*"

To match a question mark or other wildcard character: "Checkers\?"

Searching for special characters as literals

The following non-alphanumeric characters must be preceded by a backslash
character (\) in a search string:

• comma (,)

• left and right parentheses ()

• double quotation mark (")

• backslash (\)

• at sign (@)

Verity Wildcard Characters

Wildcard Description

? Question. Specifies any single alphanumeric character.

* Asterisk. Specifies zero or more alphanumeric characters. Avoid using
the asterisk as the first character in a search string. Asterisk is ignored in
a set, [] or an alternative pattern {}.

[] Square brackets. Specifies one of any character in a set, as in "sl[iau]m"
which locates "slim," "slam," and "slum." Square brackets indicate an
implied OR.

{} Curly braces. Specifies one of each pattern separated by a comma, as in
"hoist{s, ing, ed}" which locates "hoists," "hoisting," and "hoisted." Curly
braces indicate an implied AND.

^ Caret. Specifies one of any character not in the set as in "sl[^ia]m" which
locates "slum" but not "slim" or "slam."

- Hyphen. Specifies a range of characters in a set as in "c[a-r]t" which
locates every word beginning with "c," ending with "t," and containing
any letter from "a" to "r."

Chapter 11: Indexing and Searching Data 171

• left curly brace ({)

• left bracket ([)

• less than sign (<)

• backquote (‘)

In addition to the backslash character, you can use paired backquotes (‘ ‘) to interpret
special characters as literals. For example, to search for the wildcard string "a{b" you
can surround the string with backquotes, as follows:

‘a{b‘

To search for a wildcard string that includes the literal backquote character (‘) you
must use two backquotes together and surround the whole string in backquotes:

‘*n‘‘t‘

Note that you can use either paired backquotes or backslashes to escape special
characters. There is no functional difference in the use of one or the other. For
example, you can query for the term: <DDA> in the following ways:

\<DDA\> or ‘<DDA>‘

Operators and Modifiers
The power of the CFSEARCH tag is in the control it gives you over the Verity search
engine. The engine offers users a high degree of specificity in setting search
parameters.

Operators

An operator represents logic to be applied to a search element. This logic defines the
qualifications a document must meet to be retrieved. Operators are used to refine your
search or to influence the results in other ways. For example, you could construct an
HTML form for conducting searches. In the form, a user could perform a search for a
single term: server. You can refine your search by limiting the search scope in a number
of ways. Operators are available for limiting a query to a sentence or paragraph, and
you can search words based on proximity. The following operator types are available:

• Evidence operators — Used to specify basic and intelligent word searches.

• Proximity operators — For specifying the relative location of words in a
document.

• Relational operators — Search fields in a collection.

• Concept operators — Used to identify a concept in a document by combining
the meanings of search elements.

• Score operators — Allow you to manipulate the score returned by a search
element. The score percentage display can optionally be set to as many as four
decimal places.

172 Developing Web Applications with ColdFusion

• Natural language operators — Allow the use of natural language expressions in
forming queries.

Ordinarily, you use operators in explicit searches. They are used in the following
manner:

"<operator>search_string"

Evidence operators

Evidence operators can be used to specify either a basic word search or an intelligent
word search. A basic word search finds documents that contain only the word or words
specified in the query. An intelligent word search expands the query terms to create an
expanded word list so that the search returns documents that contain variations of the
query terms.

Documents retrieved using evidence operators are not ranked by relevance unless you
use the MANY modifier.

Proximity operators

Proximity operators specify the relative location of specific words in the document.
Specified words must be in the same phrase, paragraph, or sentence for a document to
be retrieved. In the case of NEAR and NEAR/N operators, retrieved documents are
ranked by relevance based on the proximity of the specified words. Proximity operators
can be nested; phrases or words can appear within SENTENCE or PARAGRAPH
operators, and SENTENCE operators can appear within PARAGRAPH operators.

Verity Evidence Operators

Operator Description

STEM Expands the search to include the word you enter and its
variations. The STEM operator is automatically implied in any
SIMPLE query. For example, the EXPLICIT query expression

<STEM>believe

yields matches such as, "believe," "believing," "believer".’

WILDCARD Matches wildcard characters included in search strings. Certain
characters automatically indicate a wildcard specification, such as *
and?. For example, the query expression

spam*

yields matches such as, "spam," "spammer," "spamming."

WORD Performs a basic word search, selecting documents that include
one or more instances of the specific word you enter. The WORD
operator is automatically implied in any SIMPLE query.

Chapter 11: Indexing and Searching Data 173

The following table describes each operator.

Relational operators

Relational operators search document fields that have been defined in the collection.
Documents containing specified field values are returned. Documents retrieved using
relational operators are not ranked by relevance, and you cannot use the MANY
modifier with relational operators.

Verity Proximity Operators

Operator Description

NEAR Selects documents containing specified search terms. The closer
the search terms are to one another within a document, the higher
the document’s score. The document with the smallest possible
region containing all search terms always receives the highest score.
Documents whose search terms are not within 1000 words of each
other are not selected.

NEAR/N Selects documents containing two or more search terms within N
number of words of each other, where N is an integer between 1
and 1024 where NEAR/1 searches for two words that are next to
each other. The closer the search terms are within a document, the
higher the document’s score.

You can specify multiple search terms using multiple instances of
NEAR/N as long as the value of N is the same:

commute <NEAR/10> bicycle <NEAR/10>

train <NEAR/10>

PARAGRAPH Selects documents that include all of the words you specify within
the same paragraph. To search for three or more words or phrases,
you must use the PARAGRAPH operator between each word or
phrase.

PHRASE Selects documents that include a phrase you specify. A phrase is a
grouping of two or more words that occur in a specific order.
Examples of phrases:

mission oak

"mission oak"

mission <PHRASE> oak

<PARAGRAPH> (mission, oak)

SENTENCE Selects documents that include all of the words you specify within
the same sentence. Examples:

jazz <SENTENCE> musician

<SENTENCE> (jazz, musician)

174 Developing Web Applications with ColdFusion

The following operators are used for numeric and date comparisons.

Text comparison operators match words and parts of words. The following operators
are used for text comparisons.

Verity Numerical and Date Relational Operators

Operator Description

= Equals

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

VerityText Comparison Operators

Operator Description

CONTAINS Selects documents by matching the word or phrase you specify
with the values stored in a specific document field. Documents are
selected only if the search elements specified appear in the same
sequential and contiguous order in the field value. For example,
specifying "god" will match "God in heaven," "a god among men,"
or "good god" but not "godliness," or "gods."

MATCHES Selects documents by matching the query string with values
stored in a specific document field. Documents are selected only if
the search elements specified match the field value exactly. If a
partial match is found, a document is not selected. For example,
specifying "god" will match a document field containing only
"god" and will not match "gods," "godliness," or "a god among
men."

STARTS Selects documents by matching the character string you specify
with the starting characters of the values stored in a specific
document field.

Chapter 11: Indexing and Searching Data 175

Document fields

The values you specify for the CFINDEX attributes TITLE, KEY, URL, and CUSTOM can
be specified as document fields for use with relational operators in the CRITERIA
attribute. Document fields are referenced in text comparison operators. They are
identified as:

• CF_TITLE

• CF_KEY

• CF_URL

• CF_CUSTOM1

• CF_CUSTOM2

For more information on this topic, see the Allaire Knowledge Base article, "Using
Document Fields To Narrow Down Searches" (ID# 1082) on our Web site at http://
www.allaire.com/Support/KnowledgeBase/SearchForm.cfm.

The SUBSTRING operator

You can use the SUBSTRING operator to match a character string with data stored in a
specified data source. In the following example, a data source called TEST1 contains
the table YearPlaceText, which itself contains three columns: Year, Place, and Text. Year
and Place make up the primary key. The following table shows the TEST1 schema.

ENDS Selects documents by matching the character string you specify
with the ending characters of the values stored in a specific
document field.

SUBSTRING Selects documents by matching the query string you specify with
any portion of the strings in a specific document field. For
example, specifying "god" will match "godliness," "a god among
men," "godforsaken," etc.

YearPlaceText

Year Place Text

1990 Utah Text about Utah 1990

1990 Oregon Text about Oregon 1990

1991 Utah Text about Utah 1991

VerityText Comparison Operators (Continued)

Operator Description

176 Developing Web Applications with ColdFusion

The following application page matches records that have 1990 in the TEXT column
and are in the Place Utah. The search is performed against the collection that contains
the TEXT column and then is narrowed further by searching the string "Utah" in the
CF_TITLE document field. Recall that document fields are defaults defined in every
collection corresponding to the values you define for URL, TITLE, and KEY in the
CFINDEX tag.

<CFQUERY NAME="GetText"
DATASOURCE="TEST1">
SELECT Year+Place

AS Identifier, text
FROM YearPlaceText

</CFQUERY>

<CFINDEX COLLECTION="testcollection"
ACTION="Update"
TYPE="Custom"
TITLE="Identifier"
KEY="Identifier"
BODY="TEXT"
QUERY="GetText">

<CFSEARCH NAME="GetText_Search"
COLLECTION="testcollection"
TYPE="Explicit"
CRITERIA="1990 and CF_TITLE <SUBSTRING> Utah">

<CFOUTPUT>
Record Counts:

#GetText.RecordCount#

#GetText_Search.RecordCount#

</CFOUTPUT>

<CFOUTPUT>
Query Results --- Should be 5 rows

</CFOUTPUT>

<CFOUTPUT QUERY="Gettext">
#Identifier#

</CFOUTPUT>

<CFOUTPUT>
Search Results -- should be 1 row

1991 Oregon Text about Oregon 1991

1992 Utah Text about Utah 1992

YearPlaceText (Continued)

Year Place Text

Chapter 11: Indexing and Searching Data 177

</CFOUTPUT>

<CFOUTPUT QUERY="GetText_Search">
#GetText_Search.TITLE#

</CFOUTPUT>

Concept operators

Concept operators combine the meaning of search elements to identify a concept in a
document. Documents retrieved using concept operators are ranked by relevance. The
following table describes each concept operator.

Score operators

Score operators govern how the search engine calculates scores for retrieved
documents. The maximum score a returned search element can have is 1.000. The
score percentage display can optionally be set to as many as four decimal places.

When a score operator is used, the search engine first calculates a separate score for
each search element found in a document, and then performs a mathematical
operation on the individual element scores to arrive at the final score for each
document.

Note that the document’s score is available as a result column. The SCORE result
column can be referenced to trap the relevancy score of any document retrieved. For
example:

<CFOUTPUT>
#Search1.Title#

Document Score=#Search1.SCORE#

</CFOUTPUT>

Verity Concept Operators

Operator Description

AND Selects documents that contain all of the search elements you
specify.

OR Selects documents that show evidence of at least one of the
search elements you specify.

ACCRUE Selects documents that include at least one of the search elements
you specify. Documents are ranked based on the number of search
elements found.

178 Developing Web Applications with ColdFusion

The following table lists the score operators.

Modifiers

Modifiers can be used with operators to further refine query expressions. You can
specify case sensitivity in a query, or force the output to be ranked by relevancy.
Modifiers include:

• CASE — Sets case sensitivity. Verity searches are case-insensitive for search text
entered in all uppercase or all lowercase. Case sensitivity is turned on when
mixed case characters are entered.

• MANY — Results are ranked by relevancy, which is determined by the number
of times the search value is found in a document.

• NOT — Eliminates documents containing the specified words.

• ORDER — Returns documents only if they contain words in the listed order.

Verity Score Operators

Operator Description

YESNO Forces the score of an element to 1 if the element’s score is non-
zero:

<YESNO>mainframe

If the retrieval result of the search on "mainframe" is 0.75, the
YESNO operator forces the result to 1. You can use YESNO to avoid
relevance ranking.

PRODUCT Multiplies the scores for documents matching a query. To arrive at
a document’s score, the search engine calculates a score for each
search element and multiplies these scores together:

<PRODUCT>(computers, laptops)

The resulting score for each document is multiplied together.

SUM Adds together the scores for documents matching a query, up to a
maximum value of 1:

<SUM>(computers, laptops)

The resulting scores are added together.

COMPLEMENT Calculates scores for documents matching a query by taking the
complement (subtracting from 1) of the scores for the query’s
search elements. The new score is 1 minus the search element’s
original score.

<COMPLEMENT>computers

If the search element’s original score is.785, the COMPLEMENT
operator recalculates the score as.215.

Chapter 11: Indexing and Searching Data 179

Search modifiers

Modifiers are combined with operators to change the standard behavior of an operator
in some way. For example, you can use the CASE modifier with an operator to specify
that you want to match the case of the search word.

Modifiers are as follows.

Verity Search Modifiers

Modifier Description

CASE Specifies a case-sensitive search:

<CASE>J[JAVA, java]

Searches for "JAVA" and "Java." If a search contains a mixed-case string,
the search request will be case-sensitive.

MANY Counts the density of words, stemmed variations, or phrases in a
document and produces a relevance-ranked score for retrieved
documents. Can be used with the following operators:

WORD

WILDCARD

STEM

PHRASE

SENTENCE

PARAGRAPH

<PARAGRAPH><MANY>javascript <AND> vbscript

The MANY modifier cannot be used with the following:

AND

OR

ACCRUE

Relational operators

180 Developing Web Applications with ColdFusion

Managing Collections
As with any data source, the maintenance requirements of a Verity collection are
dictated by the amount, frequency, and type of changes that occur in the records. You
can run maintenance routines directly from either the CFCOLLECTION or CFINDEX
tags or via the Administrator Verity page. For more information on this topic, see the
Allaire Knowledge Base article, "Maintaining Collections" (ID# 1080) on our Web site at
http://www.allaire.com/Support/KnowledgeBase/SearchForm.cfm.

The easiest way to perform collection management tasks is to create a ColdFusion
template that runs the operations, then add the task on the Administrator Scheduler
page. The page presents a wide range of scheduling options.

Maintenance options

Choose an option based on the following function descriptions.

• Repair — Runs internal Verity routines to fix corrupted records. If you suspect a
collection has become corrupted, it is probably safest to re-populate it.

• Optimize — Packs the indexed data for better performance. This is similar to
database optimization. This procedure can be used as part of routine
maintenance. The Optimize action is deprecated for CFINDEX except to
maintain legacy code; the CFCOLLECTION tag is recommended instead. For
more information on this command, see the Allaire Knowledge Base article,
"How To Optimize Your Verity Collection" (ID# 416) on our Web site at http://
www.allaire.com/Support/KnowledgeBase/SearchForm.cfm.

• Purge — Removes all data from a collection.

NOT Used to exclude documents that contain the specified word or phrase.
Used only with the AND and OR operators.

Java <AND> programming <NOT> coffee

ORDER Used to specify that the search elements must occur on the same order
in which they were specified in the query. Can be used with the
following operators:

PARAGRAPH

SENTENCE

NEAR/N

Place the ORDER modifier before any operator:

<ORDER><PARAGRAPH>("server", "Java")

Verity Search Modifiers (Continued)

Modifier Description

Chapter 11: Indexing and Searching Data 181

• Delete (when used as a CFINDEX ACTION) — Deletes the specified KEY value,
or comma-separated values, from the collection.

• Delete (when used on the Administrator Verity page or in CFCOLLECTION) —
Deletes the entire collection.

• Update — Re-populates the collection with changed records and new records
and adds a key if one is not part of the collection. This operation does not delete
records that have been deleted from the data source. To update a collection
from the Administrator Verity main page, select a collection on the list, click
Index, then click Update on the index page.

• Refresh (CFINDEX ACTION only) — Deletes all data and re-populates the
collection.

Securing a collection

A couple of possible scenarios for restricting access to a Verity collection are:

• The ColdFusion Administrator may need to specify developer access to
collections.

• A public site may need to limit user access to collections.

To restrict access to a collection, follow these steps:

1. Open the Advanced Server Security page of the ColdFusion Administrator and
click the Use Advanced Server Security box.

2. Click the Security Contexts button.

3. Enter a name for the secured collection and click Add.

4. Optionally enter a description for the secured collection.

5. Click Collections on the Enable Security for Resource Types list.

6. Click Apply.

You can then develop an appropriate authentication interface to allow access to the
secured collection.

182 Developing Web Applications with ColdFusion

C H A P T E R 1 2

Chapter 12 Using the Application
Framework

The ColdFusion Web Application Framework is a powerful tool you can use to help
structure your ColdFusion applications. This section describes how to create and use
the Application.cfm file, the application page that controls the application
framework.

Contents

• Understanding the Web Application Framework.. 184

• Mapping Out an Application Framework .. 185

• Creating the Application.cfm File ... 187

• Setting up client state management options ... 188

• Managing Client State in a Clustered Environment.................................... 190

• Using Client State Management ... 190

• Using Client Variables.. 191

• Application and Session Variables.. 193

• Using Session Variables ... 194

• Using Application Variables .. 196

• Tips for Using Session and Application Variables 197

• Default Variables and Constants... 197

• Using CFLOCK for Exclusive Locking ... 198

• CFLOCK Examples ... 200

184 Developing Web Applications with ColdFusion

Understanding the Web Application Framework
A ColdFusion application is a collection of application pages that work together.
Applications can be as simple as a guest book or as sophisticated as a full Internet
commerce system with catalog pages, shopping carts, and reporting. You can combine
individual applications to create advanced Web systems.

You create a special template, named Application.cfm, which you place in the root
directory of the application. All the other templates in the application are stored in
directories below the application’s root directory.

The ColdFusion Web Application Framework is based on four basic components:

• Application-level settings and functions

• Client state management

• Custom error handling

• Web server security integration

With these components, you can easily combine your ColdFusion application pages
into sophisticated Web applications.

Application-level settings and functions in Application.cfm

ColdFusion offers application-level features that help you control settings, variables,
and features available across the entire application. Once you have defined an
application, you can use the application-level features in addition to all of the other
features in ColdFusion.

Client state management

Because the Web is a stateless system, each connection a browser makes to a Web
server is unique in the eyes of the Web server. However, within an application it is
important to be able to keep track of users as they move through the pages within the
application. This is the definition of client state management.

An application maintains client state by seamlessly tracking variables for a browser as
the user moves from page to page within the application. This can be used in place of
other methods for tracking client state such as using URL parameters, hidden form
fields, and HTTP cookies.

ColdFusion creates a client record for each browser that requests an application page
in an application in which client state management is enabled. The client record is
identified by a unique token that is stored in an HTTP cookie in the user’s browser.

The application can then define variables within the client record. These client
variables are accessible as parameters in every application page that the client
requests within the scope of the application.

Chapter 12: Using the Application Framework 185

Custom error handling

Using the CFERROR tag, you can display customized HTML pages when errors occur.
This allows you to maintain a consistent look and feel within your application even
when errors occur. It also allows you to optionally suppress the display of error
information.

See “Generating Custom Error Messages (CFERROR)” on page 93 for more
information.

Web server security integration

You can integrate your applications with the user authentication and security provided
by your Web server. In addition, the ColdFusion Server offers a security framework that
controls access to applications, pages, data sources, and users. You set the bounds of a
security domain using the CFAUTHENTICATE tag.

See Chapter 17, “Application Security,” on page 263 for more information.

Mapping Out an Application Framework
An important step in designing a ColdFusion application is mapping out its directory
structure.

Before you start building the application, establish a root directory for the application.
Application pages may be stored in subdirectories of the root directory.

When any ColdFusion application page is requested, ColdFusion searches up the
page's directory tree for an Application.cfm file. When it is found, the
Application.cfm code is logically included at the beginning of that page.

If it is not found, ColdFusion searches up the directory tree until it finds an
Application.cfm file. If more than one Application.cfm file lives in the current
directory tree, ColdFusion uses the first one it finds.

Just as the Application.cfm file is executed before each application page it governs,
you can specify a file named OnRequestEnd.cfm, which is executed after each
application page in the same application.

ColdFusion Server looks for the OnRequestEnd.cfm file in the same directory as the
Application.cfm file of the current application page. The OnRequestEnd.cfm file will
never be executed if it resides in another directory.

The OnRequestEnd.cfm file will not be executed if there is an error or an exception in
the called page, or if the called page executes the CFABORT or CFEXIT tag.

Just as the Application.cfm file must be spelled with a capital A, you must spell the
OnRequestEnd.cfm file with capital O, R, and E.

Defining a root directory for an application has a number of advantages:

186 Developing Web Applications with ColdFusion

• Development: The application is easier to develop and maintain because the
application page files are well organized.

• Portability: The application can be more easily moved to another server or
another part of a server without having to change any code in the application
page files.

• Application-level Settings: Application pages that fall under the same root
directory can share application-level settings and functions.

• Security: Application pages that fall under the same directory can share Web
server security settings.

You can use a single Application.cfm file for your application, or use different
Application.cfm files that govern individual sections of the application.

The directory trees below illustrate two approaches to implementing the Application
Framework.

• In the first example, a company named Web Wonders, Inc. uses a single
Application.cfm file installed in their application root directory to process all
application page requests.

• The illustration on the right shows how Bandwidth Associates uses the settings
in individual Application.cfm files to specify processing for ColdFusion
applications at the departmental level. Only the Products application pages are
processed using the settings in the root Application.cfm file. The Consulting,
Marketing, and Sales directories each has its own Application.cfm file.

Chapter 12: Using the Application Framework 187

Behavior with CFINCLUDE

Only one Application.cfm file is ever processed for each ColdFusion application
page. The presence of an Application.cfm file is an implicit CFINCLUDE. If it is
present in the directory tree, there is no way not to include it. For this reason, it is the
ideal location to set application-level variables.

When the requested application page has a CFINCLUDE tag pointing to an additional
application page, ColdFusion does not initiate another search up the directory tree
based on the included application page. This is an important behavior to understand.
Upon opening a requested application page, ColdFusion searches for the
Application.cfm file only once.

Creating the Application.cfm File
The special application-wide page called Application.cfm defines application-level
settings and functions such as:

• The application name

• Client state management options

• Application and session variables

Products

Application.cfm

Orders

Support

Services

Application.cfm

Application.cfm

Application.cfm

Application.cfm

Web Wonders, Inc. Bandwidth Associates

Products

Consulting

Marketing

Sales

188 Developing Web Applications with ColdFusion

• Default variables

• Custom error pages

• Data sources

• Default style settings

• Exclusive locks

• Other application-level constants

Note Because UNIX is case sensitive, the application framework file must be
spelled with an initial capital, Application.cfm, for applications that run
on UNIX platforms.

Naming the application

In ColdFusion, you define an application by giving it a name using the
CFAPPLICATION tag. By using the same application name in a CFAPPLICATION tag,
you define a set of pages as being part of the same logical application.

Note The value you set for the NAME attribute in CFAPPLICATION is limited to
64 characters.

To name the application:

1. Open Studio and create a new file.

2. Modify the file so that it appears as follows:

<!--- This example illustrates CFAPPLICATION --->

<!--- Name the application --->
4 <CFAPPLICATION NAME="SearchApp">

3. Save the file as Application.cfm in the root directory of your application
framework.

Setting up client state management options
If you want to enable client state management, you must do so on every page in an

application. Because the Application.cfm file is included in all of the application’s
pages, you enable client management in the CFAPPLICATION tag, at the beginning of
Application.cfm.

To enable client state management:

1. Open the file Application.cfm in Studio and modify it so that it appears as
follows:

Chapter 12: Using the Application Framework 189

<!--- This example illustrates CFAPPLICATION --->

<!--- Name the application and enable client management--->
<CFAPPLICATION NAME="SearchApp"

4 CLIENTMANAGEMENT="Yes">

2. Save the file as Application.cfm in the root directory of your application
framework.

Choosing a client variable storage method

Once you have enabled client state management, you then have to determine where
you want to store client variables. The system-wide default is for client variables to be
stored in the system registry. But your site administrator can choose to store them
instead in a SQL database or in cookies.

There are two steps to change client variable storage: first, setting a client variable
storage option in the Variables page of the ColdFusion Administrator, and then, noting
the client variable storage location in the CFAPPLICATION tag. See Administering
ColdFusion Server for information on using the ColdFusion Administrator.

You use the CLIENTSTORAGE attribute in the CFAPPLICATION tag to specify where
you want to store client variables, providing one of three values:

• Registry

• The name of a configured client store

• Cookie

If no ClientStorage setting is specified, the default location, as noted in the ColdFusion
Administrator Variables page, is used.

The following example shows how you enable client state management using a sample
database called mydatasource.

To note the client variable storage method:

1. Open the file Application.cfm in Studio and modify it so that it appears as
follows:

<!--- This example illustrates CFAPPLICATION --->

<!--- Name the application and enable client management--->
<CFAPPLICATION NAME="SearchApp"
CLIENTMANAGEMENT="Yes"

4 CLIENTSTORAGE="mydatasource">

2. Save the file as Application.cfm in the root directory of your application
framework.

Note Client storage mechanisms are exclusive; when one storage type is in use,
the values set in other storage options are unavailable.

190 Developing Web Applications with ColdFusion

Cookie storage

When you set CLIENTSTORAGE="Cookie" the cookie that ColdFusion creates has the
application’s name. Storing client data in a cookie is scalable to large numbers of
clients, but this storage mechanism has some limitations. Chief among them is that if
the client turns off cookies in the browser, client variables won’t work.

Consider these additional limitations before implementing cookie storage for client
variables:

• Netscape Navigator allows only 20 cookies from a particular host to be set.
ColdFusion uses two of these cookies for CFID and CFTOKEN, and also creates
a cookie named CFGLOBALS to hold global data about the client, such as
HitCount, TimeCreated, and LastVisit. This limits you to 17 unique applications
per host.

• Netscape Navigator sets a size limit of 4K bytes per cookie. ColdFusion encodes
non-alphanumeric data in cookies with a URL encoding scheme that expands
at a 3-1 ratio, which means you should not store large amounts of data per
client. ColdFusion will throw an error if you try to store more than 4000
encoded bytes of data for a client.

Managing Client State in a Clustered Environment
To maintain your ColdFusion Web application’s state in a clustered environment, you
can use server-side client variables that get stored in a common, back-end repository
that all Web servers in a multi-server clustered environment can access. Even though
all state information will be stored in client variables in the repository, a mechanism
must be used to identify specific client requests. This is typically accomplished by
dropping a client-side identifier, such as a cookie, on the user’s machine.

ColdFusion 4.5 provides several client variable attributes in the CFApplication tag that
allow you to maintain application state across a cluster when using server-side client
variables. These attributes enable client variable management and set CFID and
CFTOKEN cookies at the domain level (for example, .allaire.com). If ID and token
combinations already exist on each host in the cluster, ColdFusion migrates the host-
level cookies on each cluster member to the single, common domain-level cookie.
Following the setting or migration of host-level cookies to a domain-level cookie,
ColdFusion creates a new cookie (CFMAGIC) that tells ColdFusion that domain
cookies have been set.

This domain-level cookie allows a ColdFusion application to maintain specific client
information across a server cluster.

Using Client State Management
When client state management is enabled for an application, you can use the system
to keep track of any number of variables associated with a particular client.

Chapter 12: Using the Application Framework 191

Creating a client variable

To create a client variable and set the value of the parameter, use the CFSET or
CFPARAM tag., for example:

<CFSET Client.FavoriteColor="Red">

Once a client variable has been set in this manner, it is available for use within any
application page in your application that is accessed by the client for whom the
variable is set.

The following example shows how to use the CFPARAM tag to check for the existence
of a client parameter and to set a default value if the parameter does not already exist:

<CFPARAM NAME="Client.FavoriteColor" DEFAULT="Red">

Using Client Variables
A client variable is accessed using the same syntax as other types of variables, and can
be used anywhere other ColdFusion variables are used.

To display the favorite color that has been set for a specific user, use the following code:

<CFOUTPUT>
Your favorite color is #Client.FavoriteColor#.

</CFOUTPUT>

Standard client variables

In addition to storing custom client variables, the Client object has several standard
parameters. These parameters can be useful in providing customized behavior
depending on how often users visit your site and when they last visited. For example,
the following code shows the date of a user’s last visit to your site:

<CFOUTPUT>
Welcome back to the Web SuperShop. Your last
visit was on #DateFormat(Client.LastVisit)#.

</CFOUTPUT>

The standard Client object attributes are read-only (they can be accessed but not set by
your application) and include CFID, CFToken, URLToken, HitCount, TimeCreated, and
LastVisit.

Using client state management without cookies

You can use ColdFusion’s client state management without cookies. However,this is
not recommended. If you choose to maintain client state without cookies, you must
ensure that every request carries CFID and CFTOKEN.

To maintain client state without cookies, set the SETCLIENTCOOKIES attribute of the
CFAPPLICATION tag to No. Then, you must maintain client state in URLs. by passing

192 Developing Web Applications with ColdFusion

the client ID (CFID)and the client security token (CFTOKEN) between pages, either in
hidden form fields or appended to URLs. You accomplish this using the variable
Client.URLTOKEN or Session.URLTOKEN.

Note In ColdFusion, client state management is explicitly designed to work
with cookies, the standard tool for identifying clients. Using client state
management without cookies requires careful programming to ensure
that the URLToken is always passed between application pages.

Getting a list of client variables

To obtain a list of the custom client parameters associated with a particular client, use
the GetClientVariablesList function.

<CFOUTPUT>#GetClientVariablesList()#</CFOUTPUT>

The GetClientVariablesList function returns a comma-separated list of variable names
defined for the application context declared by CFAPPLICATION, if any. The standard
system-provided client variables (CFID, CFToken, URLToken, HitCount, TimeCreated,
and LastVisit) are not returned in the list.

Deleting client variables

Unlike normal variables, client variables and their values persist over time. (In this
fashion they are akin to cookies.) To delete a client variable, use the
DeleteClientVariable function. For example:

<CFSET IsDeleteSuccessful=DeleteClientVariable("MyClientVariable")>

The DeleteClientVariable function operates only on variables within the scope
declared by CFAPPLICATION, if any. See the CFML Language Reference for more
information on this function.

Also, through the Variables page of the ColdFusion Administrator, you can edit the
client variable storage to remove client variables after a set number of days. (The
default value is 90 days when client variables are stored in the registry, ten days when
stored in a data source.)

See Administering ColdFusion Server for more information about setting time-out
values.

Note The system-provided client variables (CFID, CFToken, URLToken,
HitCount, TimeCreated, and LastVisit) cannot be deleted.

Client variables with CFLOCATION behavior

When using CFLOCATION to redirect to a path that contains .DBM or .CFM, the
Client.URLToken is automatically appended to the URL. This behavior can be
suppressed by adding the attribute ADDTOKEN="No" to the CFLOCATION tag.

Chapter 12: Using the Application Framework 193

Variable caching

All client variable reads and writes are cached to help decrease the overhead of client
state management operations. See Administering ColdFusion Server for information
on variables and server clustering.

Exporting the client variable database

If your client variable database is stored in the system registry and you need to move it
to another machine, you can export the registry key that stores your client variables
and take it to your new server. The system registry allows you to export and import
registry entries.

To export your client variable database from the registry:

1. Open the registry editor. In UNIX, use the program, /<install_dir>/
coldfusion/bin/regedit.

2. Find and select the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\
CurrentVersion\Clients

3. On the Registry menu, click Export Registry File.

4. Enter a name for the registry file.

Once you’ve created a registry file, you can take it to a new machine and import it by
selecting Import Registry File on the Registry Editor Registry menu.

Application and Session Variables
In ColdFusion, you use variables to work around the Web’s inherent statelessness.
Session and application variables are persistent variable "scopes." You access these
variables by prefacing the variable name with the scope name, for example:
Session.MyVariable or Application.MyVariable. And because they are persistent, you
can pass values between pages with a minimum of effort.

Enabling application and session variables

Session and application variables are similar in operation to client variables. Like
client variables, they are enabled with the CFAPPLICATION tag. However, unlike client
variables, which are stored in the system registry, a data source, or a cookie,
application and session variables are always stored in the ColdFusion server’s
memory. This method offers obvious performance advantages. In addition, you can set
time-out values for these variables either with CFAPPLICATION, or by specifying time-
outs in the ColdFusion Administrator. You can also simply disable application and
session variables entirely.

194 Developing Web Applications with ColdFusion

For information on setting time-outs for variables, See Administering ColdFusion
Server.

Differentiating client, session, and application variables

This table shows the relationships among client, session, and application variables.:

Note ColdFusion does not attempt to automatically evaluate application and
session variables. You must use variable prefixes with these variables, as
in Session.variablename or Application.variablename.

Using Session Variables
Use session variables when the variables are needed for a single site visit or set of
requests. For example, you might use session variables to store a user’s selections in a
shopping cart application. (Use client variables when the variable is needed for future
visits.)

What is a session?

A session refers to all the connections that a single client might make to a server in the
course of viewing any pages associated with a given application. Sessions are specific
to individual users. As a result, every user has a separate session and has access to a
separate set of session variables.

This logical view of a session begins with the first connection by a client and ends (after
a specified time-out period) after that client’s last connection. However, because of the
stateless nature of the Web, it’s not always possible to define a precise point at which a
session ends. In the real world, a session ends when the user finishes using an
application and goes off to do something else. In most cases, however, a Web
application has no way of knowing if a user is finished or if he’s just lingering over a
page.

You can impose some structure on session variable duration by specifying a time-out
period. If the user does not access a page of the application within this time-out

Kinds of Variables

Variable
Type

Application
Names

Client
IDs

Client
Mgmt

Session
Mgmt

Time-out

Client Optional Required Required n/a Optional

Session Optional Required Required Required Optional

Application Required n/a n/a n/a Optional

Chapter 12: Using the Application Framework 195

period, ColdFusion interprets this as the end of the session and clears any variables
associated with that session.

The default time-out for session variables is set to 20 minutes. In the Variables page of
the ColdFusion Administrator, you can change this time-out value. See Administering
ColdFusion Server for more information.

You can also set the time-out period for session variables inside a specific application
(thereby overruling the Administrator default setting) by using the SESSIONTIMEOUT
attribute of the CFAPPLICATION tag.

Storing session data in session variables

Session variables are designed to store session-level data. They are a convenient place
to store information that all pages of your application might need during a user
session. Using session variables, an application could initialize itself with user-specific
data the first time a user hit a page of that application. This information could then
remain available while that user continues to use that application. For example,
information about a specific user’s preferences could be retrieved from a database
once, the first time a user hits any page of an application. This information would
remain available throughout that user’s session, thereby avoiding the overhead of
retrieving the preferences again and again.

Session variables work exactly as client variables do, in that they require a client name
(client ID) and are always scoped within that client ID. Session variables also work
within the scope of an application name if one is supplied, in which case their scope
will be the combination of the client ID and the application name.

To enable session variables, set SESSIONMANAGEMENT="Yes" in the CFAPPLICATION tag
in your Application.cfm file. Note that when you turn on session management in the
CFAPPLICATION tag, you must specify the application’s name. Following is an
example of turning on session management:

<!--- This example illustrates CFAPPLICATION --->

<!--- Name the application, and turn on
session management --->

<CFAPPLICATION NAME="GetLeadApp" SESSIONMANAGEMENT="Yes">

<!--- set data source for this application --->
<CFSET dsn = "my_dsn">

<!--- set global error handling for this application --->
<CFERROR TYPE="REQUEST" TEMPLATE="request_err.cfm"

MAILTO="webmaster@mysite.com">
<CFERROR TYPE="VALIDATION" TEMPLATE="val_err.cfm"

MAILTO="webmaster@mysite.com">

<!--- set some global variables for this application

196 Developing Web Applications with ColdFusion

to be triggered on every page --->
<CFSET MainPage = "default.cfm">
<CFSET session.current_location = "Davis, Porter, Alewife">
<CFSET sm_location = "dpa">
<CFSET current_page = "#cgi.path_info#?#cgi.query_string#">

Using Application Variables
Application variables require an application name be associated with them and are
always scoped within that application name.

Unlike client and session variables, however, application variables do not require that
a client name (client ID) be associated with them. Thus, they are available to any
clients that specify the same application name.

The name you establish in the CFAPPLICATION tag is accessible elsewhere in the
application by using the Application.ApplicationName variable. For example, you
would use this variable in the CFLOCK tag to restrict access to application variables to
one request at a time.

Storing application data in application variables

Application variables are designed to store application-level data. They are a
convenient place to store information that all pages of your application might need no
matter who (what client) is running that application. Using application variables, an
application could initialize itself, say, when the first user hit any page of that
application. This information could then remain available indefinitely to all
subsequent hits of any pages of that application, by all users, thereby avoiding the
overhead of repeated initialization.

Because the data stored in application variables is available to all pages of an
application and remains available until ColdFusion Server is shut down, application
variables are very convenient. However, because all clients running an application see
the same set of application variables, they are not useful for client-specific
information. To target variables for specific clients, use session variables.

Application variable time-outs

Application variables have a specific lifetime, and this lifetime defines an
"application." For example, when you access an application variable inside a specific
application, the variable returns a value because your request occurs on a page
declared in the CFAPPLICATION tag to be part of a single application.

The default time-out period for application variables is two days. In the Variables page
of the ColdFusion Administrator, you can define time-out values for application and
session variables. See Administering ColdFusion Server for more information.

Chapter 12: Using the Application Framework 197

You can set the time-out period for application variables within a specific application
(thereby overriding the default setting in the ColdFusion Administrator) by using the
APPLICATIONTIMEOUT attribute of the CFAPPLICATION tag.

If no clients access the application within the specified time-out period, ColdFusion
Server destroys its application variables.

Tips for Using Session and Application Variables
In general, session and application variables are designed to hold information that you
seldom write but read often. In most cases, the values of these variables are set once,
most often when an application is first started (Application variables) or the first time a
user begins using an application (Session variables). Then the values of these variables
will be referenced many times throughout the life of the application or the course of a
session.

When using application variables, keep in mind that these variables are shared by all
instances of an application that might be running on a server. Because of this sharing,
applications cannot assume that values saved in these variables will not be overwritten
by other instances of the same application that might be simultaneously running on
the server. Of course, this is not a problem if these variables are treated as "write-once,
read-many," but can be a problem if they are written to indiscriminately.

Getting a list of application and session variables

The variable scope names "application" and "session" are registered as ColdFusion
structures. This enables you to use the ColdFusion Structure functions to get a list of
application and session variables. For example, you can use CFLOOP with the
StructFind function to output a list of application and session variables defined for a
specific application.

To find a list of client variables, you use the GetClientList function.

See the CFML Language Reference for more information on these functions.

Default Variables and Constants
It is often useful to set default variables and application-level constants in the
Application.cfm file. For example you may want to designate:

• A data source you’re using

• A domain name

• Style settings such as fonts or colors

• Other important application-level variables

198 Developing Web Applications with ColdFusion

Example: Application.cfm

The following example shows a complete Application.cfm file for the sample
Products application:

<!--- Set application name and enable client
variables option, with client variables stored in
a data source called mycompany --->

<CFAPPLICATION NAME="Products"
CLIENTMANAGEMENT="Yes"
CLIENTSTORAGE="mycompany">

<!--- Install custom error pages --->

<CFERROR TYPE="REQUEST"
TEMPLATE="requesterr.cfm"
MAILTO="admin@company.com">

<CFERROR TYPE="VALIDATION"
TEMPLATE="validationerr.cfm">

<!--- Set application constants --->

<CFSET HomePage="http://www.mycompany.com">
<CFSET PrimaryDataSource="CompanyDB">

Using CFLOCK for Exclusive Locking
The CFLOCK tag provides a means of implementing exclusive locking in ColdFusion
applications. The reasons you use CFLOCK include :

• Protecting sections of code that manipulate shared data, such as session,
application, and server variables.

• Ensuring that file updates do not fail because files are open for writing by other
applications or ColdFusion tags.

Note Use anonymous locks to protect a portion of a template, for example a
non-thread safe CFX. Use named locks to prevent parallel access to data.

How CFLOCK works

The CFLOCK tag can single-thread access to the CFML constructs in its body, so that
the body of the tag can be executed by at most one request at a time. By default, a
request executing inside a CFLOCK tag has an "exclusive lock" on the tag. No other
requests are allowed to start executing inside the tag while a request has an exclusive
lock. ColdFusion issues exclusive locks on a first-come first-serve basis.

However, ColdFusion offers provisions for allowing read-only access to locked code.
The CFLOCK tag offers two modes of locking:

Chapter 12: Using the Application Framework 199

• Exclusive locks allow only one request to process the locked code.

• Read-only locks allow multiple requests to execute concurrently, provided that
no exclusive locks are executing.

Note Unless you specify the TYPE attribute, the default lock is exclusive. You
should minimize the use of exclusive locks. If you have performance-
sensitive code inside CFLOCK tags, consider adding the
TYPE="ReadOnly" attribute to CFLOCK tags that do not update shared
data.

Using CFLOCK

ColdFusion Server is a multi-threaded web application server that can process
multiple page requests at any given time. Use CFLOCK to guarantee that multiple
concurrently executing requests do not manipulate shared data structures, files, or
CFXs in an inconsistent manner.

Note the following:

• Using CFLOCK around CFML constructs that modify shared data ensures that
the modifications occur one after the other and not all at the same time.

• Using CFLOCK around file manipulation constructs can guarantee that file
updates do not fail due to files being open for writing by other applications or
ColdFusion tags.

• Using CFLOCK around CFX invocations can guarantee that CFXs that are not
implemented in a thread-safe manner can be safely invoked by ColdFusion.
This usually only applies to CFXs developed in C++ using the CFAPI. Any C++
CFX that maintains and manipulates shared (global) data structures will have to
be made thread-safe to safely work with ColdFusion. However, writing thread-
safe C++ CFXs requires advanced knowledge. A CFML custom tag wrapper can
be used around the CFX to make its invocation thread-safe.

Note CFLOCK uses a kernel-level synchronization object that is released
automatically upon time-out and/or abnormal termination of the thread
that owns it. Therefore, ColdFusion will never deadlock for an infinite
period of time while processing a CFLOCK tag. However, very large time-
outs can block request threads for long periods of time and thus radically
decrease throughput. Always use the minimum time-out value allowed.

Avoiding deadlocks

Be sure to nest CFLOCK tags consistently. A potential cause of blocked request threads
is inconsistent nesting of CFLOCK tags and inconsistent naming of locks. If you are
nesting locks, you and everyone accessing the locked variables must consistently nest
CFLOCK tags in the same order and use the same lock name for each scope. If
everyone accessing locked variables does not adhere to these conventions, a deadlock
can occur.

200 Developing Web Applications with ColdFusion

A deadlock is a state in which no request can execute the locked section of the page.
Thus, all requests to the protected section of the page are blocked until there is a time-

out. The following table shows one scenario that would cause a deadlock.

Once a deadlock occurs neither of the users can do anything to break the deadlock,
because the execution of their requests is blocked until the deadlock can be resolved
by a lock time-out.

In addition, if you nest locks of different types, you can cause a deadlock. An example
of this is nesting an exclusive lock inside a read lock of the same scope, or of the same
name.

In order to avoid a deadlock, you and all who need to nest locks should do so in a well-
specified order and name the locks consistently. In particular, if you need to lock
access to the server, application, and session scopes, you must do so in the following
order.

1. Lock the session scope. In the CFLOCK tag, specify thescope as "session."

2. Lock the application scope. In the CFLOCK tag, specify the scope as "application."

3. Lock the server scope. In the CFLOCK tag, specify the scope as "server."

4. Unlock the server scope.

5. Unlock the application scope.

6. Unlock the session scope.

Note You can skip any pair of lock/unlock steps in the list above if you don’t
need to lock a particular scope. For example, you can take out Steps 3 and
4 if you don’t need to lock the server scope.

CFLOCK Examples
The following examples show how to use CFLOCK in a variety of situations.

Example with Application, Server, and Session Variables

This example shows how CFLOCK can be used to guarantee the consistency of data
updates to variables in the Application, Server, and Session scopes.

Deadlock Scenario

User 1 User 2

Locks the session scope. Locks the application scope.

Deadlock: Tries to lock application scope,
but application scope is already locked by
User 2.

Deadlock: Tries to lock session, but
session is already locked by User 1.

Chapter 12: Using the Application Framework 201

The following sample code might be part of the Application.cfm file.

<HTML>
<HEAD>

<TITLE>Define Session and Application Variables</TITLE>
</HEAD>

<H3>CFAPPLICATION Example</H3>

<P>CFAPPLICATION defines scoping for a
ColdFusion applicationand enables or disables
the storing of client and/or session variables.
This tag is placed in the Application.cfm file
for the current application.

<CFAPPLICATION NAME="ETurtle"
SESSIONTIMEOUT=CreateTimeSpan("60")
SESSIONMANAGEMENT="yes">

<!--- Initialize the session and application
variables that will be used by E-Turtleneck. Use
the session lock for the session variables.
The member variable sessionID creates the
session name for you. --->

<CFLOCK SCOPE="Session"
TIMEOUT="30" TYPE ="Exclusive">
<CFIF NOT IsDefined("session.size")>

<CFSET session.size = "">
</CFIF>
<CFIF NOT IsDefined("session.color")>

<CFSET session.color = "">
</CFIF>

</CFLOCK>

<!--- Use the application lock for the
application variable. This variable keeps
track of the total number of turtlenecks sold.
The application lock should have the same name
as specified in the CFAPPLICATION tag. --->

<CFLOCK Scope="Application"
TIMEOUT="30"
TYPE="Exclusive">
<CFIF NOT IsDefined("application.number")>

<CFSET application.number = 1>
</CFIF>

</CFLOCK>

<CFLOCK SCOPE="Application"
TIMEOUT="30"
TYPE ="ReadOnly">

202 Developing Web Applications with ColdFusion

<CFOUTPUT>
E-Turtleneck is proud to say that we have sold
#application.number# turtlenecks to date.
</CFOUTPUT>

</CFLOCK>

Tip In general, you should limit lock scopes. When locking variables, queries,
and arrays (anything other than structures), you can copy to a local
variable in the CFLOCK block, then reference the local variable.

The remaining sample code would appear inside the application page where
customers place orders.

<HTML>
<HEAD>
<TITLE>CFLOCK Example</TITLE>
</HEAD>

<BODY>
<H3>CFLOCK Example</H3>

<CFIF IsDefined("form.submit")>

<!--- Lock session variables --->
<CFLOCK SCOPE="Session"

TIMEOUT="30" TYPE="ReadOnly">
<CFOUTPUT>Thank you for shopping E-Turtleneck.
Today you have chosen a turtleneck in size
#form.size# and in the color #form.color#.
Your order number is #session.sessionID#.
</CFOUTPUT>

</CFLOCK>

<!--- Lock session variables to assign form values to them.
To lock session variables, you should get the session ID
with the sessionID member variable. --->

<CFLOCK SCOPE="Session"
TIMEOUT="30"
TYPE="Exclusive">
<CFPARAM Name=session.size Default=#form.size#>
<CFPARAM Name=session.color Default=#form.color#>

</CFLOCK>

<!--- Lock application variable application.number to
find the total number of turtlenecks sold. If you don’t
know the name of the application, you can use the member
variable applicationName to find it.--->

<CFLOCK SCOPE="Application"
TIMEOUT="30" TYPE="Exclusive">
<CFSET application.number=application.number + 1>

</CFLOCK>

Chapter 12: Using the Application Framework 203

<!--- Show the form only if it has not been submitted. --->
<CFELSE>
<FORM ACTION="cflock.cfm" METHOD="Post">

<P> Congratulations! You have just selected
the longest wearing, most comfortable turtleneck
in the world. Please indicate the color and size
you want to buy.</P>

<TABLE CELLSPACING="2" CELLPADDING="2" BORDER="0">
<TR>
<TD>Select a color.</TD>
<TD><SELECT TYPE="Text" NAME="color">

<OPTION>red
<OPTION>white
<OPTION>blue
<OPTION>turquoise
<OPTION>black
<OPTION>forest green
</SELECT>

</TD>
</TR>
<TR>

<TD>Select a size.</TD>
<TD><SELECT TYPE="Text" NAME="size">

<OPTION>small
<OPTION>medium
<OPTION>large
<OPTION>xlarge
</SELECT>

</TD>
</TR>
<TR>

<TD></TD>
<TD><INPUT TYPE="Submit" NAME="submit" VALUE="Submit">
</TD>

</TR>
</TABLE>
</FORM>
</CFIF>

</BODY>
</HTML>

Example of synchronizing access to a file system

The following example demonstrates how to use CFLOCK to synchronize access to a
file system. The CFLOCK tag protects a CFFILE tag from attempting to append data to
a file already open for writing by the same tag executing on another request.

Note that if an append operation takes more that one minute, a request waiting to
obtain an exclusive lock to the critical section may time out. Also, note the use of a

204 Developing Web Applications with ColdFusion

dynamic value for the NAME attribute to allow protection of a file with any given
name.

<CFLOCK NAME=#FileName# TIMEOUT=60 TYPE="Exclusive">
<CFFILE ACTION="Append"

FILE=#FileName#
OUTPUT=#TextToAppend#>

</CFLOCK>

Example of protecting ColdFusion Extensions

This example illustrates how a custom tag wrapper can be built around CFXs that are
not thread-safe. The wrapper simply forwards attributes to the non thread-safe CFX
that is used inside a CFLOCK tag. An anonymous lock is used here because this is the
only place from which the CFX will be invoked.

<CFPARAM NAME="Attributes.AttributeOne" Default="">
<CFPARAM NAME="Attributes.AttributeTwo" Default="">
<CFPARAM NAME="Attributes.AttributeThree" Default="">

<CFLOCK TIMEOUT=10 TYPE="Exclusive">
<CFX_NOT_THREAD_SAFE AttributeOne=#Attributes.AttributeOne#

AttributeTwo=#Attributes.AttributeTwo#
AttributeThree=#Attributes.AttributeThree#>

</CFLOCK>

Note This example assumes that this is the only instance this CFX is used in the
application. To lock a non-thread safe CFX that used multiple times in an
application, used named locking rather than anonymous locking,
specifying the same name for each lock.

For more information

See the CFML Language Reference for more information on using CFLOCK.

C H A P T E R 1 3

Chapter 13 Sending and Receiving Email

You can add interactive email features to your ColdFusion applications, providing
complete two-way interface to mail servers via the CFMAIL tag and the CFPOP tag.
The boom in Internet mail services makes ColdFusion’s enhanced email capability a
vital link to your users.

Contents

• Using ColdFusion with Mail Servers... 206

• Sending Email Messages.. 206

• Samples uses of CFMAIL ... 207

• Customizing Email for Multiple Recipients ... 209

• Advanced Sending Options ... 211

• Receiving Email Messages ... 211

• Handling POP Mail... 213

206 Developing Web Applications with ColdFusion

Using ColdFusion with Mail Servers
Adding email to your ColdFusion applications lets you respond automatically to user
requests. You can use email in your ColdFusion applications in many different ways.
These are just a few examples:

• Trigger email messages based on users’ requests or orders.

• Allow users to request and receive additional information or documents
through email.

• Confirm customer information based on order entries or updates.

• Send invoices or reminders, using information pulled from database queries.

ColdFusion offers several ways to integrate email into your applications. For sending
email, you generally use the Simple Mail Transfer Protocol (SMTP). For receiving mail,
you use the Post Office Protocol (POP) to retrieve email from the mail server. To use
email messaging in your ColdFusion applications you must have access to an SMTP
server and/or a valid POP account.

In your ColdFusion application pages, you use the CFMAIL and CFPOP tags to send
and receive mail respectively. The following sections describe ColdFusion email
features and offer examples of these tags.

Sending Email Messages
Before you set up ColdFusion to send email messages, you must have access to an
SMTP email server. Also, before you run application pages that refer to the email
server, you may want to configure the ColdFusion Administrator to use the SMTP
server so that you don’t have to hard-code it in your application.

To configure ColdFusion for email:

1. Open the Mail page in the ColdFusion Administrator.

2. In the Mail Server box, enter the address of the SMTP mail server you want
ColdFusion to use.

3. Normally, you leave the Server Port and Connection Timeout settings at their
default values, unless you need different settings.

4. Click Apply to save the settings.

5. To verify server settings, click the Verify button to make sure ColdFusion can
access your mail server.

See Administering ColdFusion Server for more information on the Administrator’s mail
settings.

Chapter 13: Sending and Receiving Email 207

Sending SMTP mail with CFMAIL

The CFMAIL tag provides support for sending SMTP email from within ColdFusion
applications. The CFMAIL tag is similar to the CFOUTPUT tag, except that CFMAIL
outputs the generated text as SMTP mail messages rather than to a page. You can use
all the attributes and commands that you use with CFOUTPUT with CFMAIL as well.

To send a simple email message:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Sending a simple email</TITLE>
</HEAD>

<BODY>
<H1>Sample email</H1>
<CFMAIL

FROM="Sender@Company.com"
TO="#URL.email#"
SUBJECT="Sample email"

>
This is a sample email to show basic email capability.

</CFMAIL>

The email was sent.

</BODY>
</HTML>

3. Save the file as sendmail.cfm in myapps under the Web root directory.

4. Open your browser and enter the URL that contains the file. Replace
myname@mycompany.com with you email address. For example,

http://localhost/myapps/sendmail.cfm?email=myname@mycompany.com

The template sends the email to you, through your SMTP server.

Samples uses of CFMAIL
An application page with the CFMAIL tag dynamically generates email messages based
on the tag’s settings. Some of the things you can accomplish with CFMAIL are:

• Send a mail message whose recipient and contents are determined by data the
user enters in an HTML form.

• Use a query to send a mail message to a database-driven list of recipients.

208 Developing Web Applications with ColdFusion

• Use a query to send a customized mail message, such as a billing statement to a
list of recipients that is dynamically populated from a database.

• Send a MIME file attachment along with a mail message.

Sending form-based email

In the example below, the contents of a customer inquiry form submittal are
forwarded to the marketing department. Note that the same application page could
also insert the customer inquiry into the database.

<CFMAIL FROM="#Form.EMailAddress#"
TO="marketing@allaire.com"
SUBJECT="Customer Inquiry">

A customer inquiry was posted to our Web site:

Name: #Form.FirstName# #Form.LastName#
Subject: #Form.Subject#

#Form.InquiryText#

</CFMAIL>

Sending query-based email

In the example below, a query ("ProductRequests") is run to retrieve a list of the
customers who have inquired about a product over the last seven days. This list is then
sent, with an appropriate header and footer, to the marketing department:

<CFMAIL QUERY="ProductRequests"
FROM="webmaster@allaire.com"
TO="marketing@allaire.com"
SUBJECT="ColdFusion status report">

Here is a list of people who have inquired about
Allaire ColdFusion over the last seven days:

<CFOUTPUT>
#ProductRequests.FirstName# #ProductRequests.LastName#
(#ProductRequests.Company#) - #ProductRequests.EMailAddress#
</CFOUTPUT>

Regards,
The WebMaster
webmaster@allaire.com

</CFMAIL>

Note the use of the nested CFOUTPUT tag to present a dynamic list embedded within
a normal CFMAIL message. The text within the CFOUTPUT is repeated for each row in

Chapter 13: Sending and Receiving Email 209

the "ProductRequests" query, while the text above and below it serve as the header and
footer (respectively) for the mail message.

Sending email to multiple recipients

In the following example, a query ("CFBetaTesters") is run to retrieve a list of people
who are beta testing ColdFusion. This query is then used to send a notification to each
of these testers that a new version of the beta release is available:

<CFMAIL QUERY="CFBetaTesters"
FROM="beta@allaire.com"
TO="#TesterEMail#"
SUBJECT="ColdFusion Beta Four Available">

To all ColdFusion beta testers:

ColdFusion Beta Four is now available
for downloading from the Allaire site.
The URL for the download is:

http://beta.allaire.com

Regards,
ColdFusion Technical Support
beta@allaire.com

</CFMAIL>

Note that in this example, the contents of the CFMAIL tag are not dynamic, that is, they
don’t use any # delimited dynamic parameters. What is dynamic is the list of email
addresses to which the message is sent. Note the use of the "TesterEMail" column from
the "CFBetaTesters" query in the TO attribute.

Customizing Email for Multiple Recipients
In the following example, a query ("GetCustomers") is run to retrieve the contact
information for a list of customers. This query is then used to send an email to each
customer asking them to verify that their contact information is still valid:

<CFMAIL QUERY="GetCustomers"
FROM="service@allaire.com"
TO="#EMail#"
SUBJECT="Contact Info Verification">

Dear #FirstName# -

We’d like to verify that our customer
database has the most up-to-date contact
information for your firm. Our current
information is as follows:

210 Developing Web Applications with ColdFusion

Company Name: #Company#
Contact: #FirstName# #LastName#

Address:
#Address1#
#Address2#
#City#, #State# #Zip#

Phone: #Phone#
Fax: #Fax#
Home Page: #HomePageURL#

Please let us know if any of the above
information has changed, or if we need to
get in touch with someone else in your
organization regarding this request.

Thanks,
Allaire Customer Service
service@allaire.com

</CFMAIL>

Note that in the TO attribute of CFMAIL, the #Email# query column causes one
message to be sent to the address listed in each row of the query. Also note the use of
the other query columns (FirstName, LastName, etc.) within the CFMAIL section to
customize the contents of the message for each recipient.

Attaching a MIME file

You use the CFMAILPARAM tag to attach a file or add a header to a mail message. In
the following example, a MIME-encoded file is sent along with an email message:

<CFMAIL FROM="abeecho@allaire.com"
TO="bobm@supercomputer.com"
SUBJECT="File you requested"

>

Dear Bob,

Here is a copy of the file you requested.

Regards,
A. Beech

<CFMAILPARAM FILE="c:\photos\asdl_photo.jpg">

</CFMAIL>

Chapter 13: Sending and Receiving Email 211

Advanced Sending Options
The ColdFusion implementation of SMTP mail uses a spooled architecture. This
means that when a CFMAIL tag is processed in an application page, the messages
generated are not sent immediately. Instead, they are spooled to disk and processed in
the background. This architecture has two distinct advantages:

1. End users of your application are not required to wait for SMTP processing to
complete before a page returns to them. This is especially useful when a user
action causes more than a handful of messages to be sent.

2. Messages sent using CFMAIL are delivered reliably, even in the presence of
unanticipated events like power outages or server crashes.

In most cases, spooled messages are processed immediately by ColdFusion and
delivery occurs almost instantly. If, however, ColdFusion is either extremely busy or
has a large existing queue of messages, delivery could occur some time after the
request is submitted.

Sending mail as HTML

Most newer Internet mail applications are capable of reading and interpreting HTML
code in a mail message. The CFMAIL tag allows you to specify the message type as
HTML. The TYPE attribute, which only accepts HTML as an argument, informs the
receiving email client that the message has embedded HTML tags that need to be
processed. This feature is only useful when sending messages to mail clients that
understand HTML.

Error logging and undelivered messages

All errors that occur during the processing of SMTP messages are logged to the file
errors.log in the ColdFusion log directory. Error log entries contain the date and time
of the error as well as diagnostic information on why the error occurred.

All messages not delivered because of an error are written to the
\cfusion\mail\undelivr directory. The error log entry corresponding to the
undelivered message contains the name of the file written to the undelivr directory.

See Administering ColdFusion Server for more information about the mail logging
settings in the ColdFusion Administrator.

Receiving Email Messages
CFPOP, the Post Office Protocol tag, expands the ColdFusion developer’s ability to add
Internet mail client features and email consolidation to applications. While a
conventional mail client provides an adequate interface for personal mail, there are
many cases where an alternative interface to some mailboxes is desirable. CFPOP is a
tool to develop targeted mail clients to suit the specific needs of a wide range of
applications.

212 Developing Web Applications with ColdFusion

Use CFPOP in applications when you want to receive email. Here are two instances
where implementing POP mail makes sense:

• If your site has generic mailboxes that are read by more than one person
(sales@yourcompany.com), it may be more efficient to construct a ColdFusion
mail front-end to supplement individual user mail clients.

• In many applications, the processing of mail can be automated when the mail
is formatted to serve a particular purpose. For example, when subscribing to a
list server.

See the CFML Language Reference for more information on CFPOP syntax and
variables.

Using CFPOP

To implement the CFPOP tag in your ColdFusion application:

1. Choose which mail boxes you want to access within your ColdFusion application.

2. Determine what mail message components you need to process: message header,
message body, attachments, etc.

3. Decide if you need to store the retrieved messages in a database.

4. Decide if you need to delete messages from the POP server once you’ve retrieved
them.

5. Incorporate the CFPOP tag in your application and create a user interface for
accessing a given mailbox.

6. Build an application page to handle the output. Retrieved messages can include
ASCII characters that do not display properly in the browser.

You use the CFOUTPUT tag with the HTMLCodeFormat and HTMLEditFormat
functions to control output to the browser. Note the use of these functions in the
examples.

CFPOP query variables

Two variables are returned for each CFPOP query that provide record number
information:

• RecordCount: The total number of records returned by the query.

• CurrentRow: The current row of the query being processed by CFOUTPUT in a
query-driven loop.

You can reference these properties in a CFOUTPUT tag by prefixing the query variable
with the query name in the NAME attribute of CFPOP:

<CFOUTPUT>
This operation returned #Sample.RecordCount# messages.
</CFOUTPUT>

Chapter 13: Sending and Receiving Email 213

Handling POP Mail
This section gives an example of each of the following usages:

• Retrieving only message headers

• Retrieving a message body

• Retrieving attachments

• Deleting messages

Returning only message headers

The header includes:

• DATE

• FROM

• MESSAGENUMBER

• REPLYTO

• SUBJECT

• CC

• TO

To retrieve only the message header:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>POP Mail Message Header Example</TITLE>
</HEAD>

<BODY>
<H2>This example retrieves message
header information:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="GetHeaderOnly"
NAME="Sample">

<CFOUTPUT QUERY="Sample">
MessageNumber: #HTMLEditFormat(Sample.MESSAGENUMBER)#

To: #HTMLEditFormat(Sample.TO)#

From: #HTMLEditFormat(Sample.FROM)#

Subject: #HTMLEditFormat(Sample.SUBJECT)#

Date: #HTMLEditFormat(Sample.DATE)#

214 Developing Web Applications with ColdFusion

Cc: #HTMLEditFormat(Sample.CC)#

ReplyTo: #HTMLEditFormat(Sample.REPLYTO)#

</CFOUTPUT>

</BODY>
</HTML>

3. Change the following line so that it refers to a valid POP mail server, as well as a
valid user name and password:

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#

4. Save the file as hdronly.cfm in myapps under the Web root directory.

This code retrieves the message headers and stores them in a CFPOP result set called
Sample.

You can enclose header information in HTML coding and use the ColdFusion function
HTMLCodeFormat to replace HTML tags with escaped characters, such as > for >
and < for <.

In addition, you can process the date returned by CFPOP with ParseDateTime, which
accepts an argument for converting POP date/time objects into GMT (Greenwich
Mean Time).

See the CFML Language Reference for information on these ColdFusion functions.

You can reference any of these columns in a CFOUTPUT tag, as the following example
shows.

<CFOUTPUT>
#ParseDateTime(queryname.date, "POP")#
#HTMLCodeFormat(queryname.from)#
#HTMLCodeFormat(queryname.messagenumber)#

</CFOUTPUT>

Returning an entire message

When you use the CFPOP tag with ACTION="GetAll", ColdFusion returns the same
columns returned with GETHEADERONLY, as well as two additional columns, BODY
and HEADER.

To retrieve an entire message:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>POP Mail Message Body Example</TITLE>
</HEAD>

<BODY>
<H2>This example adds retrieval of

Chapter 13: Sending and Receiving Email 215

the message body:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="GetAll"
NAME="Sample">

<CFOUTPUT QUERY="Sample">
MessageNumber: #HTMLEditFormat(Sample.MESSAGENUMBER)#

To: #HTMLEditFormat(Sample.TO)#

From: #HTMLEditFormat(Sample.FROM)#

Subject: #HTMLEditFormat(Sample.SUBJECT)#

Date: #HTMLEditFormat(Sample.DATE)#

Cc: #HTMLEditFormat(Sample.CC)#

ReplyTo: #HTMLEditFormat(Sample.REPLYTO)#

Body: #HTMLCodeFormat(Sample.BODY)#

Header: #HTMLCodeFormat(Sample.HEADER)#

</CFOUTPUT>

</BODY>
</HTML>

3. Change the following line so that it refers to a valid POP mail
server, as well as a valid user name and password:

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#

4. Save the file as hdrbody.cfm in myapps under the Web root directory.

Returning attachments with messages

When you use the CFPOP tag with ACTION="GetAll", and add the ATTACHMENTPATH
attribute, ColdFusion returns two additional columns:

• ATTACHMENTS contains a a tab-separated list of all source attachment names.

• ATTACHMENTFILES contains a tab-separated list of the actual temporary
filenames written to the server. Use the CFFILE tag to delete the temporary files.

Not all messages have attachments. If a message has no attachments, both
ATTACHMENTS and ATTACHMENTFILES will be equal to an empty string.

To retrieve all parts of a message including attachments:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>POP Mail Message Attachment Example</TITLE>
</HEAD>

216 Developing Web Applications with ColdFusion

<BODY>
<H2>This example retrieves message header,
body, and all attachments:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="GetAll"
ATTACHMENTPATH="c:\attachdir"
NAME="Sample">

<CFOUTPUT QUERY="Sample">
MessageNumber: #HTMLEditFormat(Sample.MESSAGENUMBER)#

To: #HTMLEditFormat(Sample.TO)#

From: #HTMLEditFormat(Sample.FROM)#

Subject: #HTMLEditFormat(Sample.SUBJECT)#

Date: #HTMLEditFormat(Sample.DATE)#

Cc: #HTMLEditFormat(Sample.CC)#

ReplyTo: #HTMLEditFormat(Sample.REPLYTO)#

Attachments: #HTMLEditFormat(Sample.ATTACHMENTS)#

Attachment Files: #HTMLEditFormat(Sample.ATTACHMENTFILES)#

Body: #HTMLCodeFormat(Sample.BODY)#

Header: #HTMLCodeFormat(Sample.HEADER)#

</CFOUTPUT>

</BODY>
</HTML>

3. Change the following line so that it refers to a valid POP mail server, as well as a
valid user name and password:

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#

4. Save the file as attach.cfm in myapps under the Web root directory.

Note To avoid duplicate file names when saving attachments, use the
GENERATEDUNIQUEFILENAMES attribute of CFPOP and set it to Yes.

Deleting messages

By default, retrieved messages are not deleted from the POP mail server. If you want to
delete retrieved messages, you must set the ACTION attribute to Delete.

Note Once a message is deleted, it’s gone for good.

The MESSAGENUMBER attribute returned by all CFPOP retrievals contains the
message number you need to pass back to the POP mail server to have the
corresponding message deleted. A few notes:

Note Message numbers are reassigned at the end of every POP mail server
communication that contains a delete action. For example, if four
messages are retrieved from a POP mail server, the message numbers

Chapter 13: Sending and Receiving Email 217

returned will be 1,2,3,4. If messages 1 and 2 are then deleted within a
single CFPOP tag, messages 3 and 4 will be assigned message numbers 1
and 2, respectively.

To delete messages:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>
<TITLE>POP Mail Message Delete Example</TITLE>
</HEAD>

<BODY>
<H2>This example deletes messages:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="Delete"
MESSAGENUMBER="1,2,3">

</BODY>
</HTML>

3. Change the following line so that it refers to a valid POP mail server, as well as a
valid user name and password:

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#

4. Save the file as msgdel.cfm in myapps under the Web root directory.

218 Developing Web Applications with ColdFusion

C H A P T E R 1 4

Chapter 14 Managing Files on the Server

The CFFILE, CFDIRECTORY, and CFCONTENT tags handle browser/server file
management tasks. To perform server-to-server operations, use the CFFTP tag.

Contents

• Using CFFILE.. 220

• Uploading Files... 220

• Setting File and Directory Attributes .. 223

• Evaluating the Results of a File Upload .. 224

• Moving, Renaming, Copying, and Deleting Server Files 226

• Reading, Writing, and Appending to a Text File... 227

• Performing Directory Operations ... 229

220 Developing Web Applications with ColdFusion

Using CFFILE
The CFFILE tag gives you the ability to work with files on your server in a number of
ways:

• Uploading files from a client to the Web server using an HTML form.

• Moving, renaming, copying, or deleting files on the server.

• Reading, writing, or appending to text files on the server.

The required attributes depend on the ACTION specified. For example, if
ACTION="WRITE", ColdFusion expects the attributes associated with writing a text
file.

Note Consider the security and logical structure of directories on the server
before allowing users access to them.

Uploading Files
File uploading requires that you create two files:

• An HTML form to enter file upload information

• An action page containing the file upload code

To create an HTML file to specify file upload information:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Specify File to Upload</TITLE>
</HEAD>

<BODY>
<H2>Specify File to Upload</H2>
<FORM ACTION="uploadfileaction.cfm"

4 ENCTYPE="multipart/form-data"
METHOD="post">

<P>Enter the complete path and filename of the file to upload:
<INPUT TYPE="file"

NAME="FiletoUpload"
SIZE="45">

</P>
<INPUT TYPE="submit"

VALUE"Upload">
</FORM>
</BODY>
</HTML>

3. Save the file as uploadfileform.cfm in myapps under the Web root directory.

Chapter 14: Managing Files on the Server 221

Code Review

HTML forms can be designed in most browsers to give users the ability to upload files.
Setting the HTML INPUT tag type to "file" instructs the browser to prepare to read and
transmit a file from the user’s system to your server. Setting the ENCTYPE FORM
attribute to "multipart/form-data" tells the server that the form submission contains
an uploaded file.

The user can enter a file path or browse the system and pick a file to send.

To create an action page to upload the file:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Upload File</TITLE>
</HEAD>

<body>
<H2>Upload File</H2>

<CFFILE ACTION="UPLOAD"
DESTINATION="c:\inetpub\wwwroot\HR\"
NAMECONFLICT="Overwrite"
FILEFIELD="FiletoUpload">

<CFOUTPUT>
You uploaded the file #File.ClientFileName#.#File.ClientFileExt#
successfully to
#File.ServerDirectory#\#File.ServerFileName#.#File.ServerFileExt#.
</CFOUTPUT>

</BODY>
</HTML>

Code Description

<FORM ACTION="uploadfileaction.cfm"
ENCTYPE="multipart/form-data"
METHOD="post">

Create a form that contains file
selection fields for upload by the
user.

<INPUT TYPE="file"
NAME="FiletoUpload"
SIZE="45">

Allow the user to input a field.
(The File input type
automatically includes a Browse
button to allow the user to look
for the file instead of entering
the entire path and file name.)

222 Developing Web Applications with ColdFusion

3. Change the following line to point to an appropriate location on your server:

DESTINATION="c:\inetpub\wwwroot\HR\"

4. Save the file as uploadfileaction.cfm in myapps under the Web root directory.

5. View uploadfileform.cfm in your browser, enter values and submit the form.

6. The file you specified is uploaded.

Code Review

Note This example performs no error checking and does not incorporate any
security measures. Before deploying an application that performs file
uploads, be sure to incorporate both error handling and security.

Resolving conflicting file names

When a file is saved to the server, there is a risk that another file may already exist with
the same name. In the event of this occurrence, there are a number of actions you can
take using the NAMECONFLICT attribute. For example, you can specify the parameter
NAMECONFLICT="MAKEUNIQUE" in the CFFILE tag to create a unique file name while
keeping the file extension the same.

Controlling the type of file uploaded

For some applications, you might want to restrict the type of file that is uploaded. For
example, you may not want to accept graphic files in a document library.

The ACCEPT attribute is used to restrict the type of file that will be allowed in an
upload. When an ACCEPT qualifier is present, the uploaded file’s MIME content type
must match the criteria specified or an error will occur. ACCEPT takes a comma-
separated list of MIME data names, optionally with wildcards.

Code Description

<CFFILE ACTION="UPLOAD" Prepare to upload a file to the
server.

DESTINATION="c:\inetpub\wwwroot\HR\" Specify the destination of the
file.

NAMECONFLICT="Overwrite" If the file already exists,
overwrite it.

FILEFIELD="FiletoUpload"> Specify the name of the file to
upload. Note that you do not
enclose the variable in pound
signs.

Chapter 14: Managing Files on the Server 223

A file’s MIME type is determined by the browser. Common types, like "image/gif" and
"text/plain", are registered in your browser.

Note Not all browsers support MIME type associations.

Example: Restricting file types

This CFFILE specification will only save an image file that is in the GIF format:

<CFFILE ACTION="Upload"
FILEFIELD="UploadFile"
DESTINATION="c:\uploads\MyImage.GIF"
NAMECONFLICT="OVERWRITE"
ACCEPT="image/gif">

This CFFILE specification will only save an image file that is either a GIF or a JPEG:

<CFFILE ACTION="Upload"
FILEFIELD="UploadFile"
DESTINATION="c:\uploads\MyImage.GIF"
NAMECONFLICT="OVERWRITE"
ACCEPT="image/gif, image/jpeg">

This CFFILE specification will only save an image file, but the format doesn’t matter:

<CFFILE ACTION="Upload"
FILEFIELD="UploadFile"
DESTINATION="c:\uploads\MyImage.GIF"
NAMECONFLICT="OVERWRITE"
ACCEPT="image/*">

Note Any file will be saved if ACCEPT is omitted, left empty, or contains "*/*".

Setting File and Directory Attributes
File attributes in Windows are defined using the CFFILE ATTRIBUTES attribute. In
UNIX, file and directory permissions are defined using the CFFILE and CFDIRECTORY
MODE attribute.

UNIX

In UNIX, you can set permissions on files and directories for owner, group, and other.
Values for the MODE attribute correspond to octal values for the UNIX chmod
command:

• 4 = Read only

• 2 = Read/write

• 1 = Read/write/execute

224 Developing Web Applications with ColdFusion

You enter permissions values in the MODE attribute for each type of user: owner,
group, other in that order. For example to assign read permissions for all:

MODE=444

To give a file or directory owner read/write/execute permissions and read only
permissions for everyone else:

MODE=744

Windows

In Windows, you can set the following file attributes:

• ReadOnly

• Temporary

• Archive

• Hidden

• System

• Normal

If ATTRIBUTES is not used, the file’s existing attributes are maintained. If Normal is
specified as well as any other attributes, Normal is overridden by whatever other
attribute is specified.

Example: Setting file attribute

This example sets the archive bit for the uploaded file:

<CFFILE ACTION="Copy"
SOURCE="c:\files\upload\keymemo.doc"
DESTINATION="c:\files\backup\"
ATTRIBUTES="Archive">

Note Be sure to include the traililng slash (\) in the source and destination file
names.

Evaluating the Results of a File Upload
After a file upload is completed, you can retrieve status information using file upload
variables. This status information includes a wide range of data about the file, such as
the file’s name and the directory where it was saved.

Although you can use either the File or CFFILE prefix, for file uplodad status variables,
CFFILE is preferred, for example, CFFILE.ClientDirectory. (The File prefix is
retained for backward compatibility.) The file status variables can be used anywhere
that ColdFusion variables are used.

Chapter 14: Managing Files on the Server 225

The following file upload status variables are available after an upload.

File Upload Variables

Parameter Description

AttemptedServerFile Initial name ColdFusion used attempting to save a file, for
example, myfile.txt. See "Resolving conflicting file
names" above.

ClientDirectory Directory location of the file uploaded from the client’s
system.

ClientFile Name of the file uploaded from the client’s system, such
as myfile.txt.

ClientFileExt Extension of the uploaded file on the client’s system
without a period, for example, txt not.txt.

ClientFileName Filename without an extension of the uploaded file on
the client’s system.

ContentSubType MIME content subtype of the saved file, such as gif for
image/gif.

ContentType MIME content type of the saved file, such as image for
image/gif.

DateLastAccessed Date and time the uploaded file was last accessed.

FileExisted Indicates (Yes or No) whether or not the file already
existed with the same path.

FileSize Size of the uploaded file.

FileWasAppended Indicates (Yes or No) whether or not ColdFusion
appended the uploaded file to an existing file.

FileWasOverwritten Indicates (Yes or No) whether or not ColdFusion
overwrote a file.

FileWasRenamed Indicates (Yes or No) whether or not the uploaded file
was renamed to avoid a name conflict.

FileWasSaved Indicates (Yes or No) whether or not ColdFusion saved a
file.

OldFileSize Size of a file that was overwritten in the file upload
operation.

ServerDirectory Directory of the file actually saved on the server.

ServeFile Filename of the file actually saved on the server.

226 Developing Web Applications with ColdFusion

Use the File prefix to refer to these variables, for example, #CFFILE.FileExisted#.

Note File status variables are read-only. They are set to the results of the most
recent CFFILE operation. If two CFFILE tags execute, the results of the
first are overwritten by the subsequent CFFILE operation.

Moving, Renaming, Copying, and Deleting Server Files
With CFFILE, you can create application pages to manage files on your Web server. You
can use the tag to move files from one directory to another, rename files, copy a file, or
delete a file.

The examples below show static values for many of the attributes. However, the value
of all or part of any attribute in a CFFILE tag can be a dynamic parameter. This makes
CFFILE a very powerful tool.

ServerFileExt Extension of the uploaded file on the server, without a
period, for example, txt not.txt.

ServerFileName Filename, without an extension, of the uploaded file on
the server.

TimeCreated Time the uploaded file was created.

TimeLastModified Date and time of the last modification to the uploaded
file.

File Upload Variables (Continued)

Parameter Description

Examples of moving, renaming, copying, and deleting server files

Action Example code

Move a file <CFFILE ACTION="Move"
SOURCE="c:\files\upload\KeyMemo.doc"
DESTINATION="c:\files\memo\">

Rename a file <CFFILE ACTION="Rename"
SOURCE="c:\files\memo\KeyMemo.doc"
DESTINATION="c:\files\memo\OldMemo.doc">

Copy a file <CFFILE ACTION="Copy"
SOURCE="c:\files\upload\KeyMemo.doc"
DESTINATION="c:\files\backup\">

Delete a file <CFFILE ACTION="Delete"
FILE="c:\files\upload\oldfile.txt">

Chapter 14: Managing Files on the Server 227

Reading, Writing, and Appending to a Text File
In addition to managing files on the server, you can use CFFILE to read, create, and
modify text files.

This gives you the ability to

• Create log files.

• Generate static HTML documents.

• Use text files to store information that can be brought into Web pages.

Reading a text file

You can use CFFILE to read an existing text file. The file is read into a dynamic
parameter which you can use anywhere in the application page. For example, you
could read a text file and then insert its contents into a database. Or you could read a
text file and then use one of the find and replace functions to modify the contents.

To read a text file:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Read a Text File</TITLE>
</HEAD>

<BODY>
Ready to read the file:

4 <CFFILE ACTION="Read"
4 FILE="C:\inetpub\wwwroot\mine\message.txt"
4 VARIABLE="Message">

<CFOUTPUT>
#Message#

</CFOUTPUT>
</BODY>
</HTML>

3. Replace c:\inetpub\wwwroot\mine\message.txt with the location and name of a
text file on your server.

4. Save the file as readtext.cfm and view it in your browser.

Writing a text file

You can use CFFILE to write a text file based on dynamic content. For example, you
could create static HTML files or log actions in a text file.

228 Developing Web Applications with ColdFusion

To create a form in which to enter data for a text file:

1. Open a new file in Studio.

2. Modify the file so that it appears a follows:

<HTML>
<HEAD>

<TITLE>Put Information into a Text File</TITLE>
</HEAD>

<BODY>
<H2>Put Information into a Text File</H2>

<FORM ACTION="writetextfileaction.cfm" METHOD="POST">
<p>Enter you name: <INPUT TYPE="text" NAME="Name" SIZE="25">
<p>Enter you the name of the file: <INPUT TYPE="text"

NAME="FileName" SIZE="25">
<p>Enter your message:</p>
<INPUT TYPE="textarea" NAME="message"cols=45 rows=6>
</p>
<INPUT TYPE="submit" NAME="submit" VALUE="Submit">

</FORM>

</BODY>
</HTML>

3. Save the file as writetextfileform.cfm in myapps under the Web root directory.

To write a text file:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>Untitled</TITLE>
</HEAD>
<BODY>
<CFFILE ACTION="Write"

FILE="C:\inetpub\wwwroot\mine\#form.filename#"
OUTPUT="Created By: #Form.Name#
#Form.Message# ">

</BODY>
</HTML>

3. Modify the path C:\inetpub\wwwroot\mine\ to point to a path on your server.

4. Save the file as writetextfileaction.cfm.

5. View the file writetextfileform.cfm in your browser, enter values, and submit
the form.

The text file is written to the location you specified.

You can use CFFILE ACTION="Append" to append additional text to the end of an
existing text file, for example, when creating log files.

Chapter 14: Managing Files on the Server 229

Performing Directory Operations
Use the CFDIRECTORY tag to return file information from a specified directory and to
create, delete, and rename directories.

As with CFFILE, ColdFusion administrators can disable CFDIRECTORY processing in
the ColdFusion Administrator Tags page. See the CFML Language Reference for details
on the syntax of this tag.

Returning file information

When using the ACTION=LIST, CFDIRECTORY returns five result columns you can
reference in your CFOUTPUT:

• Name — Directory entry name.

• Size — Directory entry size.

• Type — File type: F or D for File or Directory.

• DateLastModified — Date an entry was last modified.

• Attributes — File attributes, if applicable.

• Mode — (Solaris only) The octal value representing the permissions setting for
the specified directory. For information about octal values, refer to the man
pages for the chmod shell command.

To view directory information:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HTML>
<HEAD>

<TITLE>List Directory Information</TITLE>
</HEAD>

<BODY>
<H2>List Directory Information</H2>
<CFDIRECTORY

DIRECTORY="c:\inetpub\wwwroot\mine"
NAME="mydirectory"
SORT="size ASC, name DESC, datelastmodified">

<TABLE>
<TR>

<TH>Name</TH>
<TH>Size</TH>
<TH>Type</TH>
<TH>Modified</TH>
<TH>Attributes</TH>
<TH>Mode</TH>

</TR>

230 Developing Web Applications with ColdFusion

<CFOUTPUT QUERY="mydirectory">
<TR>

<TD>#mydirectory.name#</TD>
<TD>#mydirectory.size#</TD>
<TD>#mydirectory.type#</TD>
<TD>#mydirectory.datelastmodified#</TD>
<TD>#mydirectory.attributes#</TD>
<TD>#mydirectory.mode#</TD>

</TR>
</CFOUTPUT>
</TABLE>

</BODY>
</HTML>

3. Modify the line DIRECTORY="c:\inetpub\wwwroot\mine"so that it points to a
directory on your server.

4. Save the file as directoryinfo.cfm and view it in your browser.

C H A P T E R 1 5

Chapter 15 Interacting with Remote Servers

This chapter describes how ColdFusion wraps the complexity of Hypertext Transfer
Protocol communications in a simplified tag syntax that allows you to easily extend
your site’s offerings across the Web.

Contents

• Using CFHTTP to Interact with the Web .. 232

• Using the CFHTTP Get Method .. 232

• Creating a Query from a Text File.. 234

• Using the CFHTTP Post Method ... 236

• Using Secure Sockets Layer (SSL) with CFHTTP ... 238

• Performing File Operations with CFFTP .. 239

• Moving Complex Data Structures Across the Web with WDDX 241

• An Overview of Distributed Data for the Web.. 242

• WDDX Components .. 242

• Working With Application-Level Data.. 243

• Data Exchange Across Application Servers .. 243

• How WDDX Works ... 244

• Converting CFML Data to a JavaScript Object... 245

• Transferring Data From Browser to Server... 246

232 Developing Web Applications with ColdFusion

Using CFHTTP to Interact with the Web
The CFHTTP tag is one of the more powerful tags in the CFML tag set. You can use one
of two methods to interact with a remote server using the CFHTTP tag: Get or Post. The
Get method is a one-way transaction in which CFHTTP retrieves an object. By
comparison, the Post method is a two-way transaction in which CFHTTP passes
variables to a ColdFusion page or CGI program which then returns data, usually
processing what was received.

Allaire Alive

A video titled, "Creating Web Agents" is available at http://alive.allaire.com. It gives an
overview of HTTP and covers the use of CFHTTP for creating automated processes
such as:

• Search agents

• Transaction agents

• Messaging agents

The video is part of Allaire Alive, an educational service that offers Web videos on
topics specific to ColdFusion development and application deployment as well as
broader industry issues. The titles are available free for online viewing or download.

Using the CFHTTP Get Method
You use Get to retrieve text and binary files from a specified server. The examples
below illustrate a few common GET operations.

To retrieve a file and store it in a variable:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<CFHTTP METHOD="Get"
URL="http://www.allaire.com/index.cfm"
RESOLVEURL="Yes">

<CFOUTPUT>
#CFHTTP.FileContent#

</CFOUTPUT>

3. Save the file as getwebpage.cfm in myapps under your Web root directory and view
it in your browser.

Chapter 15: Interacting with Remote Servers 233

Code Review

To get a Web page and save it in a file:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<CFHTTP
METHOD = "get"
URL="http://www.allaire.com/index.cfm"
PATH="c:\mine"
FILE="allaireindex.cfm">

3. Change the path from c:\mine to point to a path on your hard drive.

4. Save the file as savewebpage.cfm and view it in your browser.

Code Review

To get a binary file and save it:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

Code Description

<CFHTTP METHOD="Get"
URL="http://www.allaire.com/index.cfm"
RESOLVEURL="Yes">

Get the page specified in the
URL and make the links
absolute instead of relative..

<CFOUTPUT>
#CFHTTP.FileContent#

</CFOUTPUT>

Display the page, which is
stored in the variable
CFHTTP.FileContent, in the
browser.

Code Description

<CFHTTP
METHOD = "get"
URL="http://www.allaire.com/index.cfm"
PATH="c:\mine"
FILE="allaireindex.cfm">

Get the page specified in the
URL and save it in the file
specified in PATH and FILE.

Note that when the PATH and
FILE attributes are used, the
RESOLVEURL attribute is
ignored, even if present.

234 Developing Web Applications with ColdFusion

<CFHTTP
METHOD="Get"
URL="http://maximus/downloads/quakestuff/q2_test.zip"
PATH="c:\quake2\install"
FILE="quake2beta.zip">

<CFOUTPUT>
#CFHTTP.MimeType#

</CFOUTPUT>

3. Change the URL to point to a binary file you want to download.

4. Change the path to point to a path on your hard drive.

5. Save the file as savebinary.cfm in myapps under your Web root directory and view
it in your browser.

Code Review

Creating a Query from a Text File
Using the CFHTTP Get operation, you can create a query object from a delimited text
file. This is a powerful means for processing and handling generated text files. Once the
query object is created, it is very simple to reference columns in the query and perform
other ColdFusion operations on the data.

Text files are processed in the following manner:

• You specify a delimiter with the DELIMITER attribute. If data in a field includes
the delimiter character, it must be quoted or qualified with some other
character, which you specify with the TEXTQUALIFIER attribute.

• The first row of a text file is always interpreted as column headings, so that row
is skipped. If the first row doesn’t contain column headings, you’ll need to use
the COLUMNS attribute to specify headings so that you don’t lose the first row
data. You can also use the COLUMNS attribute to specify alternate heading text.
Just make sure that you enter an alternate for every column of data in the text
file.

Code Description

<CFHTTP
METHOD="Get"
URL="http://maximus/downloads/quakestuff/

q2_test.zip"
PATH="c:\quake2\install"
FILE="quake2beta.zip">

Get a binary file and save it in
the PATH and FILE specified.

<CFOUTPUT>
#CFHTTP.MimeType#

</CFOUTPUT>

Display the MIME type of the
file.

Chapter 15: Interacting with Remote Servers 235

• When duplicate column heading names are encountered, ColdFusion adds an
underscore character to the duplicate column name to make it unique. For
example, if two CustomerID columns are found, the second is renamed
"CustomerID_".

To create a query from a text file:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<!--- The text file consists of six columns --->
<!--- separated by commas. --->
<!--- The rows are --->
<!--- OrderID,OrderNum,OrderDate --->
<!--- ShipDate,ShipName,ShipAddress --->
<!--- This example accepts the first row --->
<!--- of the text file as the column names --->

<CFHTTP METHOD="Get"
URL="http://127.0.0.1/orders/june/orders.txt"
NAME="juneorders"
DELIMITER=","
TEXTQUALIFIER="""">

<CFOUTPUT QUERY="juneorders">
OrderID: #OrderID#

Order Number: #OrderNum#

Order Date: #OrderDate#

</CFOUTPUT>

<!--- You can substitute different column names --->
<!--- by using the COLUMNS attribute --->

<CFHTTP METHOD="Get"
URL="http://127.0.0.1/orders/june/orders.txt"
NAME="juneorders"

COLUMNS="ID, Number,Date"
DELIMITER=","
TEXTQUALIFIER="""">

<CFOUTPUT QUERY="juneorders">
Order ID: #ID#

Order Number: #Number#

Order Date: #Date#

</CFOUTPUT>

3. Substitue the URL with the location of your text file.

4. Substitue the name of a text file and the column headers to those in your text file.

5. Save the file as querytextfile.cfm in myapps under your Web root directory and
view it in your browser.

236 Developing Web Applications with ColdFusion

Using the CFHTTP Post Method
Use the Post method to send cookie, form field, CGI, URL, and file variables to a
specified ColdFusion page or CGI program. For Post operations, you must use the
CFHTTPPARAM tag for each variable you want to post. Unlike the Get method, Post
passes data to a specified ColdFusion page or to some executable that interprets the
variables being sent and returns data.

For example, when you build an HTML form using the Post method, you specify the
name of the program to which form data will be passed. Using the Post method in
CFHTTP is exactly the same.

To pass variables to a ColdFusion page:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<CFHTTP METHOD="Post"
URL="http://127.0.0.1/dwa_code/server.cfm"
USERNAME="user1"
PASSWORD="user1pwd">

<CFHTTPPARAM TYPE="Cookie"
VALUE="cookiemonster"
NAME="mycookie6">

<CFHTTPPARAM TYPE="CGI"
VALUE="cgivar "
NAME="mycgi">

<CFHTTPPARAM TYPE="URL"
VALUE="theurl"
NAME="myurl">

<CFHTTPPARAM TYPE="Formfield"
VALUE="wbfreuh@allaire.com"
NAME="emailaddress">

<CFHTTPPARAM TYPE="File"
NAME="myfile"
FILE="c:\temp\cyberlogo.gif">

</CFHTTP>

<CFOUTPUT>
#CFHTTP.filecontent#
#CFHTTP.mimetype#

</CFOUTPUT>

3. Replace the URL with one on your server.

4. Save the file as server.cfm in myapps under your Web root directory.

To view the variables:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

Chapter 15: Interacting with Remote Servers 237

You have POSTed to me.

<CFFILE DESTINATION="c:\temp\junk"

NAMECONFLICT="Overwrite"
FILEFIELD="myfile"
ACTION="Upload"
ATTRIBUTES="Normal">

<CFOUTPUT>
The URL variable is: #url.myurl#

The Cookie variable is: #cookie.mycookie6#

The CGI variable is: #cgi.mycgi#.

The Formfield variable is: #form.myformfield#.

</CFOUTPUT>

3. Replace c:\temp\junk with a path and filename on your hard drive.

4. Save the file as posttest.cfm in myapps under your Web root directory.

This example uses the CFFILE tag to upload the contents of the file variable to
c:\temp\junk.

It passes the five supported variable types to the page specified in the URL attribute.
The page that receives this data is also shown. It returns the value of the variables
which appears in the client’s browser. This example uses the CFFILE tag in the page
that receives the Posted variables to upload the contents of the file variable to
c:\temp\junk.

The CFOUTPUT section in posttest.cfm references the CFHTTP.FileContent
variable, which is used to display the output from the server.cfm file. If the
CFHTTP.FileContents variable were left out, the browser output would be limited to
the contents of the posttest.cfm file.

To return resuls of a CGI program:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<CFHTTP METHOD="Post"
URL="http://www.thatsite.com/search.exe"
RESOLVEURL="Yes">

<CFHTTPPARAM TYPE="Formfield"
NAME="search"
VALUE="hello">

</CFHTTP>

<CFOUTPUT>
#CFHTTP.MimeType#

Length: #len(cfhttp.filecontent)#

Content: #htmlcodeformat(cfhttp.filecontent)#

</CFOUTPUT>

3. Save the file as getcgivars.cfm in myapps under your Web root directory.

238 Developing Web Applications with ColdFusion

This example runs a CGI program, search.exe, that searches the site and returns the
hits on the value specified in VALUE.

Using Secure Sockets Layer (SSL) with CFHTTP
When using Secure Sockets Layer (SSL) to transmit secured transactions via CFHTTP,
you need to be aware of limitations on its use caused by a bug in one of the
components of Microsoft’s InetSDK. The problem occurs on Windows NT and should
not affect Windows 95/98 machines.

CFHTTP uses the InetSDK to conduct all HTTP and HTTPS transactions and relies on
the WinInet DLL and Schannel DLL for its SSL implementation. The WinInet bug
constrains storage of SSL certificate information to the user level. This means that
WinInet does not interrogate the registry for certificate information if the client that
loads the DLL is a service. As a result, a CFHTTP request to an https:// url, will fail if
ColdFusion is running as a service.

While we strongly recommend that the ColdFusion Server be run as a service, a
workaround for this SSL/WinInet problem is available. The workaround is to run
ColdFusion as a desktop application when SSL is needed. In this way, WinInet will
write to and read from the registry appropriately when negotiating certificate
information.

To run ColdFusion as a desktop application:

1. From the Windows NT Start menu in, select Run.

2. Type the following (assuming that your installation of CF is in the default
location): c:\cfusion\bin\cfserver –DESKTOP

3. The ColdFusion icon should appear in the Windows Task Bar.

When running the ColdFusion server as a desktop application rather than as a service,
keep the following in mind:

• Access the server from the Window Control Panel Services dialog.

• The server must be cycled manually by loading and unloading the ColdFusion
Application Server process.

• The server cannot be stopped or started from the ColdFusion Administrator.

• If the server goes down, the Executive will restart it as a service, not as a desktop
application, and all subsequent SSL transactions will fail.

To determine whether the encryption key size conforms to export laws:

1. Right mouse click on Schannel.dll.

2. Select Properties.

3. Click the Version tab.

If the Description field reads "PCT / SSL Security Provider (Export Version)", a 40-
bit key was used.

Chapter 15: Interacting with Remote Servers 239

Performing File Operations with CFFTP
The CFFTP tag allows you to perform tasks on remote servers via the File Transfer
Protocol (FTP). CFFTP allows you to cache connections for batch file transfers.

Note In order to use CFFTP, make sure CFOBJECT is enabled on the Basic
Security page of the ColdFusion Administrator.

For server/browser operations, use the CFFILE, CFCONTENT, and CFDIRECTORY
tags.

Note CFFTP is a COM object and is not supported in Microsoft Windows NT
3.51.

Using CFFTP involves two distinct types of operations, connecting and transferring
files. For a complete list of attributes, see the CFML Language Reference .

To open an FTP connection and retrieve a file listing:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<--- open FTP connection --->
<CFFTP CONNECTION=FTP

USERNAME="betauser"
PASSWORD="monroe"
SERVER="beta.company.com"
ACTION="Open"
STOPONERROR="Yes">

<--- get current directory name --->
<CFFTP CONNECTION=FTP

ACTION="GetCurrentDir"
STOPONERROR="Yes">

<--- output directory name --->
<CFOUTPUT>

FTP directory listing of #cfftp.returnvalue#.<p>
</CFOUTPUT>

<--- get directory info --->
<CFFTP CONNECTION=FTP

ACTION="listdir"
DIRECTORY="/*."
NAME="q"
STOPONERROR="Yes">

<--- output dirlist results --->
<HR>
<P>FTP Directory Listing:</P>

<CFTABLE QUERY="q" HTMLTABLE>

240 Developing Web Applications with ColdFusion

<CFCOL HEADER="Name" TEXT="#name#">
<CFCOL HEADER="Path" TEXT="#path#">
<CFCOL HEADER="URL" TEXT="#url#">
<CFCOL HEADER="Length" TEXT="#length#">
<CFCOL HEADER="LastModified"
TEXT="Date(Format#lastmodified#)">
<CFCOL HEADER="IsDirectory"

TEXT="#isdirectory#">
</CFTABLE>

3. Change beta.company.com to the name of a server you have permission to FTP to.

4. Change betauser and monroe to a valid username and password.

To establish an anonymous connection enter "anonymous" as the username and
an email address (by convention) for the password.

5. Save the file as ftpconnect.cfm in myapps under your Web root directory.

Once you’ve established a connection with CFFTP, you can reuse the connection to
perform additional FTP operations. When you access an already active FTP
connection, you don’t need to re-specify the username, password, or server. In this
case, make sure that when you use frames, only one frame uses the connection object.

Caching connections across multiple pages

CFFTP caching is maintained only in the current page unless you explicitly assign a
CFFTP connection to a variable with application or session scope. Assigning a CFFTP
connection to an application variable could cause problems, since multiple users
could access the same connection object at the same time. Creating a session variable
for a CFFTP connection makes the most sense.

You cache a connection object for a session by assigning the connection name to a
session variable:

Example: Caching a connection

<CFFTP ACTION=connect
USERNAME="anonymous"
PASSWORD="me@home.com"
SERVER="ftp.eclipse.com"
CONNECTION="Session.myconnection">

In this example, the connection cache remains available to other pages within the
current session. Of course, you need to be sure that you’ve enabled session variables in
your application first.

Note Changes to a cached connection, such as changing RETRYCOUNT or
TIMEOUT values, may require re-establishing the connection.

Chapter 15: Interacting with Remote Servers 241

Connection caching actions and attributes

The following table shows which CFFTP attributes are required for CFFTP actions
when employing connection caching. If connection caching is not used, the
connection attributes USERNAME, PASSWORD, and SERVER must be specified.

Moving Complex Data Structures Across the Web with
WDDX

You can move complex data structures across the Web using Web Distributed Data
Exchange (WDDX). This capability is based on XML 1.0 and can be used to exchange
data between CFML applications and other applications.

Additionally, server-to-browser and browser-to-server JavaScript data exchanges can
be instantiated using WDDX. Server data can be transferred to the browser and
converted to JavaScript objects, while JavaScript data generated on the browser can be
serialized, which involves translating the native data structures into an abstract
representation in XML, and transferred to the application server. Conversely, you can
deserialize WDDX XML into a native data structure.

This functionality is encapsulated in the CFWDDX tag.

While WDDX is a valuable tool for ColdFusion developers, it’s utility is not limited to
CFML. WDDX serialization of common programming data structures such as arrays,
record sets, and structures enables data communication, via HTTP, across a range of
languages and platforms.

CFFTP Required Attributes by Action

Action Attributes Action Attributes

Open none Rename EXISTING
NEW

Close none Remove SERVER
ITEM

ChangeDir DIRECTORY GetCurrentDir none

CreateDir DIRECTORY GetCurrentURL none

ListDir NAME
DIRECTORY

ExistsDir DIRECTORY

GetFile LOCALFILE
REMOTEFILE

ExistsFile REMOTEFILE

PutFile LOCALFILE
REMOTEFILE

Exists ITEM

242 Developing Web Applications with ColdFusion

The best source of information about WDDX is http://www.wddx.org/. This site,
sponsored by Allaire Corporation, offers a free download of the WDDX SDK and a
number of resources, including a WDDX FAQ and a developer forum.

An Overview of Distributed Data for the Web
Web Distributed Data Exchange (WDDX) is an Extensible Markup Language (XML)
vocabulary for describing complex data structures such as arrays, associative arrays,
and recordsets in a generic fashion so they can be moved between different
application server platforms and between application servers and browsers using only
HTTP. Target platforms for WDDX include ColdFusion, Active Server Pages, JavaScript,
Perl, Java, Python, and COM.

Unlike other approaches to creating XML-based generic distributed object systems for
the Web, WDDX is not designed as an analog of traditional object programming
languages. These approaches use XML as a generic descriptor for initiating remote
procedure calls between different object frameworks. This is a valuable approach to
the problem of using traditional object-based applications to the Internet, but it is
more useful as a bridge between different programming paradigms than it is as a Web-
native methodology for distributing structured data between application.

There are several problems with merging the distributed object model of computing
with the Internet. Primarily, this model was designed with a completely different vision
of what general internetworking would look like. Instead of the "dumb and
disconnected" model of HTTP, distributed computing was built on the assumption of
rich network services that would allow resources on remote machines to act like local
components. These services allow an application on one system to find, invoke, and
maintain state with objects on a remote system. Communication between objects on
remote systems uses an efficient, special-purpose wire protocol.

But these services are a barrier to development in the disconnected world. At the most
fundamental level, the wire protocols of Distributed COM and CORBA are blocked by
most Web firewall software. But the largest barrier is that client-server oriented
distributed computing frameworks impose a development methodology that is
radically different from that of the Web. This methodology excludes the vast majority
of developers building Web applications whose main tools are tag-based markup
languages and scripting. While WDDX will work with systems that support component
object development paradigms, there is a large set of applications that can benefit
from the general characteristics of a distributed data system without the client-server
overhead.

WDDX Components
The core of WDDX is the XML vocabulary, and a set of components for each of the
target platforms to serialize and de-serialize data into the appropriate data structure
and a document type definition (DTD) that describes the structure of standard data
types. Functionally, this creates a way to move data, its associated data types and

Chapter 15: Interacting with Remote Servers 243

descriptors that allow the data to be manipulated on a target system between arbitrary
application servers.

WDDX is based on XML, which is a W3C Recommendation. Other W3C efforts now in
the works will have obvious application to WDDX when they are completed, most
importantly, the XML-Schema proposal. The WDDX DTD supports versioning,
allowing these and other enhancements to be folded into the specification as they
become available without disrupting working applications.

Working With Application-Level Data
The real strength of WDDX is clear if the client and server are seen as a unified
platform for applications. This is a subtle, but profound, distinction from the
traditional view of an application where services are partitioned between the client
and server.

In client-server, a client might query a database and get a recordset that can be
browsed, updated and returned to the server without requiring a persistent
connection. In this scenario, data is highly-structured and that structure is baked into
the client side of the application ahead of time.

While this style of databinding relies on the presence of data sources that expose well-
structured data of known types, WDDX is designed to transport application-level data
structures to facilitate seamless computing between the client and the server side of a
web application. Application-level data structures generally differ from data exposed
via traditional data sources, e.g., databases. They are generally more complex and ad
hoc, with dynamic structure. WDDX allows developers to work with this data without
the overhead of setting up a datasource for every type of data needed. Therefore, it
integrates nicely with and complements other approaches that rely on existing data
sources.

Data Exchange Across Application Servers
The other common use of WDDX is expected to be sending complex, structured data
seamlessly between different application server platforms. This will allow an
application based on ColdFusion at one business to send a purchase order, for
instance, to a supplier running a CGI-based system. The supplier could then extract
information from the order and pass it to a shipping company running an application
based on ASP. Unlike traditional client-server approaches (including distributed object
systems) minimal to no prior knowledge of the source or target systems is required by
any of the others.

Time zone processing

Because producers and consumers of WDDX packets can be in geographically
dispersed locations, using time zone information during the serialization and
deserialization phases becomes critical for correct date-time processing.

244 Developing Web Applications with ColdFusion

All of Allaire’s WDDX serializers (CFML, COM, and JS) have an attribute/property
useTimezoneInfo that specifies whether time zone information should be used in the
serialization process. The default value is true.

In the CFML implementation, useTimezoneInfo is a property of the CFWDDX
Action=Cfml2WDDX tag. In the COM implementation, useTimezoneInfo is a property
of the IWDDXSerializer interface provided by the object WDDX.Serializer.1. In the JS
implementation useTimezoneInfo (note the case-sensitivity of JS) is a property of the
WDDXSerializer object.

Date-time values in WDDX are represented using a subset of the ISO8601 format. Time
zone information is represented as an hour/minute offset from UTC, for example,
"1998-9-8T12:6:26-4:0".

During WDDX deserialization to CFML and COM time zone information is
automatically taken into account and all date-time values are converted to local time.
In this way, UTC is taken out of the picture entirely and developers do not need to
worry about the details of time zone conversions.

However, during deserialization to JavaScript expressions, time zone information is
not taken into account. Complications arise because of the difficulty of knowing the
time zone of the browser.

How WDDX Works
The WDDX vocabulary describes a data object with a high level of abstraction. For
instance, a simple object with two string properties might take the following form after
it is serialized into a WDDX XML representation for delivery via HTTP:

<var name=’x’>
<struct>

<var name=’a’>
<string>Property a</string>

</var>

<var name=’b’>
<string>Property b</string>

</var>

</struct>
</var>

The deserialization of this XML by the WDDX Deserializer object would create a
structure similar to what would be created directly by this JavaScript object
declaration:

Chapter 15: Interacting with Remote Servers 245

See the CFML Language Reference for more information on JavaScript objects.

Converting CFML Data to a JavaScript Object
The following example demonstrates the transfer of a CFQUERY result set from a
CFML template executing on the server to a JavaScript object that is processed by the
browser.

The application consists of five principal sections:

• Running a data query

• Including the WDDX JavaScript utility classes

• Specifying the conversion type and the input and output variables

• Calling the conversion function

• Outputting the object data in HTML

This example uses a registered ColdFusion datasource and can be run from
ColdFusion Server.

<!--- Create a simple query --->
<CFQUERY NAME = ’q’ DATASOURCE =’snippets’>

SELECT Message_Id, Thread_id,
Username, Posted from messages

</CFQUERY>

<!--- Cache the JavaScript so that subsequent requests will --->
<!--- use the cached version rather than making additional --->
<!--- requests to the server --->

<SCRIPT LANGUAGE="JavaScript"
SRC="/CFIDE/scripts/wddx.js"></SCRIPT>

<!--- Bring in WDDX JS support objects
 A <SCRIPT SRC=></SCRIPT> can be used instead
 wddx.js is part of the ColdFusion distribution --->
<CFINCLUDE TEMPLATE=’/CFIDE/scripts/wddx.js’>

<!--- Use WDDX to move from CFML data to JS --->
<CFWDDX ACTION=’cfml2js’ input=#q# topLevelVariable=’q’>

Comparison of JavaScript object and deserialized XML

JavaScript CFML

x = new Object();
x.a = "Property a";
x.b = "Property b";

x = structNew();
x.a = "Property a";
x.b = "Property b";

246 Developing Web Applications with ColdFusion

<!--- Dump the recordset --->
q.dump(true);

</SCRIPT>

Note To see how CFWDDX Action="cfml2js" works, view the source to the
page.

Transferring Data From Browser to Server
This example serializes form field data, posts it to the server, deserializes it, and
outputs the data. For simplicity, only a small amount of data is collected. In
applications where complex JavaScript data collections are generated, this basic
approach can be extended very effectively.

<!--- Get WDDX JS utility objects --->
<SCRIPT LANGUAGE="JavaScript"

SRC="/CFIDE/scripts/wddx.js"></SCRIPT>

<!--- Add data binding code --->
<SCRIPT>

// Generic serialization to a form field
function serializeData(data, formField)
{

wddxSerializer = new WddxSerializer();
wddxPacket = wddxSerializer.serialize(data);
if (wddxPacket != null)
{

formField.value = wddxPacket;
}
else
{

alert("Couldn’t serialize data");
}

}

// Person info recordset with columns firstName and lastName
var personInfo = new WddxRecordset(new Array("firstName",
"lastName"));

// Add next record to end of personInfo recordset
function doNext()
{

nRows = personInfo.getRowCount();
personInfo.firstName[nRows] =
document.personForm.firstName.value;
personInfo.lastName[nRows] = document.personForm.lastName.value;
document.personForm.firstName.value = "";
document.personForm.lastName.value = "";

}

Chapter 15: Interacting with Remote Servers 247

</SCRIPT>

<!--- Data collection form --->
<FORM ACTION="wddx_browser_2_server.cfm" METHOD="post"
NAME="personForm">

<!--- Input fields --->
Personal information<p>
First name: <INPUT TYPE=text NAME=firstName>

Last name: <INPUT TYPE=text NAME=lastName>

<P>

<!--- Navigation & submission bar --->
<INPUT TYPE="button" BALUE="Next" onclick="doNext()">
<INPUT TYPE="button" BALUE="Serialize"
onclick="serializeData(personInfo, document.personForm.wddxPacket)">
<INPUT TYPE="submit" BALUE="Submit">
<P>

<!--- This is where the WDDX packet will be stored --->
WDDX packet display:<p>
<TEXTAREA NAME="wddxPacket" ROWS="10" COLS="80" WRAP="Virtual"><
/TEXTAREA>

</FORM>

<!--- Server-side processing --->
<HR>
<P>Server-side processing<P>
<CFIF isdefined("form.wddxPacket")>

<CFIF form.wddxPacket neq "">

<!--- Deserialize the WDDX data --->
<CFWDDX action="wddx2cfml" input=#form.wddxPacket#
output="personInfo">

<!--- Display the query --->
The submitted personal information is:<P>
<CFOUTPUT QUERY=personInfo>

Person #CurrentRow#: #firstName# #lastName#

</CFOUTPUT>

<CFELSE>
The client did not send a well-formed WDDX data packet!

</CFIF>
<CFELSE>

No WDDX data to process at this time.
</CFIF>

248 Developing Web Applications with ColdFusion

C H A P T E R 1 6

Chapter 16 Connecting to LDAP Directories

Support for the Lightweight Directory Access Protocol (LDAP) API in CFML is part of
Allaire’s commitment to open networking standards.

Contents

• What is LDAP? .. 250

• ColdFusion Support for LDAP... 252

• Working with LDAP Directories .. 253

• Viewing the Directory Schema.. 253

• Querying an LDAP Directory... 254

• Updating an LDAP Directory .. 256

250 Developing Web Applications with ColdFusion

What is LDAP?
LDAP (Lightweight Directory Access Protocol) is a protocol that enables organizations
to arrange directory information in a hierarchy. Note that in this case, "directory"
refers to a collection of information something like a telephone directory, not a
collection of files in a folder on a disk drive.

An LDAP directory is, in essence, a database, which is usually a hierarchical structure,
(although this is not a requirement). It offers performance advantages over
conventional databases, and its operations are familiar to database users. LDAP
supports a flat, or one-level, structure as readily as multiple levels. The illustration
below shows a simplified tree of entries from the root level to the individual level.

The complexity and flexibility allowed in this structure is a key to LDAP’s success. A
directory’s structure abstracts the structure of the organization it represents. Properly
devising and maintaining this structure is the LDAP server administrator’s
responsibility. The type, quantity, and accessibility of the information for individual
entries will obviously vary widely across organizations and their LDAP servers.

World

ITALYUSA

FerrariAllaire

R&D Sales

Jack

Alan

SalesR&D

Ben

Amy

Sophia

Marco

Gina

Enzo

Root

Country

Organization

Unit

Individual

Chapter 16: Connecting to LDAP Directories 251

LDAP attributes

Following is a list of the common attributes:

Key Terms

Following is a brief description of the LDAP information structure.

Entry

The basic information object of LDAP is the entry. An entry is composed of attributes,
each of which has a type defining what information can be contained in the attribute’s
values and what behaviors the attribute exhibits during processing. Entries are subject
to content rules that specify its required and optional attributes. Content rules can be
defined in the syntax or on the LDAP server.

Distinguished name

A naming convention for LDAP entries ensures compliance with the protocol
regardless of the complexity of directory trees. LDAP name syntax begins at the entry
level and specifies each level up to the root. In other words, it proceeds from the
individual to the global. The Distinguished Name of an entry locates it in the directory
tree. Each Distinguished Name (DN) is made up of Relative Distinguished Names
(RDN) that contain one or more of the entry’s attributes. As with file systems
pathnames and URLs, entering the correct LDAP name format is essential to
successful search operations.

Scope

Sets the limits of a search from the starting point of a query. The default is one level
below the distinguished name specified in the Start attribute. If, for example, the Start

Common LDAP Attributes

Attribute Name

c country

st state or province

l locality

o organization

ou organizational unit

cn common name

sn surname

252 Developing Web Applications with ColdFusion

attribute is "ou=support, o=allaire" the level below "support" is searched. You can
optionally restrict a query to the level of the Start entry or extend it to the entire
subtree.

Referral

While not supported directly in the LDAP2 standard, the ability of an LDAP server to
refer a client query to another server is an attractive feature and has been
implemented in the Netscape and University of Michigan servers. ColdFusion
developers need to be aware of the possibilities for referrals when designing their
query forms. You can pass the original login credentials to other servers that you may
connect to when resolving a referral.

References

Extensions to the LDAP protocol are ongoing and it is widely supported in the Internet
community. Additional material on LDAP is available from these sources:

• The LDAP specification was originally developed at the University of Michigan.
Their site http://www.umich.edu/~dirsvcs/ldap/index.html contains a wealth
of information and resources.

• The stated purpose of the Internet Engineering Task Force LDAP Extensions
Working Group is to "...define and standardize extensions to the LDAP version 3
protocol and extensions to the use of LDAP on the Internet." Their site is at
http://www.ietf.org/html.charters/ldapext-charter.html.

• The Directory Enabled Networks (DEN) specification, based on LDAP, is under
development by a number of vendors, including Microsoft and Cisco Systems.
You can follow the progress of this proposed standard at the DEN Ad Hoc
Working Group site at http://murchiso.com/den/.

ColdFusion Support for LDAP
A ColdFusion application developed for an organization’s intranet could easily include
LDAP query and output capability from its internal LDAP server and from allied
servers. Changes in the directory structure would, presumably, be updated in the
application code. Venturing into the wider world of the Internet needs special
attention, though. Communication with data source administrators is as important in
LDAP implementations as it is in other data-driven applications.

The CFLDAP tag extends ColdFusion’s query capabilities to TCP network directory
services. CFLDAP offers developers significant opportunities in several areas:

• Create Internet White Pages for users to easily locate people and resources and
to receive information about them. Selected ODBC data (names, contact
information, etc.) can be copied to an LDAP server.

• Provide a front end to manage and update directory entries.

Chapter 16: Connecting to LDAP Directories 253

• Build applications that incorporate data from directory queries in their
processes.

Working with LDAP Directories
The CFLDAP tag allows you to work with LDAP directories in the following ways. You
can:

• View the directory schema

• Search an LDAP directory

• Process the results of querying an LDAP directory (OUTPUT)

Viewing the Directory Schema
LDAP 3.0 now supports access to a directory’s schema information as part of a special
entry in the root DN. You can access this information using a ColdFusion query.

To view the schema for an LDAP directory:

1. Create a new file in Studio.

2. Modify the file so that it appears as follows:

<HEAD>
<TITLE>LDAP schema</TITLE>

</HEAD>

<BODY>
<CFLDAP

NAME="EntryList"
SERVER="testldap.company.com"
ACTION="QUERY"
ATTRIBUTES="dn, subschemasubentry"
SCOPE="BASE"
FILTER="objectclass=*"
START=""

>

<CFOUTPUT QUERY="EntryList">
DN: Root DSE

subschemaSubEntry: #subschemasubentry#

</CFOUTPUT>

<P><P><P>
Use that DN to get the schema attributes...
<P>

<CFLDAP NAME="EntryList2"
SERVER="testldap.company.com"
ACTION="Query"

254 Developing Web Applications with ColdFusion

ATTRIBUTES="dn, objectclasses, attributetypes"
SCOPE="BASE"
FILTER="objectclass=*"
START=#EntryList.subschemasubentry#

>

<CFOUTPUT QUERY="EntryList2">
DN=#dn#

objectClasses: #objectclasses#

attribute Types: #attributetypes#

</CFOUTPUT>

</BODY>
</HTML>

3. Change the SERVER from testldap.company.com to a valid LDAP server.

4. Save the template as testldap.cfm in myapps under your Web root directory and
view it in your browser.

Note To be able to the schema for an LDAP server, the server must support
LDAP 3.0.

Querying an LDAP Directory
CFLDAP allows you to search an LDAP directory and output the results of your query
on a page. You can sort query results and return them to the browser or perform
further processing with CFOUTPUT, CFREPORT, and related tags.

Search Filters

A search string of the form attribute operator value defines the filter syntax. The default
filter, objectclass=*, returns all entries for the attribute.

The following table lists the filter operators. Note the prefix notation for the Boolean
operators.

CFLDAP Filter Operators

Operator Example

= o=allaire - organization name equals allaire

~= o~=alliare - organization name approximates allaire

>= st>=ma - names appearing after "ma" in an alphabetical state attribute
list

<= st<=ma - names appearing before "ma" in an alphabetical state
attribute list

Chapter 16: Connecting to LDAP Directories 255

Although sophisticated search criteria can be constructed from these filter operators,
performance may degrade if the LDAP server is slow to process the synchronous
search routines supported by CFLDAP. The TIMEOUT and MAXROWS attributes can
be used to control query performance.

The following uses CFLDAP to retrieve the name and telephone numbers for US
organizations with a common name that starts with ’A’ through ’E’. The search starts
in the country: US. The filter is a regular expression that limits the search to
expressions of any length that begin with "A," "B," "C," "D," or "E."

To query an LDAP directory:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<CFLDAP NAME="OrgList"
SERVER="ldap.itd.umich.edu"
ACTION="QUERY"
ATTRIBUTES="o,st,telephoneNumber"
SCOPE="ONELEVEL"
FILTER="(|(o=A*)(o=B*)(o=C*)(o=D*)(o=E*))"
MAXROWS=200
SORT="o"
START="c=US">

<HTML>
<HEAD>

<TITLE>LDAP Directory Example</TITLE>
</HEAD>

<BODY>

<H3>US Organizations beginning with
the letter ’A’ thru ’E’:</H3>

* o=alla* - organization names starting with "alla"

o=*aire - organization names ending with "aire"

o=all*aire - organization names starting with "all and " ending with
"aire"

& (&(o=allaire)(co=usa)) - organization name = "allaire" AND country =
"usa"

| (|(o=allaire)(sn=allaire)) - organization name = "allaire" OR surname =
"allaire"

! (!(STREET=*)) - all entries that do NOT contain a StreetAddress attribute

CFLDAP Filter Operators (Continued)

Operator Example

256 Developing Web Applications with ColdFusion

<CFFORM NAME="GridForm" ACTION="org_query.cfm">

<CFGRID NAME="grid_one"
QUERY="OrgList"
HEIGHT=250
WIDTH=620
HSPACE=20
VSPACE="6">

<CFGRIDCOLUMN NAME="o"
HEADER="Organization" WIDTH=380>

<CFGRIDCOLUMN NAME="st"
HEADER="State" WIDTH=100>

<CFGRIDCOLUMN NAME="telephoneNumber"
HEADER="Phone ##" WIDTH=150>

</CFGRID>

</CFFORM>

</BODY>
</HTML>

3. Save the page as ldapadd.cfm and view it in your browser.

Updating an LDAP Directory
Entries can be added, modified, and deleted. Remote administration of an LDAP server
is one possible using one of these options.

The following example runs a cycle of LDAP actions by first adding a new record, then
querying the LDAP directory and generating a form for the output, and finally deleting
the new record.

To add a new record:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<!--- add a new record (Joe Smith) --->

<CFLDAP
SERVER="myserver"
USERNAME="uid=kvaughan, ou=People, o=airius.com"
PASSWORD="bribery"
ACTION="ADD"
ATTRIBUTES="objectclass=top, person, organizationalPerson

inetOrgPerson; cn=Joe Smith;
sn=Smith; mail=jSmith@airius.com;
telephonenumber=+1 408 555 2128; ou=Human Resources"
DN="uid=jSmith, ou=People, o=airius.com">

Chapter 16: Connecting to LDAP Directories 257

<!--- query the LDAP server --->

<CFLDAP Name="AriusList"
SERVER="myserver"
ACTION="QUERY"
ATTRIBUTES="cn,mail,telephonenumber"
SCOPE="SUBTREE"
FILTER="ou=Human Resources"
SORT="cn ASC"
START="o=airius.com">

<!--- generate a form page for query output --->

<H3> Human Resources Directory for Arius</H3>

<CFFORM ACTION="ariusform_action.cfm">

<CFGRID NAME="ariusgrid" width="350" query="AriusList"
insert="No" delete="No" sort="no" bold="No" italic="No"
appendkey="No" highlighthref="No" griddataalign="LEFT"
gridlines="no" rowheaders="no" rowheaderalign="LEFT"
rowheaderitalic="No" rowheaderbold="No" colheaders="yes"
colheaderalign="LEFT" colheaderitalic="No"

colheaderbold="yes"
selectmode="BROWSE" picturebar="no">

<CFGRIDCOLUMN NAME="cn" HEADER="Name">
<CFGRIDCOLUMN NAME="mail" HEADER="eMail Address">
<CFGRIDCOLUMN NAME="telephonenumber" HEADER="Phone">

</CFGRID>

</CFFORM>

<!---delete record --->

<CFLDAP
SERVER="myserver"
USERNAME="uid=kvaughan, ou=People, o=airius.com"
PASSWORD="bribery"
ACTION="DELETE"
DN="uid=jSmith, ou=People, o=airius.com">

3. Change myserver to a valid LDAP server.

4. Change the uid to a valid user id.

5. Save the page as ldapadd.cfm and view it in your browser.

To modify a record by adding an attribute:

This example illustrates modifying a record by adding an attribute value to the existing
values. This is a necessary step to overcome the limitations of the MODIFY attribute.

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

258 Developing Web Applications with ColdFusion

<!--- modify a record, preserving
other existing attributes --->

<!--- You must include the existing attribute
values plus the new one you want to add. In this
case we are adding a unique member gfarmer to
the Accounting Managers. If we did not include
the existing the existing unique members scarter
and tmorris then they would no longer be unique
members. The modify really is doing a replace on
this attribute. For the next release of ColdFusion
we will provide an option to just update the attribute.
Multiple values for a single attribute are separated
by a comma. If a single attribute value contains a
comma you must escape it by adding an extra comma. For
example the uniquemember value uid=scarter,ou=groups,
o=airius.com must be entered as uid=scarter,,ou=groups,,
o=airius.com Be careful when you do this modify or you
can remove attribute values you did not intend to! --->

<!--- ATTRIBUTES="uniquemember=uid=scarter,,ou=People,,o=airius.com,
uid=tmorris,,ou=People,,o=airius.com,
uid=gfarmer,,ou=People,,o=airius.com" --->

<CFLDAP SERVER="myserver"
ACTION="Modify"
USERNAME="uid=kvaughan, ou=People, o=airius.com"
PASSWORD="bribery"
ATTRIBUTES="uniquemember=uid=scarter,,ou=People,,o=airius.com,

uid=tmorris,,ou=People,,o=airius.com,
id=gfarmer,,ou=People,,o=airius.com"
DN="cn=Accounting Managers, ou=groups; o=airius.com">

3. Change myserver to a valid LDAP server.

4. Change the uid to a valid user id.

5. Save the page as ldapaddattr.cfm and view it in your browser.

To insert or update an entry:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<!--- If the update parameter is sent
then run this update --->

<!--- If the insert parameter is sent
then run this insert --->

<CFIF IsDefined(rename_dn)>

<CFLDAP Name="CustomerRename"
SERVER="myserver"
USERNAME="cn=Directory Manager,

o=Ace Industry, c=US"

Chapter 16: Connecting to LDAP Directories 259

PASSWORD="testldap"
ACTION="MODIFYDN"
ATTRIBUTES=#new_dn#
DN=#rename_dn#>

<CFELSE>

<CFIF IsDefined(dn)>
<CFSET #UPDATE_ATTRS#=#mailtag# & #email# & ";" &

#phonetag# & #Phone#>

<CFLDAP Name="CustomerModify"
SERVER="myserver"
USERNAME="cn=Directory Manager,

o=Ace Industry, c=US"
PASSWORD="testldap"
ACTION="MODIFY"
ATTRIBUTES=#UPDATE_ATTRS#
DN=#dn#>

<CFELSE>

<!--- If the insert parameter is sent
then run this insert --->

<CFIF IsDefined(Distinguished_Name)>
<CFSET #ADD_ATTRS# = "objectclass=top,

person,organizationalPerson,inetOrgPerson;" &
#fullnametag# &
#Fullname# &
";" &
#surnametag# &
#Surname# &
";" &
#mailtag# &
#Email# &
";" &
#phonetag# &
#Phone#>

<CFLDAP Name="CustomerAdd"
SERVER="myserver"
USERNAME="cn=Directory Manager,

o=Ace Industry, c=US"
PASSWORD="testldap"
ACTION="Add"
ATTRIBUTES=#ADD_ATTRS#
DN=#Distinguished_Name#>

</CFIF>
</CFIF>

</CFIF>

260 Developing Web Applications with ColdFusion

<!--- Use CFLDAP to retrieve the common
name and distinguished name for all employees
that have a surname that contains ens and a common
name that is > K. Search starts in the country US
and organization Ace Industry.--->

<CFLDAP Name="EntryList"
SERVER="myserver"
ACTION="Query"
ATTRIBUTES="dn,cn, sn"
SCOPE="SUBTREE"
SORT="sn ASC"
FILTER="(&(sn=*ens*)(cn>=K))"
START="o=Ace Industry, c=US"
MAXROWS=50
TIMEOUT=30>

<HTML>
<HEAD>

<TITLE>LDAP Directory Example</TITLE>
</HEAD>

<P>To modify the attributes of an entry,
select the entry and click the Update
button. To create a new entry, click the
Add button.

<CFFORM NAME="MyForm"
ACTION="ldap_update.cfm"
TARGET="Lower">

<CFSELECT NAME="dn"
SIZE="5"
REQUIRED="Yes"
QUERY="EntryList"
Value="dn"
Display="cn">

</CFSELECT>

<INPUT TYPE="Submit" VALUE="Update...">

</CFFORM>

<FORM ACTION="ldap_add.cfm"
METHOD="Post"
TARGET="Lower">

<INPUT TYPE="Submit" VALUE="Add...">
</FORM>

</BODY>
</HTML>

3. Change myserver to a valid LDAP server.

Chapter 16: Connecting to LDAP Directories 261

4. Change the uid to a valid user id.

5. Save the page as ldapchangeattr.cfm and view it in your browser.

To delete an entry:

1. Open a new file in Studio.

2. Modify the file so that it appears as follows:

<!--- If the delete parameter is sent
then run this update --->
<CFIF IsDefined(dn)>

<CFLDAP Name="LDAPDelete"
SERVER="myserver"
USERNAME="cn=Directory Manager,

o=Ace Industry, c=US"
PASSWORD="testldap"
ACTION="Delete"
DN=#dn#>

</CFIF>

<!--- Use CFLDAP to retrieve the common name
and distinguished name for all employees that
have a surname that contains ens and a common
name that is > K. Search starts in the country
US and organization Ace Industry. --->

<CFLDAP Name="EntryList"
SERVER="myserver"
ACTION="Query"
ATTRIBUTES="dn,cn, sn"
SCOPE="SUBTREE"
SORT="cn ASC"
FILTER="(cn>=A)"
START="o=Ace Industry, c=US"
TIMEOUT=30>

3. Change myserver to a valid LDAP server.

4. Change the uid to a valid user id.

5. Save the page as ldapdeleteattr.cfm and view it in your browser.

Creating searchable CFLDAP output

An example of building and searching a Verity collection from LDAP data can be found
in “Indexing CFLDAP Query Results” on page 163.

262 Developing Web Applications with ColdFusion

C H A P T E R 1 7

Chapter 17 Application Security

ColdFusion 4.5 supports several levels of Advanced security. This chapter teaches
you how to deploy user security, which is controlled by the ColdFusion developer
and offers runtime security for ColdFusion applications. It also describes the Remote
Development Services security feature, which authenticates developers accessing
server resources through ColdFusion Studio before giving them access to protected
resources.

For information on setting up security elements or using Administrator-controlled
security features, See Administering ColdFusion Server.

Contents

• ColdFusion Security Features ... 264

• Remote Development Services (RDS) Security.. 264

• Overview of User Security ... 265

• Using Advanced Security in Application Pages ... 265

• Using the CFAUTHENTICATE tag... 266

• Catching Security Exceptions.. 268

• Authentication and Authorization Functions.. 267

• Catching Security Exceptions.. 268

• Using the CFIMPERSONATE Tag .. 269

• Example of User Authentication and Authorization 270

264 Developing Web Applications with ColdFusion

ColdFusion Security Features
ColdFusion Server Professional and Enterprise editions include Advanced Security
features that provide scalable, granular security for building and deploying your
ColdFusion applications:

• Application development — System administrators can control access to files,
data sources and administration for each developer on your team. Coordinate
team development on shared servers with the assurance that sensitive data and
applications are secure.

• Application deployment— Create complex rules to programmatically control
access to functionality within applications. Confine applications to secure areas
that can flexibly restrict the access applications have to directories,
components, databases or other resources on the server.

This chapter describes the ColdFusion Server features that let you integrate a total
security solution into your applications.

Remote Development Services (RDS) Security
ColdFusion RDS security provides security services to developers working in
ColdFusion Studio. RDS security is at the core of the security framework in a team-
oriented ColdFusion development environment where groups of developers, working
in ColdFusion Studio, require different levels of access to ColdFusion files and data
sources.

When you're working in ColdFusion Studio, you access these ColdFusion resources
remotely, opening *.cfm files or accessing data sources. RDS security authenticates
you and grants access only to the resources appropriate to your login. Authentication
is carried out against the NT domain server, an ODBC data source, or an LDAP
directory specified in the ColdFusion Administrator as part of a security context.

There are two ways to implement RDS security services:

• Basic Security — Requires developers in ColdFusion Studio to supply a
password which, when authenticated, permits access to RDS Services: file
browsing, editing, database operations, debugging, and so on.

• Advanced Security — Allows ColdFusion Administrators to restrict or permit
access to file systems and data sources based on security contexts and policies
established in the Advanced Security page of the ColdFusion Administrator.

Your company or ISP ColdFusion Server administrator configures RDS security so that
it best meets the needs of your group.

For detailed information about setting up RDS security, See Administering ColdFusion
Server.

Chapter 17: Application Security 265

Overview of User Security
User security authenticates users when they log into a ColdFusion application, and
then assigns privileges based on group membership or other criteria that you
determine. For example, suppose you’ve used ColdFusion to build and host your
company’s intranet. The Human Resources department maintains a page on the
intranet where all employees can access timely information about the company, like
the latest company policies, upcoming events, and job postings. You’d want everyone
to be able to read the information, but you’d only want certain authorized HR
employees to be able to add, update, or delete information. In addition, you might
want to let employees view customized information about their salaries, job levels, and
performance reviews. You certainly wouldn’t want one employee to view sensitive
information about another employee, but you’d want managers to be able to see, and
possibly update, information about their direct reports. User security authenticates
and authorizes users each time they try to access or work with sensitive data.

User security is made up of two components:

• Security contexts, configured in the ColdFusion Administrator, on the
Advanced Security page. A security context provides the framework against
which to authenticate and authorize users.

• Code you write in your application pages that checks against a security context
to see if a user is allowed to access a particular resource and then takes

Before you can implement user security in your applications, you must make sure that
your ColdFusion administrator has installed Advanced security on the server and has
configured the appropriate security framework for your application. After the security
framework is in place, you can code security features into your ColdFusion
applications. For complete information about installing Advanced security and setting
up a security framework, See Administering ColdFusion Server.

Using Advanced Security in Application Pages
Advanced security makes it easier for developers to enforce application security. After
your administrator sets up the appropriate security contexts for your application, you
can start using ColdFusion security tags and functions to authenticate users and see if
they’ve been authorized for the part of the application they’re trying to access.

This section describes how to use security tags and functions to authenticate users and
provide or withhold resources according to the security context’s rules.

• Include CFAUTHENTICATE on any application page where you want to
authenticate users — that is, to make sure users are who they say they are. (You
can also use CFAUTHENTICATE your application's Application.cfm file.) Pass
the authentication information to subsequent pages where you want to test for
authentication.

ColdFusion sets a cookie, CFAUTH, to contain authentication information. If
you choose not to use this cookie, you must check authentication for each
request.

266 Developing Web Applications with ColdFusion

• Use the IsAuthenticated function to check if the current user is authenticated.

• Use the IsAuthorized function to check if the user is authorized to access
resources. This function lets developers offer or deny access to protected
resources based on a user’s authorization level, which is determined by
already-established security contexts.

• Use the CFIMPERSONATE tag wherever you want to provide a greater level of
access than is otherwise assigned to a particular user.

Read the section “Example of User Authentication and Authorization” on page 270 to
see code examples that show how these tags functions work in ColdFusion
applications.

To learn about syntax and usage for the CFAUTHENTICATE and CFIMPERSONATE
tags, and the IsAuthenticated and IsAuthorized functions, See the CFML Language
Reference.

Encrypting application pages

For an added measure of security, you can encrypt strings in your applications using
the Encrypt and Decrypt functions. See the CFML Language Reference for descriptions
of these functions.

Using the CFAUTHENTICATE tag
The CFAUTHENTICATE tag has several required attributes:

• SECURITYCONTEXT— Describes which security context to use for
authentication and authorization. This name matches the security context as
defined in the Advanced Security page of the ColdFusion Administrator.

• USERNAME — The username required to access the protected resources.

• PASSWORD — The password required to access the protected resources.

The USERNAME and PASSWORD are usually variables passed in a cookie from form
fields on a secure login page for the current session.

In addition, CFAUTHENTICATE has two optional attributes:

• SETCOOKIE — Indicates whether ColdFusion sets a cookie to contain
authentication information. This cookie is encrypted and includes the user
name, security context, browser remote address, and the http user agent.
Default is Yes.

• THROWONFAILURE — Indicates whether ColdFusion throws an exception of
type Security if authentication fails. Default is Yes.

Chapter 17: Application Security 267

Example

<CFAUTHENTICATE SECURITYCONTEXT="SecurityContextName"
USERNAME=#userID#
PASSWORD=#pwd#>

If the user has not already been defined in the system, ColdFusion throws a SECURITY
exception. You can either reject access to the resource or re-route the user to a login
page. For example, you can display a login form and then, if the user logs in
successfully, display the originally-requested page.

Go to the section “Example of User Authentication and Authorization” on page 270 to
see a longer code example.

Authentication and Authorization Functions
Once you've used CFAUTHENTICATE to check if the user is defined for a particular
security context, you can use the following security functions throughout your
applications any time you need to authenticate or authorize a user:

• IsAuthenticated checks if the current session has been authenticated by the
CFAUTHENTICATE tag.

• IsAuthorized checks if the authenticated user has access to the named resource,
based on rules defined in the security context for which the user has been
authenticated.

Using the IsAuthenticated Function

The IsAuthenticated function checks whether a CFAUTHENTICATE tag has been
successfully executed for the current request. If not, it looks for the CFAUTH cookie to
determine if the user is authenticated or not. If you don't set a CFAUTH cookie with
CFAUTHENTICATE, you must call CFAUTHENTICATE for every request in the
application.

The IsAuthenticated function returns TRUE if the user has been authenticated for the
current request; otherwise, it returns FALSE.

If you enter an optional security context parameter for IsAuthenticated, then it returns
true if the user is authenticated in the named security context; otherwise it returns
false.

IsAuthenticated("security_context_name")

Using the IsAuthorized Function

Once a user is authenticated, you can use the IsAuthorized function to check which
resources the user is allowed to access. You define d authorization levels when you
create security policies on the Advanced Security page of the ColdFusion
Administrator.

268 Developing Web Applications with ColdFusion

IsAuthorized returns TRUE if the user is authorized to perform the specified action on
the specified ColdFusion resource. IsAuthorized takes three parameters:

IsAuthorized(ResourceType, ResourceName, [ResourceAction])

For example, to check whether the authenticated user is authorized to update a data
source resource called orders, use this syntax:

IsAuthorized("Datasource", "orders", "update")

In this example, the IsAuthorized function returns TRUE if the user is authorized for
the named Datasource, or if the Datasource is not protected in the security context.

Note The ColdFusion server does not check user authorization unless a
developer specifically requests it with the IsAuthorized function. It is up
to the developer to decide what action to take based on the results of the
IsAuthorized call.

Catching Security Exceptions
You can use the structured exception handling tags, CFTRY and CFCATCH, to catch
security exceptions. Setting the TYPE attribute in CFCATCH to "Security" enables you
to catch failures in the CFAUTHENTICATE tag. You can also catch catastrophic failures
from the IsAuthorized or IsAuthenticated functions.

Set the THROWONFAILURE attribute to Yes and enclose the CFAUTHENTICATE tag in
a CFTRY/CFCATCH block if you want to handle possible exceptions programmatically.

For information on exception handling strategies in ColdFusion, see “Exception
handling strategies” on page 100

Example

<!--- This exaple shows the use of excpetion handling
with CFAUTHENTICATE in an Application.cfm file --->

<HTML>
<HEAD>

<TITLE>CFAUTHENTICATE Example</TITLE>
</HEAD>

<BODY>
<H3>CFAUTHENTICATE Example></H3>

<P>The CFAUTHENTICATE tag authenticates a user and
sets the security context for an application.

<P>Code this tag in the Application.cfm file to set a
security context for your application.

<P>If the user has not already been defined in the
system, you can either reject the page, request that
the user respecify the username and password, or define

Chapter 17: Application Security 269

a new user.

<!--- This code is from an Application.cfm file --->

<CFTRY>

<CFAUTHENTICATE SECURITYCONTEXT="Allaire"
USERNAME=#user#
PASSWORD=#pwd#>

<CFCATCH TYPE="Security">
<!--- The message to display --->
<H3>Authentication error</H3>
<CFOUTPUT>

<--- Display the message. Alternatively,
you might place code here to define the
user to the security context. --->

<P>#CFCATCH.Message#
</CFOUTPUT>

</CFCATCH>
</CFTRY>

<CFAPPLICATION NAME="Personnel">

</BODY>
</HTML>

Using the CFIMPERSONATE Tag
CFIMPERSONATE gives ColdFusion developers a way to execute a segment of code
CFIMPERSONATE is useful when you want to briefly grant a type of access that you’d
normally withold. Suppose you’re an internet service provider (ISP) who hosts
ColdFusion development services. You provide a set of custom tags that let your
customers add features like hit counters, guest books, and message boards to the
ColdFusion applications they create. To provide this type of functionality, you’d also
need to provide access to some resources that you’d probably rather keep protected.
Using CFIMPERSONATE provides access to these resources in a safe manner by
wrapping the functionality in a custom tag. For example, as an ISP, you definitely
wouldn’t want your customers to access the CFFILE tag on your servers. However, if
you provided your customers with a hit counter, you’d need to let them read specific,
system-maintained files, in this case, the file that contains number of hits to the
customer’s homepage. You’d provide the hit-counter in a custom tag that would use
the CFFILE tag. To ensure that the custom tag can access the CFFILE tag, it needs a way
to impersonate a trusted user while the tag is executing and then to revert back to the
non-trusted user once the trusted piece of code has completed execution.

The CFIMPERSONATE tag has the following required attributes:

• SECURITYCONTEXT— Describes which security context to use for
authentication and authorization. This name matches the security context as
defined in the Advanced Security page of the ColdFusion Administrator.

270 Developing Web Applications with ColdFusion

• USERNAME — The username of the user to impersonate.

• PASSWORD — The password of the user to impersonate.

• TYPE — Indicates the type of impersonation to implement, application-level or
operating-system-level. Application-level impersonation lets you assume the
rights assigned to a ColdFusion user by a specified security context. Operating-
system-level impersonation lets you assume the rights assigned to a Windows
NT user by a specified Windows NT Domain. (Operating-system-level
impersonation is not currently available for UNIX.)

In addition, CFIMPERSONATE has one optional attribute:

• THROWONFAILURE — Indicates whether ColdFusion throws an exception of
type Security if authentication fails. Default is Yes.

Example

The following example reads a protected file because the ColdFusion user "pfoley" has
been granted access to the file by the security context "MyContext." If the user cannot
be authenticated, ColdFusion throws a SECURITY exception.

<CFIMPERSONATE SECURITYCONTEXT="MyContext"
 USERNAME="pfoley"
 PASSWORD="admin"
 TYPE= "CF"
 THROWONFAILURE= "Yes">

<CFFILE FILE="#readFile#" ACTION="read" VARIABLE="text">
 <CFOUTPUT>

The file contains the following text:
#text#

</CFOUTPUT>

</CFIMPERSONATE>

Example of User Authentication and Authorization
The following sample pages illustrate how a developer might implement user security
by authenticating users and then allowing users to see/use only the resources they are
authorized to use.

In this example, a user requests a page in an application named Orders, which is part
of a security context, also named Orders, that governs pages and resources for an order
tracking application.

User security is generally handled in two steps:

• First, the Application.cfm page checks to see if the current user is
authenticated. If not, we present a login form and the user must submit a
username and password for authentication.

Chapter 17: Application Security 271

If a user passes the authentication test, ColdFusion passes a cookie to carry the
user’s authentication state to subsequent application pages governed by this
Application.cfm page.

• Next, only authenticated users are able to access the requested application
page, for selecting and updating customer orders in a database. This page
checks to see which resources the authenticated user is authorized to see and
use.

Authenticating users in Application.cfm

This example code for an Application.cfm page checks first to see whether the
current user is authenticated by checking to see if a login form was submitted. If the
username and password can be authenticated for the current security context, the user
passes through and the requested page is served.

If the Application.cfm page does not receive the user’s login information from the
previous page, it prompts the user to provide a username and password. The user’s
response is checked against the list of valid users defined for the current security
context.

If the user passes the authentication step too, the requested page appears. We use the
CGI variables script_name and query_string keep track of the page originally
requested. This way, once users are authenticated, we can serve the page they
originally requested.

All pages governed by this Application.cfm page — those in the same directory as
Application.cfm and in its sub-tree — will invoke this authentication test.

Note To use this code in your own Application.cfm page, change the
application name and security context name to match your application
and security names.

Example: Application.cfm

<CFAPPLICATION NAME="Orders">

<CFIF not IsAuthenticated()>
<!--- The user is not authenticated --->

<CFSET showLogin = "No">
<CFIF IsDefined("form.username") and

IsDefined("form.password")>

<!--- The login form was submitted --->
<CFTRY>

<CFAUTHENTICATE SecurityContext="Orders"
username="#form.username#"
password="#form.password#"
setCookie="YES">

<CFCATCH TYPE="security">

272 Developing Web Applications with ColdFusion

<!--- Security error in login occurred,
show login again --->
<H3>Invalid Login</H3>
<CFSET showLogin = "Yes">

</CFCATCH>
</CFTRY>

<CFELSE>
<!--- The login was not detected --->

<CFSET showLogin = "Yes">
</CFIF>

<CFIF showLogin>
<!--- Recreate the url used to call this template --->

<CFSET url = "#cgi.script_name#">
<CFIF cgi.query_string is not "">

<CFSET url = url & "?#cgi.query_string#">
</CFIF>

<!--- Populate the login with the recreated url --->

<CFOUTPUT>
<FORM ACTION="#url#" METHOD="Post">
<TABLE>
<TR>
<TD>username:</TD>
<TD><INPUT TYPE="text" NAME="username"></TD>
</TR>

<TR>
<TD>password:</TD>
<TD><INPUT TYPE="password" NAME="password"></TD>
</TR>
</TABLE>
<INPUT TYPE="submit" VALUE="Login">

</FORM>
</CFOUTPUT>
<CFABORT>
</CFIF>

</CFIF>

Checking for authentication and authorization

Inside application pages, developers can use the IsAuthorized function to check
whether an authenticated user is authorized to access the protected resources, and
then display only the authorized resources.

The following sample page appears to users who pass the authentication test in the
Application.cfm page above. It uses the IsAuthorized function to test whether
authenticated users are allowed to update or select data from a datasource.

Chapter 17: Application Security 273

Example: orders.cfm

<!--- This example calls the IsAuthorized function. --->

...

<!--- First, check whether a form button was submitted --->

<CFIF IsDefined("form.btnUpdate")>

<!--- Is user is authorized to update or select
information from the Orders data source? --->

<CFIF ISAUTHORIZED("DataSource", "Orders", "update")>
<CFQUERY NAME="AddItem" DATASOURCE="Orders">

INSERT INTO Orders
(Customer, OrderID)
VALUES

<CFOUTPUT>(#Customer#, #OrderID#)</CFOUTPUT>
</CFQUERY>
<CFOUTPUT QUERY="AddItem">
Authorization Succeeded. Order information added:
#Customer# - #OrderID#

</CFOUTPUT>

<CFELSE>
<CFABORT SHOWERROR="You are not allowed
to update order information.">

</CFIF>

</CFIF>

<CFIF ISAUTHORIZED("DataSource", "Orders", "select")>
<CFQUERY NAME="GetList" DATASOURCE="Orders">

SELECT * FROM Orders
</CFQUERY>
Authorization Succeeded. Order information follows:
<CFOUTPUT QUERY="GetList">

#Customer# - #BalanceDue#

</CFOUTPUT>

<CFELSE>
<CFABORT SHOWERROR="You cannot view

order information.">

</CFIF>

274 Developing Web Applications with ColdFusion

C H A P T E R 1 8

Chapter 18 Building Custom CFAPI Tags

For some applications, building executables to run with ColdFusion is the best
solution. Perhaps the application requirements go beyond what is currently feasible
in CFML. Or perhaps application performance can be improved for certain types of
processing.

To meet these types of requirements, you can use the ColdFusion Extension
Application Programming Interface (CFXAPI) to access ColdFusion functions.

While this chapter documents custom tag development using Microsoft Visual C++,
or Java it is currently also possible to develop them in Inprise’s Delphi.

Contents

• What Are CFX Tags?.. 276

• Before You Begin Developing CFX Tags in C++.. 276

• Using the Tag Wizard to create CFXs in C++ .. 277

• Compiling C++ CFXs.. 277

• Debugging C++ CFXs ... 277

• Before You Begin Developing CFX Tags in Java ... 278

• Writing a Java CFX.. 279

• ZipBrowser Example .. 284

• Approaches to Debugging Java CFXs.. 286

• Java Customization and Configuration .. 289

• Implementing C++ CFX Tags... 289

• Implementing Java CFX Tags... 289

• Registering CFXs... 289

• C++ CFX Reference... 293

• Java CFX Reference... 311

276 Developing Web Applications with ColdFusion

What Are CFX Tags?
CFX tags are custom tags written against the ColdFusion Application Programming
Interface. Generally, you create a CFX if you want to do something that’s not possible
in CFML, or if you want to improve performance of a task in CFML that’s repetitive.
Unlike CFML custom tags, CFXs are implemented as DLL files and can:

• Handle any number of custom attributes.

• Use and manipulate ColdFusion queries for custom formatting.

• Generate ColdFusion queries for interfacing with non-ODBC based
information sources.

• Dynamically generate HTML to be returned to the client.

• Set variables within the ColdFusion application page from which they are
called.

• Throw exceptions that result in standard ColdFusion error messages.

You can build CFXs using C++ or Java. Then, to be able to use the CFX, you have to
register it in the ColdFusion Administrator.

Before You Begin Developing CFX Tags in C++

Sample C++ CFXs

Before you begin development of a CFX tag in C++, you may want to study the two CFX
tags that are included to give you additional insight into working with the CFAPI. The
two example tags are:

• CFFX_DIRECTORYLIST — Queries a directory for the list of files it contains.

• CFX_NTUSERDB (Windows NT only) — Allows addition and deletion of NT users.

On Windows NT, these tags are located in the /cfusion/cfx/examples directory. On
Solaris, look in /<installdirectory>/coldfusion/cfx/examples.

Setting Up Your C++ Development Environment

Before you can use your C++ compiler to build custom tags, you must enable the
compiler to locate the CFAPI header file, cfx.h. On Windows NT, you do this by adding
the CFAPI Include directory (\cfusion\cfx\include) to your list of global include
paths. On UNIX, you will need -I <includepath> on your compile line (see the
Makefile directory list example).

Chapter 18: Building Custom CFAPI Tags 277

Using the Tag Wizard to create CFXs in C++
On Windows NT, you can get a start in developing CFXs by using the ColdFusion Tag
Wizard. To use the wizard, the CFXAPI Tag Development Kit must be installed (it is by
default), and the setup routine must detect Microsoft Visual C++ on the system.

The wizard generates a DLL file with a basic tag structure containing a single
procedure. By modifying and testing this tag, you can quickly learn how to work within
the API.

To build a CFX tag:

1. In Visual C++, select File > New, then click the Projects tab.

2. Select ColdFusion Tag Wizard and enter a tag name of the form CFX_MyNewTag in
the Project name box. Click OK to open the wizard.

3. Enter the new tag name as the name of the custom tag.

4. You can optionally add text that will appear as comments in the tag’s code.

5. Select an MFC usage option and click Finish to generate the code.

6. In Visual C++, select Build > Build CFX_MyNewTag to create the DLL file.

The next step is to make ColdFusion aware of the new tag by registering it. See
“Registering CFXs” on page 289.

Compiling C++ CFXs
CFX tags built on Windows NT and UNIX must be thread safe. CFXs for Solaris should
be compiled with the -mt switch on the Sun compiler.

Debugging C++ CFXs
Once a debug session is configured, you can run your custom tag from within the
debugger, set breakpoints, single-step, and so on.

On Windows NT

Custom tags can easily be debugged within the Visual C++ environment. To debug a
tag, open the Build Settings dialog and click the Debug tab. Set the Executable for
debug session setting to the full path to the ColdFusion Engine (such as,
c:\cfusion\bin\cfserver.exe) and set the program arguments setting to -DEBUG.

278 Developing Web Applications with ColdFusion

On UNIX

Solaris

You can debug custom tags on UNIX using the dbx debugger. You should shut down
ColdFusion using the stop script.

Set the environment variables, including LD_LIBRARY_PATH and CFHOME as they are set
in the start script. You should then be able to run the cfserver executable under the dbx
debugger and set break points in your CFX code. You may need to set a break point in
main ("stop in main") so dbx loads the symbols for your CFX before you can set
breakpoints in your code.

HP-UX 10.20

You can debug custom tags on UNIX using HP’s DDE debugger. You should shut down
ColdFusion using the stop script.

Set the environment variables, including SHLIB_PATH and CFHOME as they are set in the
start script. You should then be able to run the cfserver executable under the DDE
debugger and set break points in your CFX code. You may need to set a break point in
main ("stop in main") so the debugger loads the symbols for your CFX before you can
set breakpoints in your code.

Before You Begin Developing CFX Tags in Java
Because the methods and syntax are similar, if you are familiar with creating CFXs
using C++ you will be productive creating CFXs in Java almost immediately. Even if you
have never used the C++ based API, you will find that the Java implementation is
extremely easy to learn and work with.

Sample Java CFXs

Before you begin developing a CFX tag in Java, you may want to study sample CFX tags.
The Java source files for the examples can be found in the examples subdirectory of the
main installation directory. The example tags are:

• HelloColdFusion - Prints a personalized greeting. Demonstrates the minimal
implementation required to create a CFX.

• ZipBrowser - Retrieves the contents of a zip archive. Demonstrates generating a
ColdFusion query and returning it to the calling page.

• ServerDateTime - Retrieves the date and time from a network server.
Demonstrates attribute validation, using numeric attributes, and setting
variables within the calling page.

• OutputQuery - Outputs a ColdFusion query in an HTML table. Demonstrates
handling a ColdFusion query as input, throwing exceptions, and generating
dynamic output.

Chapter 18: Building Custom CFAPI Tags 279

• HelloWorldGraphic - Generates a "Hello World!" graphic in JPEG format.
Demonstrates how to dynamically create and return graphics from a Java CFX.

Setting Up Your Development Environment to Develop CFXs
in Java

You can use a wide range of Java development environments to build Java CFXs,
including the Java Development Kit which you can download from Sun at

http://www.javasoft.com/products/jdk/1.2/index.html

Although you can use just the basic JDK, it is highly recommended that you use one of
the commercial Java IDEs that provide an integrated environment for development,
debugging, project management, and access to documentation. If you don’t already
have a Java development environment, we recommend that you try Symantec Visual
Café, for which a 30 day free trial is available at

http://www.symantec.com/domain/cafe/vcafe30.html

Configuring the Class Path

To configure your development environment to build Java CFXs, you need to make
sure that the supporting classes are visible to your Java compiler. These classes are
located in the classes\cfx.jar archive. The full path is <coldfusioninstalldir>/
Java/classes Consult your Java development tool's documentation to determine how
to configure the compiler class path for your particular environment.

The classes directory created by the ColdFusion setup program serves two purposes:

1. It contains the supporting classes required for developing and deploying Java
CFXs. This is the com.allaire.cfx package located in the cfx.jar archive.

2. It supports a feature that allows Java CFXs located within it to be reloaded every
time they are changed. Although this is not the default behavior for other Java
classes, it is very useful during an iterative development and testing cycle.

Allaire strongly recommends that when you create new Java CFXs, you develop and
deploy them within the classes directory. Following this guideline will dramatically
simplify your development, debugging, and testing processes.

Once you are finished with development and testing, you can then deploy your Java
CFX anywhere on the class path visible to the ColdFusion embedded JVM. See “Java
Customization and Configuration” on page 289 for more details on customizing the
class path.

Writing a Java CFX
To create a Java CFX, you simply create a class which implements the CustomTag
interface. This interface contains one method, processRequest, which is passed
Request and Response objects that are then used to do the work of the tag.

280 Developing Web Applications with ColdFusion

To create a Java CFX:

1. Create a new source file in your editor.

2. Enter the code, for example, the code below illustrates the creation of a very
simple Java CFX named SimpleJavaCFX that writes a text string back to the calling
page:

import com.allaire.cfx.* ;

public class HelloColdFusion implements CustomTag
{
 public void processRequest(Request request, Response response)

throws Exception
 {

String strName = request.getAttribute("NAME") ;
response.write("Hello, " + strName) ;

 }
}

3. Save the file as HelloColdFusion.java in the classes subdirectory

4. Compile the java source file into a class file using the java compiler. If you are
using the command line tools bundled with the JDK, you do this using the
following command line, which you execute from within the classes directory:

javac -classpath cfx.jar HelloColdFusion.java

Note The above command will only work if the java compiler (javac.exe)
is in your path. If it is not in your path, specify the fully qualified
path, for example:

c:\jdk12\bin\javac on Windows NT, or /usr/java/bin/javac on Solaris

If you receive errors during compilation, check the source code to make sure you have
entered it correctly. If no errors occur, you have just successfully written your first Java
CFX!

As you can see, implementing the basic CustomTag interface is very straightforward.
This is all a Java class has to do to be callable from a CFML page.

Processing Requests

Implementing a Java CFX requires interaction with the Request and Response objects
passed to the processRequest method. In addition, CFXs that need to work with
ColdFusion queries will also interface with the Query object. The com.allaire.cfx
package, located in the classes/cfx.jar archive contains the Request, Response, and
Query objects.

A basic overview of each of these object types is provided below. To see a complete
example Java CFX that uses Request, Response, and Query objects, see the “ZipBrowser
Example” on page 284.

Chapter 18: Building Custom CFAPI Tags 281

Request Object

Passed to the processRequest method of the CustomTag interface. Provides methods
for retrieving attributes passed to the tag, including queries, and reading global tag
settings.

Response Object

Passed to the processRequest method of the CustomTag interface. Provides methods
for writing output, generating queries, and setting variables within the calling page.

Methods Used by Request Object

Method Description

attributeExists Checks if the attribute was passed to this tag

getAttribute Retrieves the value of the passed attribute

getIntAttribute Retrieves the value of the passed attribute as an integer

getAttributeList Retrieves a list of all attributes passed to the tag

getQuery Retrieves the query that was passed to this tag, if any

getSetting Retrieves the value of a global custom tag setting

debug Checks if the tag contains the DEBUG attribute

Methods Used by Response Object

Method Description

write Outputs text into the calling page

setVariable Sets a variable in the calling page

addQuery Adds a query to the calling page

writeDebug Outputs text into the debug stream

282 Developing Web Applications with ColdFusion

Query Object

Provides an interface for working with ColdFusion queries, including methods for
retrieving name, row count, and column names as well as methods for getting and
setting data elements..

For detailed reference information on each of these interfaces see the “Java CFX
Reference” on page 311.

Java CFX Class Loading

Each Java CFX class has its own associated ClassLoader which loads it and any
dependent classes also located in the classes directory. When Java CFXs are reloaded
after a change, a new ClassLoader is associated with the freshly loaded class. This
special behavior is similar to the way Java servlets are handled by the Java Web Server
and other servlet engines, and is required in order to implement automatic class
reloading.

However, this behavior can cause subtle problems when attempting to perform casts
on instances of classes loaded from a different ClassLoader. The cast will fail even
though the objects are apparently of the same type. This is because the object was
created from a different ClassLoader and is therefore technically not of the same type.

To solve this problem, only perform casts to class or interface types that are loaded via
the standard Java class path, that is, classes not located in the classes directory. This
works because classes loaded from outside of the classes directory are always loaded
using the system ClassLoader and will therefore have a consistent runtime type.

Methods Used by Query Object

Method Description

getName Retrieves the name of the query

getRowCount Retrieves the number of rows in the query

getColumns Retrieves the names of the query columns

getData Retrieves a data element from the query

addRows Adds a new row to the query

setData Sets a data element within the query

Chapter 18: Building Custom CFAPI Tags 283

Automatic Class Reloading

You can determine how the server treats changed Java CFX class files by using the
RELOAD (?) . The allowable values for the RELOAD attribute are as follows:.

The default value is RELOAD=Auto. This is appropriate for most applications. Use
RELOAD="Always" during the development process when you want to ensure that you
always have the latest class files, even when only a dependent class has changed. Use
RELOAD="Never" to increase performance by skipping the check for changed classes.

Note The RELOAD attribute applies only to class files located in the classes
directory. Classes located on the Java class path are loaded once per
server lifetime and can only be reloaded by stopping and restarting
ColdFusion Server.

Disabling Automatic Reloading for Deployment

Automatic class reloading is an essential feature for iterative development and testing.
However, because it must continually check to see whether Java CFX class files have
changed, performance may decrease slightly. Therefore, when you move from
development into deployment, Allaire ecommends that you globally disable automatic
class reloading. You can do this by modifying the coldfusion.cfx.class.reload
setting of the config/jvm.init file as follows:

coldfusion.cfx.class.reload=no

For additional details on modifying JVM configuration file settings, see “Java
Customization and Configuration” on page 289.

Life cycle of Java CFXs

A new instance of the Java CFX object is created for each invocation of the Java CFX
tag. This means that it is safe to store per-request instance data within the members of

Allowable Values of RELOAD Attribute

Value Description

Auto Automatically reload Java CFX and dependent classes within the
classes directory whenever the CFX class file changes. Does not
reload if a dependent class file changes without the CFX class file
changing as well.

Always Always reload Java CFX and dependent classes within the classes
directory. Ensures a reload even if a dependent class changes, but the
CFX class file itself does not change.

Never Never reload Java CFX classes. Load them once per server lifetime.

284 Developing Web Applications with ColdFusion

your CustomTag object. If you wish to store data and/or objects that are accessible to all
instances of your CustomTag you should use static data members.

Calling the CFX from a ColdFusion Template

You call Java CFXs from within ColdFusion templates by using the name of the CFX.
The following CFML template calls the HelloColdFusion custom tag:

<HTML>
<BODY>

4 <CFX_HelloColdFusion NAME="Les">
</BODY>
</HTML>

To test the CFX:

1. Create a new source file in your editor and enter the code displayed above.

2. Save the file in a directory configured to serve ColdFusion templates. For example,
you might save the file as c:\inetpub\wwwroot\cfdocs\testjavacfx.cfm on
Windows NT or /home/docroot/cfdocs/testjavacfx.cfm on UNIX.

3. Request the template from your web browser using the appropriate URL, for
example

http://localhost/cfdocs/testjavacfx.cfm

ColdFusion processes the template and returns a page that displays the text "Hello,
Robert." If an error is returned instead, check the source code to make sure you have
entered it correctly.

ZipBrowser Example
The following example illustrates the use of the Request, Response, and Query objects.
The example uses the java.util.zip package to implement a Java CFX called
ZipBrowser, which is a zip file browsing tag.

The fully qualified path of the zip archive to browse is specified using the ARCHIVE
attribute. The name of the query to return to the calling page is specified using the
NAME attribute. The query returned contains three columns: Name, Size, and
Compressed.

For example, to query an archive at the path c:\logfiles.zip for its contents and to
output the results you would use the following CFML code:

<CFX_ZipBrowser
 ARCHIVE="c:\logfiles.zip"
 NAME="LogFiles" >

<CFOUTPUT QUERY="LogFiles">
#Name#, #Size#, #Compressed#

</CFOUTPUT>

Chapter 18: Building Custom CFAPI Tags 285

The Java implementation of ZipBrowser is as follows:

import com.allaire.cfx.* ;
import java.util.Hashtable ;
import java.io.FileInputStream ;
import java.util.zip.* ;

public class ZipBrowser implements CustomTag
{
 public void processRequest(Request request, Response response)
 throws Exception
 {
 // validate that required attributes were passed
 if (!request.attributeExists("ARCHIVE") ||
 !request.attributeExists("NAME"))
 {
 throw new Exception(
 "Missing attribute (ARCHIVE and NAME are both " +
 "required attributes for this tag)") ;
 }

 // get attribute values
 String strArchive = request.getAttribute("ARCHIVE") ;
 String strName = request.getAttribute("NAME") ;

// create a query to use for returning the list of files
 String[] columns = { "Name", "Size", "Compressed" } ;
 int iName = 1, iSize = 2, iCompressed = 3 ;
 Query files = response.addQuery(strName, columns) ;

// read the zip file and build a query from its contents
 ZipInputStream zin =
 new ZipInputStream(new FileInputStream(strArchive)) ;
 ZipEntry entry ;
 while ((entry = zin.getNextEntry()) != null)
 {
 // add a row to the results
 int iRow = files.addRow() ;

 // populate the row with data
 files.setData(iRow, iName,
 entry.getName()) ;
 files.setData(iRow, iSize,
 String.valueOf(entry.getSize())) ;
 files.setData(iRow, iCompressed,
 String.valueOf(entry.getCompressedSize())) ;

 // finish up with entry
 zin.closeEntry() ;
 }

 // close the archive
 zin.close() ;
 }
}

286 Developing Web Applications with ColdFusion

Approaches to Debugging Java CFXs
Java CFXs are not standalone applications that run in their own process like typical
Java applications. Rather, they are created and invoked from an existing process —
ColdFusion Server. This makes debugging Java CFXs more difficult because it is not
possible to use an interactive debugger to debug Java classes that have been loaded by
another process.

To overcome this limitation, you can use one of two techniques:

• Debug the CFX while it is running within ColdFusion Server by outputting
debug information as needed. See “Outputting Debug Information” on page
286 for details.

• Debug the request in an interactive debugger offline from ColdFusion Server
using the special com.allaire.cfx debugging classes. See “Using the
Debugging Classes” on page 286 for more information.

Outputting Debug Information

Before using interactive debuggers became the norm, programmers typically
debugged their programs by inserting output statements in their programs to indicate
information such as variable values and control paths taken. Often, when a new
platform emerges, this technique comes back into vogue while programmers wait for
more sophisticated debugging technology to be brought to the platform.

If you need to debug a Java CFX while running against a live production server, this is
the technique you must use. In addition to simply outputting debug text using the
Response.write method, you can also use the DEBUG attribute in your Java CFX. This
attribute flags the CFX that the request is running in debug mode and therefore should
output additional extended debug information. For example, to call the
HelloColdFusion CFX in debug mode, you would use the following CFML code:

<CFX_HelloColdFusion" NAME="Robert" DEBUG="On">

To determine if a CFX has been invoked with the DEBUG attribute, you use the
Request.debug method. To write debug output which will be printed in a special
debug block after the tag finishes executing, you use the Response.writeDebug
method. See the “Java CFX Reference” on page 311 for details on using these methods.

Using the Debugging Classes

To develop and debug Java CFXs in isolation from the ColdFusion Server, you use three
special debugging classes that are included in the com.allaire.cfx package. These
classes enable you to simulate a call to the processRequest method of your CFX within
the context of the interactive debugger of a Java development environment. The three
debugging classes are:

• DebugRequest — An implementation of the Request interface that enables you
to initialize the request with custom attributes, settings, and a query.

Chapter 18: Building Custom CFAPI Tags 287

• DebugResponse — An implementation of the Response interface that enables
you to print the results of a request once it has completed.

• DebugQuery — An implementation of the Query interface that enables you to
initialize a query with a name, columns, and a data set.

To use the debugging classes:

1. Create a main method for your Java CFX class. This method will be used as the
testbed for your CFX.

2. Within the main method, initialize a DebugRequest and DebugResponse, and a
DebugQuery if appropriate, with the attributes and data you want to use for your
test.

3. Create an instance of your Java CFX and call its processRequest method, passing
in the DebugRequest and DebugResponse objects.

4. Call the DebugResponse.printResults method to output the results of the
request, including content generated, variables set, queries created, and so forth.

Once you have implemented a main method as described above, you can debug your
Java CFX using an interactive, single-step debugger. Just specify your Java CFX class as
the main class, set breakpoints as appropriate, and begin debugging.

Debugging Classes Example

The following example demonstrates the use of the debugging classes.

import java.util.Hashtable ;
import com.allaire.cfx.* ;

public class OutputQuery implements CustomTag
{
 // debugger testbed for OutputQuery
 public static void main(String[] argv)
 {
 try
 {
 // initialize attributes
 Hashtable attributes = new Hashtable() ;
 attributes.put("HEADER", "Yes") ;
 attributes.put("BORDER", "3") ;

 // initialize query

 String[] columns =
 { "FIRSTNAME", "LASTNAME", "TITLE" } ;

 String[][] data = {
 { "Stephen", "Cheng", "Vice President" },
 { "Joe", "Berrey", "Intern" },
 { "Adam", "Lipinski", "Director" },
 { "Lynne", "Teague", "Developer" } } ;

288 Developing Web Applications with ColdFusion

 DebugQuery query =
 new DebugQuery("Employees", columns, data) ;

 // create tag, process debug request, and print results
 OutputQuery tag = new OutputQuery() ;
 DebugRequest request = new DebugRequest(attributes, query) ;
 DebugResponse response = new DebugResponse() ;
 tag.processRequest(request, response) ;
 response.printResults() ;
 }
 catch(Throwable e)
 {
 e.printStackTrace() ;
 }
 }

 public void processRequest(Request request) throws Exception
 {
 // ...code for processing the request...
 }
}

Debugging Classes Reference

The specific constructors and methods supported by the DebugRequest,
DebugResponse, and DebugQuery classes are as follows. Note that these classes also
support the other methods of the Request, Response, and Query interfaces,
respectively.

DebugRequest

// initialize a debug request with attributes
public DebugRequest(Hashtable attributes) ;

// initialize a debug request with attributes and a query
public DebugRequest(Hashtable attributes, Query query) ;

// initialize a debug request with attributes, a query, and settings
public DebugRequest(Hashtable attributes, Query query,
 Hashtable settings) ;

DebugResponse

// initialize a debug response
public DebugResponse() ;

// print the results of processing
public void printResults() ;

Chapter 18: Building Custom CFAPI Tags 289

DebugQuery

// initialize a query with name and columns
public DebugQuery(String name, String[] columns)
 throws IllegalArgumentException ;

// initialize a query with name, columns, and data
public DebugQuery(String name, String[] columns, String[][] data)

throws IllegalArgumentException ;

Java Customization and Configuration
You use the ColdFusion Administrator to customize your Java development
environment, such as customizing the Class Path, Java system properties, and
specifying an alternate JVM.

Implementing C++ CFX Tags
CFX tags built in C++ use the tag request object, represented by the C++ class
CCFXRequest. This object represents a request made from an application page to a
custom tag. A pointer to an instance of a request object is passed to the main
procedure of a custom tag. The methods available from the request object allow the
custom tag to accomplish its work. See the “C++ CFX Reference” on page 293 for a
detailed description of the CFXAPI classes and members.

Implementing Java CFX Tags
Implementing a Java CFX requires interaction with the Request and Response objects
passed to the processRequest method. In addition, CFXs that need to work with
ColdFusion queries will also interface with the Query object. See the “Java CFX
Reference” on page 311 for a detailed description of CFX Java object types.

Registering CFXs
To use a CFX tag in your ColdFusion applications, first register it in the Extensions, CFX
Tags page in the ColdFusion Administrator.

To register the tag in the CF Administrator:

1. In the CF Administrator, open the Extensions > CFX Tags page.

2. Enter CFX_MyNewTag in the Tag name and, optionally, a description.

3. Select the type of tag (either C++ or Java).

4. Click Add to open the New CFX Tag page.

290 Developing Web Applications with ColdFusion

To register a C++ CFX:

1. In the CF Administrator, open the Extensions > CFX Tags page.

2. Enter CFX_MyNewTag in the Tag name and, optionally, a description.

3. Select the type of tag (either C++ or Java).

4. Click Add to open the New CFX Tag page.

5. If the Server library (DLL) field is empty, enter the file path.

6. Accept the default Procedure entry.

7. Un-check the Keep library loaded box while developing the tag. When the tag is
ready for production use, you can check this option to keep the DLL in memory
for improved performance.

8. Click Add.

You can now call the tag from a ColdFusion template.

To register a Java CFX:

1. In the CF Administrator, open the Extensions > CFX Tags page.

2. Enter CFX_MyNewTag in the Tag name and, optionally, a description.

3. Select the type of tag (either C++ or Java).

4. Click Add to open the New CFX Tag page.

5. Enter the Class name.

6. Click Add.

You can now call the tag from a ColdFusion template.

To change a CFX tag:

1. Click the tag you want to change in the Registered CFX Tags list.

2. Make changes as needed on the Edit CFX Tag page.

3. Click Apply to save the changes.

To delete a CFX tag:

1. Click the tag you want to delete in the Registered CFX Tags list.

2. Click Delete on the Edit CFX Tag page. The tag is removed from the list but is not
deleted from the system.

On Windows NT only, the Visual C++ Custom Tag Wizard automatically registers
custom tags so that they can be tested and debugged.

Chapter 18: Building Custom CFAPI Tags 291

Distribution

If you are distributing a custom tag, you may want to automatically register the custom
tag during the setup process by writing the registration entries directly into the
Registry. The location, key, and value names to write are as follows:

You can create a file containing this information by using the Regedit utility to export
the registry entry from a machine on which the custom tag is already installed.

On Windows NT, use Regedit to import custom tags to the registry. The ColdFusion
regedit utility (in the bin) performs the same function on UNIX.

Registration Entries for C++ CFXs

Entry Value

Hive HKEY_LOCAL_MACHINE

Key SOFTWARE\Allaire\ColdFusion\CurrentVersion\Cust
omTags\TagName

LibraryPath The full path to the DLL (Windows NT) or shared object
(Solaris) that implements the custom tag.

ProcedureName The name of the procedure to call for processing tag requests.

Description A description of the tag’s functionality for browsing by end
users.

CacheLibrary Indicates whether to keep the DLL or shared object loaded in
RAM (1 or 0).

Registration Entries for Java CFXs

Entry Value

Hive HKEY_LOCAL_MACHINE

Key SOFTWARE\Allaire\ColdFusion\CurrentVersion\CustomTags
\TagName

ClassName The name of the Class to call.

Description A description of the tag’s functionality for browsing by end users.

292 Developing Web Applications with ColdFusion

To import a C++ custom tag:

1. Export the custom tag’s registry entry by using the Regedit utility. This creates a
file similar to the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\CurrentVersion\
CustomTags\CFX_TEST]
"LibraryPath"="C:\\cfusion\\cfx\\CFX_TEST\\test.dll"
"ProcedureName"="ProcessTagRequest"
"Description"="Sample CFX tag."
"CacheLibrary"="1"

2. In the install script, import the registry entry by including the following command
in the install script:

regedit importfilename

To import a Java custom tag:

1. Export the custom tag’s registry entry by using the Regedit utility. This creates a
file similar to the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\CurrentVersion\
CustomTags\CFX_TEST]
"ClassName"="ProcessTagRequest"
"Description"="Sample CFX tag."

2. In the install script, import the registry entry by including the following command
in the install script:

regedit importfilename

Chapter 18: Building Custom CFAPI Tags 293

C++ CFX Reference
Below is a listing of CFXAPI classes and members. Individual members are described
fully in the following sections.

Class Members

CCFXException Class CCFXException::GetError
CCFXException::GetDiagnostics

CCFXQuery Class CCFXQuery::AddRow
CCFXQuery::GetColumns
CCFXQuery::GetData
CCFXQuery::GetName
CCFXQuery::GetRowCount
CCFXQuery::SetData
CCFXQuery::SetQueryString
CCFXQuery::SetTotalTime

CCFXRequest Class CCFXRequest::AddQuery
CCFXRequest::AttributeExists
CCFXRequest::CreateStringSet
CCFXRequest::Debug
CCFXRequest::GetAttribute
CCFXRequest::GetAttributeList
CCFXRequest::GetCustomData
CCFXRequest::GetQuery
CCFXRequest::GetSetting
CCFXRequest::ReThrowException
CCFXRequest::SetCustomData
CCFXRequest::SetVariable
CCFXRequest::ThrowException
CCFXRequest::Write
CCFXRequest::WriteDebug

CCFXStringSet Class CCFXStringSet::AddString
CCFXStringSet::GetCount
CCFXStringSet::GetIndexForString
CCFXStringSet::GetString

294 Developing Web Applications with ColdFusion

CCFXException Class
Abstract class that represents an exception thrown during the processing of a
ColdFusion Extension (CFX) procedure.

Exceptions of this type can be thrown by CCFXRequest Class, CCFXQuery Class, and
CCFXStringSet Class. Your ColdFusion Extension code must therefore be written to
handle exceptions of this type. (See the CCFXRequest::ThrowException and
CCFXRequest::ReThrowException tags for details on doing this correctly.)

Class members

virtual LPCSTR GetError()

The CCFXException::GetError function returns a general error message.

virtual LPCSTR GetDiagnostic()

The CCFXException::GetDiagnostics function returns detailed error information.

CCFXException::GetError

This function provides basic user output for exception that occur during processing.

CCFXException::GetDiagnostics

This function provides detailed user output for exception that occur during
processing.

Example

This code block shows how both functions work with ThrowException and
ReThrowException.

// Write output back to the user here...
pRequest->Write("Hello from CFX_FOO2!") ;
pRequest->ThrowException("User Error", "You goof’d...");

// Output optional debug info
if (pRequest->Debug())
{

pRequest->WriteDebug("Debug info...") ;
}
}

// Catch Cold Fusion exceptions & re-raise them
catch(CCFXException* e)
{
// This is how you would pull the error information
LPCTSTR strError = e->GetError();
LPCTSTR strDiagnostic = e->GetDiagnostics();

Chapter 18: Building Custom CFAPI Tags 295

pRequest->ReThrowException(e) ;
}

// Catch ALL other exceptions and throw them as
// Cold Fusion exceptions (DO NOT REMOVE! --
// this prevents the server from crashing in
// case of an unexpected exception)
catch(...)
{

pRequest->ThrowException(
"Error occurred in tag CFX_FOO2",
"Unexpected error occurred while processing tag.") ;

}
}

CCFXQuery Class
Abstract class that represents a query used or created by a ColdFusion Extension
(CFX). Queries contain 1 or more columns of data that extend over a varying number of
rows.

Class members

virtual int AddRow()

CCFXQuery::AddRow adds a new row to the query.

virtual CCFXStringSet* GetColumns

CCFXQuery::GetColumns retrieves a list of the query’s column names.

virtual LPCSTR GetData(int iRow, int iColumn)

CCFXQuery::GetData retrieves a data element from a row and column of the
query.

virtual LPCSTR GetName()

CCFXQuery::GetName retrieves the name of the query.

virtual int GetRowCount()

CCFXQuery::GetRowCount retrieves the number of rows in the query.

virtual void SetData(int iRow, int iColumn, LPCSTR lpszData)

CCFXQuery::SetData sets a data element within a row and column of the query.

virtual void SetQueryString(LPCSTR lpszQuery)

CCFXQuery::SetQueryString sets the query string that will displayed along with
query debug output.

virtual void SetTotalTime(DWORD dwMilliseconds)

CCFXQuery::SetTotalTime sets the total time that was required to process the
query (used for debug output).

296 Developing Web Applications with ColdFusion

CCFXQuery::AddRow

int CCFXQuery::AddRow(void)

Add a new row to the query. You should call this function each time you want to
append a row to the query.

Returns the index of the row that was appended to the query.

Example

The following example demonstrates the addition of 2 rows to a query that has 3
columns (’City’, ’State’, and ’Zip’):

// First row
int iRow ;
iRow = pQuery->AddRow() ;
pQuery->SetData(iRow, iCity, "Minneapolis") ;
pQuery->SetData(iRow, iState, "MN") ;
pQuery->SetData(iRow, iZip, "55345") ;

// Second row
iRow = pQuery->AddRow() ;
pQuery->SetData(iRow, iCity, "St. Paul") ;
pQuery->SetData(iRow, iState, "MN") ;
pQuery->SetData(iRow, iZip, "55105") ;

CCFXQuery::GetColumns

CCFXStringSet* CCFXQuery::GetColumns(void)

Retrieves a list of the column names contained in the query.

Returns an object of CCFXStringSet Class that contains a list of the columns contained
in the query. You are not responsible for freeing the memory allocated for the returned
string set (it will be freed automatically by ColdFusion after the request is completed).

Example

The following example retrieves the list of columns and then iterates over the list,
writing each column name back to the user.

// Get the list of columns from the query

CCFXStringSet* pColumns = pQuery->GetColumns() ;
int nNumColumns = pColumns->GetCount() ;

// Print the list of columns to the user
pRequest->Write("Columns in query: ") ;
for(int i=1; i<=nNumColumns; i++)
{

pRequest->Write(pColumns->GetString(i)) ;
pRequest->Write(" ") ;

}

Chapter 18: Building Custom CFAPI Tags 297

CCFXQuery::GetData

LPCSTR CCFXQuery::GetData(int iRow, int iColumn)

Retrieves a data element from a row and column of the query. Row and column indexes
begin with 1. You can determine the number of rows in the query by calling
CCFXQuery::GetRowCount. You can determine the number of columns in the query by
retrieving the list of columns using CCFXQuery::GetColumns and then calling
CCFXStringSet::GetCount on the returned string set.

Returns the value of the requested data element.

iRow

Row to retrieve data from (1-based).

lColumn

Column to retrieve data from (1-based).

Example

The following example iterates over the elements of a query and writes the data in the
query back to the user in a simple, space-delimited format:

int iRow, iCol ;
int nNumCols = pQuery->GetColumns()->GetCount() ;
int nNumRows = pQuery->GetRowCount() ;
for (iRow=1; iRow<=nNumRows; iRow++)
{

for (iCol=1; iCol<=nNumCols; iCol++)
{
pRequest->Write(pQuery->GetData(iRow, iCol)) ;
pRequest->Write(" ") ;
}
pRequest->Write("
") ;

}

CCFXQuery::GetName

LPCSTR CCFXQuery::GetName(void)

Retrieves the name of the query. Returns the name of the query.

Example

The following example retrieves the name of the query and writes it back to the user:

CCFXQuery* pQuery = pRequest->GetQuery() ;
pRequest->Write("The query name is: ") ;
pRequest->Write(pQuery->GetName()) ;

CCFXQuery::GetRowCount

LPCSTR CCFXQuery::GetRowCount(void)

298 Developing Web Applications with ColdFusion

Retrieves the number of rows in the query. Returns the number of rows contained in
the query.

Example

The following example retrieves the number of rows in a query and writes it back to the
user:

CCFXQuery* pQuery = pRequest->GetQuery() ;
char buffOutput[256] ;
wsprintf(buffOutput,

"The number of rows in the query is %ld.",
pQuery->GetRowCount()) ;

pRequest->Write(buffOutput) ;

CCFXQuery::SetData

void CCFXQuery::SetData(int iRow, int iColumn, LPCSTR lpszData)

Sets a data element within a row and column of the query. Row and column indexes
begin with 1. Before calling SetData for a given row, you should be sure to call
CCFXQuery::AddRow and use the return value as the row index for your call to
SetData.

iRow

Row of data element to set (1-based).

lColumn

Column of data element to set (1-based).

lpszData

New value for data element.

Example

The following example demonstrates the addition of 2 rows to a query that has 3
columns (’City’, ’State’, and ’Zip’):

// First row
int iRow ;
iRow = pQuery->AddRow() ;
pQuery->SetData(iCity, iRow, "Minneapolis") ;
pQuery->SetData(iState, iRow, "MN") ;
pQuery->SetData(iZip, iRow, "55345") ;

// Second row
iRow = pQuery->AddRow() ;
pQuery->SetData(iCity, iRow, "St. Paul") ;
pQuery->SetData(iState, iRow, "MN") ;
pQuery->SetData(iZip, iRow, "55105") ;

Chapter 18: Building Custom CFAPI Tags 299

CCFXQuery::SetQueryString

This is a deprecated function and should not be used.

CCFXQuery::SetTotalTime

This is a deprecated function and should not be used.

CCFXRequest Class
Abstract class that represents a request made to a ColdFusion Extension (CFX). An
instance of this class is passed to the main function of your extension DLL. The class
provides several interfaces that may be used by the custom extension, including
functions for reading and writing variables, returning output, creating and using
queries, and throwing exceptions.

Class Members

virtual BOOL AttributeExists(LPCSTR lpszName)

CCFXRequest::AttributeExists checks to see whether the attribute was passed to
the tag.

virtual LPCSTR GetAttribute(LPCSTR lpszName)

CCFXRequest::GetAttribute retrieves the value of the passed attribute.

virtual CCFXStringSet* GetAttributeList()

CCFXRequest::GetAttributeList retrieves a list of all attribute names passed to the
tag.

virtual CCFXQuery* GetQuery()

CCFXRequest::GetQuery retrieves the query that was passed to the tag.

virtual LPCSTR GetSetting(LPCSTR lpszSettingName)

CCFXRequest::GetSetting retrieves the value of a custom tag setting.

virtual void Write(LPCSTR lpszOutput)

CCFXRequest::Write writes text output back to the user.

virtual void SetVariable(LPCSTR lpszName, LPCSTR lpszValue)

CCFXRequest::SetVariable sets a variable in the template that contains this tag.

virtual CCFXQuery* AddQuery(LPCSTR lpszName, CCFXStringSet* pColumns)

CCFXRequest::AddQuery adds a query to the template that contains this tag.

virtual BOOL Debug()

CCFXRequest::Debug checks whether the tag contains the DEBUG attribute.

300 Developing Web Applications with ColdFusion

virtual void WriteDebug(LPCSTR lpszOutput)

CCFXRequest::WriteDebug writes text output into the debug stream.

virtual CCFXStringSet* CreateStringSet()

CCFXRequest::CreateStringSet allocates and returns a new CCFXStringSet
instance.

virtual void ThrowException(LPCSTR lpszError, LPCSTR lpszDiagnostics)

CCFXRequest::ThrowException throws an exception and ends processing of this
request.

virtual void ReThrowException(CCFXException* e)

CCFXRequest::ReThrowException re-throws an exception that has been caught.

virtual void SetCustomData(LPVOID lpvData)

CCFXRequest::SetCustomData sets custom (tag specific) data to carry along with
the request.

virtual LPVOID GetCustomData()

CCFXRequest::GetCustomData gets the custom (tag specific) data for the request.

CCFXRequest::AddQuery

CCFXQuery* CCFXRequest::AddQuery(LPCSTR lpszName, CCFXStringSet*
pColumns)

Adds a query to the calling template. This query can then be accessed by CFML tags
(for example, CFOUTPUT or CFTABLE) within the template. Note that after calling
AddQuery, the query exists but is empty (that is, it has 0 rows). To populate the query
with data, you should call the CCFXQuery::AddRow and CCFXQuery::SetData
functions.

Returns a pointer to the query that was added to the template (an object of class
CCFXQuery). You are not responsible for freeing the memory allocated for the returned
query (it will be freed automatically by ColdFusion after the request is completed).

lpszName

Name of query to add to the template (must be unique).

pColumns

List of columns names to be used in the query.

Example

The following example adds a query named ’People’ to the calling template. The query
has two columns (’FirstName’ and ’LastName’) and two rows:

// Create a string set and add the column names to it
CCFXStringSet* pColumns = pRequest->CreateStringSet() ;
int iFirstName = pColumns->AddString("FirstName") ;
int iLastName = pColumns->AddString("LastName") ;

Chapter 18: Building Custom CFAPI Tags 301

// Create a query that contains these columns
CCFXQuery* pQuery = pRequest->AddQuery("People", pColumns) ;

// Add data to the query
int iRow ;
iRow = pQuery->AddRow() ;
pQuery->SetData(iRow, iFirstName, "John") ;
pQuery->SetData(iRow, iLastName, "Smith") ;
iRow = pQuery->AddRow() ;
pQuery->SetData(iRow, iFirstName, "Jane") ;
pQuery->SetData(iRow, iLastName, "Doe") ;

CCFXRequest::AttributeExists

BOOL CCFXRequest::AttributeExists(LPCSTR lpszName)

Checks to see whether the attribute was passed to the tag. Returns TRUE if the
attribute is available; otherwise, returns FALSE.

lpszName

Name of the attribute to check (case insensitive).

Example

The following example checks to see if the user passed an attribute named
DESTINATION to the tag and throws an exception if the attribute was not passed:

if (pRequest->AttributeExists("DESTINATION")==FALSE)
{

pRequest->ThrowException(
"Missing DESTINATION parameter",
"You must pass a DESTINATION parameter in "
"order for this tag to work correctly.") ;

}

CCFXRequest::CreateStringSet

CCFXStringSet* CCFXRequest::CreateStringSet(void)

Allocates and returns a new instance. Note that string sets should always be created
using this function as opposed to directly using the ’new’ operator.

Returns an object of CCFXStringSet Class. You are not responsible for freeing the
memory allocated for the returned string set (it will be freed automatically by
ColdFusion after the request is completed).

Example

The following example creates a string set and adds 3 strings to it:

CCFXStringSet* pColors = pRequest->CreateStringSet() ;
pColors->AddString("Red") ;
pColors->AddString("Green") ;
pColors->AddString("Blue") ;

302 Developing Web Applications with ColdFusion

CCFXRequest::Debug

BOOL CCFXRequest::Debug(void)

Checks whether the tag contains the DEBUG attribute. You should use this function to
determine whether or not you need to write debug information for this request. (See
the CCFXRequest::WriteDebug tag for details on writing debug information.)

Returns TRUE if the tag contains the DEBUG attribute; otherwise, returns FALSE.

Example

The following example checks to see whether the DEBUG attribute is present, and if it is,
it writes a brief debug message:

if (pRequest->Debug())
{

pRequest->WriteDebug("Top secret debug info") ;
}

CCFXRequest::GetAttribute

LPCSTR CCFXRequest::GetAttribute(LPCSTR lpszName)

Retrieves the value of the passed attribute. Returns an empty string if the attribute
does not exist. (Use CCFXRequest::AttributeExists to test whether an attribute was
passed to the tag.)

Returns the value of the attribute passed to the tag. If no attribute of that name was
passed to the tag, an empty string is returned.

lpszName

Name of the attribute to retrieve (case insensitive).

Example

The following example retrieves an attribute named DESTINATION and writes its value
back to the user:

LPCSTR lpszDestination = pRequest->GetAttribute("DESTINATION") ;
pRequest->Write("The destination is: ") ;
pRequest->Write(lpszDestination) ;

CCFXRequest::GetAttributeList

CCFXStringSet* CCFXRequest::GetAttributeList(void)

Retrieves a list of all attribute names passed to the tag. To retrieve the value of an
individual attribute, you should use CCFXRequest::GetAttribute.

Returns an object of class CCFXStringSet Class that contains a list of all attributes
passed to the tag.

Chapter 18: Building Custom CFAPI Tags 303

You are not responsible for freeing the memory allocated for the returned string set (it
will be freed automatically by ColdFusion after the request is completed).

Example

The following example retrieves the list of attributes and then iterates over the list,
writing each attribute and its value back to the user.

LPCSTR lpszName, lpszValue ;
CCFXStringSet* pAttribs = pRequest->GetAttributeList() ;
int nNumAttribs = pAttribs->GetCount() ;

for(int i=1; i<=nNumAttribs; i++)
{

lpszName = pAttribs->GetString(i) ;
lpszValue = pRequest->GetAttribute(lpszName) ;
pRequest->Write(lpszName) ;
pRequest->Write(" = ") ;
pRequest->Write(lpszValue) ;
pRequest->Write("
") ;

}

CCFXRequest::GetCustomData

LPVOID CCFXRequest::GetCustomData(void)

Gets the custom (tag specific) data for the request. This member is typically used from
within subroutines of your tag implementation to extract tag specific data from within
the request.

Returns a pointer to the custom data or returns NULL if no custom data has been set
during this request using CCFXRequest::SetCustomData.

Example

The following example retrieves a pointer to a request specific data structure of
hypothetical type MYTAGDATA:

void DoSomeGruntWork(CCFXRequest* pRequest)
{

MYTAGDATA* pTagData =
(MYTAGDATA*)pRequest->GetCustomData() ;

... remainder of procedure ...
}

CCFXRequest::GetQuery

CCFXQuery* CCFXRequest::GetQuery(void)

Retrieves the query that was passed to the tag. To pass a query to a custom tag, you use
the QUERY attribute. This attribute should be set to the name of an existing query

304 Developing Web Applications with ColdFusion

(created using the CFQUERY tag or another custom tag). The QUERY attribute is
optional and should only be used by tags that need to process an existing data set.

Returns an object of the CCFXQuery Class that represents the query that was passed to
the tag. If no query was passed to the tag, NULL is returned. You are not responsible for
freeing the memory allocated for the returned query (it will be freed automatically by
ColdFusion after the request is completed).

Example

The following example retrieves the query that was passed to the tag. If no query was
passed, an exception is thrown:

CCFXQuery* pQuery = pRequest->GetQuery() ;
if (pQuery == NULL)
{

pRequest->ThrowException(
"Missing QUERY parameter",
"You must pass a QUERY parameter in "
"order for this tag to work correctly.") ;

}

CCFXRequest::GetSetting

LPCSTR CCFXRequest::GetSetting(LPCSTR lpszSettingName)

Retrieves the value of a global custom tag setting. Custom tag settings are stored within
the CustomTags section of the ColdFusion Registry key.

Returns the value of the custom tag setting. If no setting of that name exists, an empty
string is returned.

lpszSettingName

Name of the setting to retrieve (case insensitive).

Example

The following example retrieves the value of a setting named ’VerifyAddress’ and uses
the returned value to determine what actions to take next:

LPCSTR lpszVerify = pRequest->GetSetting("VerifyAddress") ;
BOOL bVerify = atoi(lpszVerify) ;
if (bVerify == TRUE)
{

// Do address verification...
}

CCFXRequest::ReThrowException

void CCFXRequest::ReThrowException(CCFXException* e)

Re-throws an exception that has been caught within an extension procedure. This
function is used to avoid having C++ exceptions thrown by DLL extension code
propagate back into ColdFusion. You should catch ALL C++ exceptions that occur in

Chapter 18: Building Custom CFAPI Tags 305

your extension code and then either re-throw them (if they are of the CCFXException
Class) or create and throw a new exception pointer using
CCFXRequest::ThrowException.

e

An existing CCFXException that has been caught.

Example

The following code demonstrates the correct way to handle exceptions in ColdFusion
Extension DLL procedures:

try
{

...Code that could throw an exception...

}
catch(CCFXException* e)
{

...Do appropriate resource cleanup here...

// Re-throw the exception
pRequest->ReThrowException(e) ;

}
catch(...)
{

// Something nasty happened

pRequest->ThrowException(
"Unexpected error occurred in CFX tag", "") ;

}

CCFXRequest::SetCustomData

void CCFXRequest::SetCustomData(LPVOID lpvData)

Sets custom (tag specific) data to carry along with the request. You should use this
function to store request specific data that you want to pass along to procedures within
your custom tag implementation.

lpvData

Pointer to custom data.

Example

The following example creates a request-specific data structure of hypothetical type
MYTAGDATA and stores a pointer to the structure in the request for future use:

306 Developing Web Applications with ColdFusion

void ProcessTagRequest(CCFXRequest* pRequest)
{

try
{

MYTAGDATA tagData ;
pRequest->SetCustomData((LPVOID)&tagData) ;

... remainder of procedure ...
}

CCFXRequest::SetVariable

void CCFXRequest::SetVariable(LPCSTR lpszName, LPCSTR lpszValue)

Sets a variable in the calling template. If the variable name specified already exists in
the template, its value is replaced. If it does not already exist, a new variable is created.
The values of variables created using SetVariable can be accessed in the same
manner as other template variables (e.g., #MessageSent#).

lpszName

Name of variable.

lpszValue

Value of variable.

Example

The following example sets the value of a variable named ’MessageSent’ based on the
success of an operation performed by the custom tag:

BOOL bMessageSent ;

...attempt to send the message...

if (bMessageSent == TRUE)
{

pRequest->SetVariable("MessageSent", "Yes") ;
}
else
{

pRequest->SetVariable("MessageSent", "No") ;
}

CCFXRequest::ThrowException

void CCFXRequest::ThrowException(LPCSTR lpszError,
LPCSTR lpszDiagnostics)

Throws an exception and ends processing of this request. You should call this function
when you encounter an error that does not allow you to continue processing the
request. Note that this function is almost always combined with the

Chapter 18: Building Custom CFAPI Tags 307

CCFXRequest::ReThrowException to provide protection against resource leaks in
extension code.

lpszError

Short identifier for error.

lpszDiagnostics

Error diagnostic information.

Example

The following example throws an exception indicating that an unexpected error
occurred while processing the request:

char buffError[512] ;
wsprintf(buffError,

"Unexpected Windows NT error number %ld "
"occurred while processing request.", GetLastError()) ;

pRequest->ThrowException("Error occurred", buffError) ;

CCFXRequest::Write

void CCFXRequest::Write(LPCSTR lpszOutput)

Writes text output back to the user.

lpszOutput

Text to output.

Example

The following example creates a buffer to hold an output string, fills the buffer with
data, and then writes the output back to the user:

CHAR buffOutput[1024] ;
wsprintf(buffOutput, "The destination is: %s",

pRequest->GetAttribute("DESTINATION")) ;
pRequest->Write(buffOutput) ;

CCFXRequest::WriteDebug

void CCFXRequest::WriteDebug(LPCSTR lpszOutput)

Writes text output into the debug stream. This text is only displayed to the end-user if
the tag contains the DEBUG attribute. (For more information, see
CCFXRequest::Debug.)

lpszOutput

Text to output.

308 Developing Web Applications with ColdFusion

Example

The following example checks to see whether the DEBUG attribute is present, and if it
is, it writes a brief debug message:

if (pRequest->Debug())
{

pRequest->WriteDebug("Top secret debug info") ;
}

CCFXStringSet Class
Abstract class that represents a set of ordered strings. Strings can be added to a set and
can be retrieved by a numeric index (the index values for strings are 1-based). To create
a string set, you should use CCFXRequest::CreateStringSet.

Class members

virtual int AddString(LPCSTR lpszString)

CCFXStringSet::AddString adds a string to the end of the list.

virtual int GetCount()

CCFXStringSet::GetCount gets the number of strings contained in the list.

virtual LPCSTR GetString(int iIndex)

CCFXStringSet::GetString gets the string located at the passed index.

virtual int GetIndexForString(LPCSTR lpszString)

CCFXStringSet::GetIndexForString gets the index for the passed string.

CCFXStringSet::AddString

int CCFXStringSet::AddString(LPCSTR lpszString)

Adds a string to the end of the list. Returns the index of the string that was added.

lpszString

String to add to the list.

Example

The following example demonstrates adding three strings to a string set and saving the
indexes of the items that are added:

CCFXStringSet* pSet = pRequest->CreateStringSet() ;
int iRed = pSet->AddString("Red") ;
int iGreen = pSet->AddString("Green") ;
int iBlue = pSet->AddString("Blue") ;

Chapter 18: Building Custom CFAPI Tags 309

CCFXStringSet::GetCount

int CCFXStringSet::GetCount(void)

Gets the number of strings contained in the string set. This value can be used along
with CCFXStringSet::GetString to iterate over the strings in the set (when iterating,
remember that the index values for strings in the list begin at 1).

Returns the number of strings contained in the string set.

Example

The following example demonstrates using GetCount along with
CCFXStringSet::GetString to iterate over a string set and write the contents of the list
back to the user:

int nNumItems = pStringSet->GetCount() ;
for (int i=1; i<=nNumItems; i++)
{

pRequest->Write(pStringSet->GetString(i)) ;
pRequest->Write("
") ;

}

CCFXStringSet::GetIndexForString

int CCFXStringSet::GetIndexForString(LPCSTR lpszString)

Does a case insensitive search for the passed string.

If the string is found, its index within the string set is returned. If it is not found, the
constant CFX_STRING_NOT_FOUND is returned.

lpszString

String to search for.

Example

The following example illustrates searching for a string and throwing an exception if it
is not found:

CCFXStringSet* pAttribs = pRequest->GetAttributeList() ;

int iDestination =
pAttribs->GetIndexForString("DESTINATION") ;

if (iDestination == CFX_STRING_NOT_FOUND)
{

pRequest->ThrowException(
"DESTINATION attribute not found."
"The DESTINATION attribute is required "
"by this tag.") ;

}

310 Developing Web Applications with ColdFusion

CCFXStringSet::GetString

LPCSTR CCFXStringSet::GetString(int iIndex)

Retrieves the string located at the passed index (note that index values are 1-based).

Returns the string located at the passed index.

iIndex

Index of string to retrieve.

Example

The following example demonstrates using GetString along with
CCFXStringSet::GetCount to iterate over a string set and write the contents of the list
back to the user:

int nNumItems = pStringSet->GetCount() ;
for (int i=1; i<=nNumItems; i++)
{

pRequest->Write(pStringSet->GetString(i)) ;
pRequest->Write("
") ;

}

Chapter 18: Building Custom CFAPI Tags 311

Java CFX Reference

Contents

• Interface CustomTag

• Interface Query

• Interface Request

• Interface Response

Interface CustomTag
public abstract interface CustomTag

Interface for implementing custom tags.

Classes that implement this interface can be specified in the CLASS attribute of
the Java CFX tag. For example, if I have a class MyCustomTag which implements
this interface then the following CFML code could be used to call the
MyCustomTag.processRequest method:

 <CFX_MyCustomTag">

Additional attributes may also be passed to the Java CFX tag. The values of these
attributes are available via the Request object passed to the processRequest
method.

Method Detail

processRequest

public void processRequest(Request request,
 Response response)
 throws Exception

Processes a request originating from the Java CFX tag.

Parameters:

request — Parameters (attributes, query, etc.) for this request

Method Summary

void processRequest(Request request, Response
response)

Processes a request
originating from the
CFX_mycustomtag tag.

312 Developing Web Applications with ColdFusion

response — Interface for generating response to request (output, variables,
queries, etc.)

Throws:

Exception — If an unexpected error occurs while processing the request.

Interface Query
public abstract interface Query

Interface to a query used or created by a CustomTag. A query contains tabular data
organized by named columns and rows

Method Detail

getName

public String getName()

Retrieves the name of the query.

The following example retrieves the name of the query and writes it back to the
user:

 Query query = request.getQuery() ;
 response.write("The query name is: " + query.getName()) ;

Method Summary

int addRow() Adds a new row to the query.

int getColumnIndex(String name) Retrieves the index of a column
given its name.

String[] getColumns() Retrieves a list of the column
names contained in the query.

String getData(int iRow, int iCol) Retrieves a data element from a
row and column of the query.

String getName() Retrieves the name of the query.

int getRowCount() Retrieves the number of rows in the
query.

void setData(int iRow, int iCol,
String data)

Sets a data element within a row
and column of the query.

Chapter 18: Building Custom CFAPI Tags 313

Returns:

The name of the query.

getRowCount

public int getRowCount()

Retrieves the number of rows in the query.

The following example retrieves the number of rows in a query and writes it back
to the user:

 Query query = request.getQuery() ;
 int rows = query.getRowCount() ;
 response.write("The number of rows in the query is "
 + Integer.toString(rows)) ;

Returns:

The number of rows contained in the query.

getColumnIndex

public int getColumnIndex(String name)

Retrieves the index of a column given its name.

The following example retrieves the index of the EMAIL column and uses it to
output a list of the addresses contained in the column:

 // Get the index of the EMAIL column
 int iEMail = query.getColumnIndex("EMAIL") ;

 // Iterate over the query and output list of addresses
 int nRows = query.getRowCount() ;
 for(int iRow=1; iRow<=nRows; iRow++)
 {
 response.write(query.getData(iRow, iEMail) + "
") ;
 }

Parameters:

name — Name of column to get index of (lookup is case insensitive)

Returns:

The index of the column (returns -1 if no such column exists).

See Also:

getColumns, getData

getColumns

public String[] getColumns()

314 Developing Web Applications with ColdFusion

Retrieves a list of the column names contained in the query.

The following example retrieves the array of columns and then iterates over the
list, writing each column name back to the user:

 // Get the list of columns from the query
 String[] columns = query.getColumns() ;
 int nNumColumns = columns.length ;

 // Print the list of columns to the user
 response.write("Columns in query: ") ;
 for(int i=0; i<nNumColumns; i++)
 {
 response.write(columns[i] + " ") ;
 }

Returns:

An array of strings containing the names of the columns in the query.

getData

public String getData(int iRow,
 int iCol)
 throws IndexOutOfBoundsException

Retrieves a data element from a row and column of the query. Row and column
indexes begin with 1. You can determine the number of rows in the query by
calling getRowCount. You can determine the columns in the query by calling
getColumns.

The following example iterates over the rows of the query and writes the data back
to the user in a simple, space-delimited format:

 int iRow, iCol ;
 int nNumCols = query.getColumns().length ;
 int nNumRows = query.getRowCount() ;
 for (iRow=1; iRow<=nNumRows; iRow++)
 {
 for (iCol=1; iCol<=nNumCols; iCol++)
 {
 response.write(query.getData(iRow, iCol) + " ") ;
 }
 response.write("
") ;
 }

Parameters:

iRow — Row to retrieve data from (1-based)

iCol — Column to retrieve data from (1-based)

Returns:

The value of the requested data element.

Chapter 18: Building Custom CFAPI Tags 315

Throws:

IndexOutOfBoundsException - If an invalid index is passed to the method.

See Also:

setData, addRow

addRow

public int addRow()

Adds a new row to the query. Call this method each time you want to append a row
to the query.

The following example demonstrates the addition of 2 rows to a query that has 3
columns (’City’, ’State’, and ’Zip’):

 // Define column indexes
 int iCity = 1, iState = 2, iZip = 3 ;

 // First row
 int iRow = query.addRow() ;
 query.setData(iRow, iCity, "Minneapolis") ;
 query.setData(iRow, iState, "MN") ;
 query.setData(iRow, iZip, "55345") ;

 // Second row
 iRow = query.addRow() ;
 query.setData(iRow, iCity, "St. Paul") ;
 query.setData(iRow, iState, "MN") ;
 query.setData(iRow, iZip, "55105") ;

Returns:

The index of the row that was appended to the query.

See Also:

setData, getData

setData

public void setData(int iRow,
 int iCol,
 String data)
 throws IndexOutOfBoundsException

Sets a data element within a row and column of the query. Row and column
indexes begin with 1. Before calling setData for a given row you should be sure to
call addRow and use the return value as the row index for your call to setData.

The following example demonstrates the addition of 2 rows to a query that has 3
columns (’City’, ’State’, and ’Zip’):

 // Define column indexes

316 Developing Web Applications with ColdFusion

 int iCity = 1, iState = 2, iZip = 3 ;

 // First row
 int iRow = query.addRow() ;
 query.setData(iRow, iCity, "Minneapolis") ;
 query.setData(iRow, iState, "MN") ;
 query.setData(iRow, iZip, "55345") ;

 // Second row
 iRow = query.addRow() ;
 query.setData(iRow, iCity, "St. Paul") ;
 query.setData(iRow, iState, "MN") ;
 query.setData(iRow, iZip, "55105") ;

Parameters:

iRow — Row of data element to set (1-based)

iCol — Column of data element to set (1-based)

data — New value for data element

Throws:

IndexOutOfBoundsException — If an invalid index is passed to the method.

See Also:

getData, addRow

Interface Request
public abstract interface Request

Interface to a request made to a CustomTag. This interface includes methods for
retrieving attributes passed to the tag (including queries) and reading global tag
settings.

Method Summary

boolean attributeExists(String name) Checks to see whether the
attribute was passed to this
tag.

boolean debug() Checks whether the tag
contains the DEBUG
attribute.

String getAttribute(String name) Retrieves the value of the
passed attribute.

Chapter 18: Building Custom CFAPI Tags 317

Method Detail

attributeExists

public boolean attributeExists(String name)

Checks to see whether the attribute was passed to this tag.

The following example checks to see if the user passed an attribute named
DESTINATION to the tag and throws an exception if the attribute was not passed:

 if (! request.attributeExists("DESTINATION"))
 {
 throw new Exception(
 "Missing DESTINATION parameter",
 "You must pass a DESTINATION parameter in "
 "order for this tag to work correctly.") ;
 } ;

Parameters:

name — Name of the attribute to check (case insenstive)

Returns:

Returns true if the attribute is available otherwise returns false.

See Also:

getAttribute, getAttributeList

String getAttributeList() Retrieves a list of all
attributes passed to the tag.

int getIntAttribute(String name) Retrieves the value of the
passed attribute as an
integer.

int getIntAttribute(String name, int def) Retrieves the value of the
passed attribute as an
integer (returns default if the
attribute does not exist or is
not a valid number).

Query getQuery() Retrieves the query that was
passed to this tag.

String getSetting(String name) Retrieves the value of a
global custom tag setting.

Method Summary

318 Developing Web Applications with ColdFusion

getAttribute

public String getAttribute(String name)

Retrieves the value of the passed attribute. Returns an empty string if the attribute
does not exist (use attributeExists to test whether an attribute was passed to the
tag). Use getAttribute(String,String) to return a default value rather than an empty
string.

The following example retrieves an attribute named DESTINATION and writes its
value back to the user:

 String strDestination = request.getAttribute("DESTINATION") ;
 response.write("The destination is: " + strDestination) ;

Parameters:

name — The attribute to retrieve (case insensitive)

Returns:

The value of the attribute passed to the tag. If no attribute of that name was passed
to the tag then an empty string is returned.

See Also:

attributeExists, getAttributeList, getAttribute(String,String),
getIntAttribute

getIntAttribute

public int getIntAttribute(String name)

 throws NumberFormatException

Retrieves the value of the passed attribute as an integer. Returns -1 if the attribute
does not exist. Throws a NumberFormatException if the attribute is not a valid
number. Use attributeExists to test whether an attribute was passed to the tag. Use
getIntAttribute(String,int) to return a default value rather than throwing an
exception or returning -1.

The following example retrieves an attribute named PORT and writes its value
back to the user:

 int nPort = request.getIntAttribute("PORT") ;
 if (nPort != -1)
 response.write("The port is: " + String.valueOf(nPort)) ;

Parameters:

name — The attribute to retrieve (case insensitive)

Returns:

The value of the attribute passed to the tag. If no attribute of that name was passed
to the tag then -1 is returned.

Chapter 18: Building Custom CFAPI Tags 319

Throws:

NumberFormatException — If the attribute is not a valid number.

See Also:

attributeExists, getAttributeList, getIntAttribute(String,int)

getAttributeList

public String[] getAttributeList()

Retrieves a list of all attributes passed to the tag. To retrieve the value of an
individual attribute you should use the getAttribute member function.

The following example retrieves the list of attributes and then iterates over the list,
writing each attribute and its value back to the user:

 String[] attribs = request.getAttributeList() ;
 int nNumAttribs = attribs.length ;

 for(int i=0; i<nNumAttribs; i++)
 {
 String strName = attribs[i] ;
 String strValue = request.getAttribute(strName) ;
 response.write(strName + "=" + strValue + "
") ;
 }

Returns:

An array of strings containing the names of the attributes passed to the tag.

See Also:

attributeExists, getAttribute

getQuery

public Query getQuery()

Retrieves the query that was passed to this tag.

To pass a query to a custom tag you use the QUERY attribute. This attribute should
be set to the name of an existing query (e.g. created using the CFQUERY tag). The
QUERY attribute is optional and should only be used by tags which need to
process an existing dataset.

The following example retrieves the query which was passed to the tag. If no query
was passed then an exception is thrown:

 Query query = request.getQuery() ;
 if (query == null)
 {
 throw new Exception(
 "Missing QUERY parameter. " +
 "You must pass a QUERY parameter in "

320 Developing Web Applications with ColdFusion

 "order for this tag to work correctly.") ;
 }

Returns:

The Query that was passed to the tag. If no query was passed to the tag then null is
returned.

getSetting

public String getSetting(String name)

Retrieves the value of a global custom tag setting. Custom tag settings are stored
within the CustomTags section of the ColdFusion Registry key.

Note All custom tags implemented in Java share a single registry key for
storing settings. This means that to avoid name conflicts you should
preface the names of your settings with the name of your
CustomTag class.

For example, the code below retrieves the value of a setting named
’VerifyAddress’ for a CustomTag class named MyCustomTag:

 String strVerify = request.getSetting("MyCustomTag.VerifyAddress")
;
 if (Boolean.valueOf(strVerify))
 {
 // Do address verification...
 }

Parameters:

name — The name of the setting to retrieve (case insensitive)

Returns:

The value of the custom tag setting. If no setting of that name exists then an empty
string is returned.

debug

public boolean debug()

Checks whether the tag contains the DEBUG attribute. You should use this
method to determine whether or not you need to write debug information for this
request (see Response.writeDebug for details on writing debug information).

The following example checks to see whether the DEBUG attribute is present, and
if it is then it writes a brief debug message:

 if (request.debug())
 {
 response.writeDebug("debug info") ;
 }

Chapter 18: Building Custom CFAPI Tags 321

Returns:

Returns true if the tag contains the DEBUG attribute otherwise returns false.

See Also:

Response.writeDebug

Interface Response
public abstract interface Response

Interface to response generated from a CustomTag. This interface includes
methods for writing output, generating queries, and setting variables within the

calling page.

Method Detail

write

public void write(String output)

Outputs text back to the user.

The following example outputs the value of the DESTINATION attribute:

 response.write("DESTINATION = " +
request.getAttribute("DESTINATION")) ;

Parameters:

output — Text to output

setVariable

public void setVariable(String name,
 String value)
 throws IllegalArgumentException

Method Summary

Query addQuery(String name, String[]
columns)

Adds a query to the calling template.

void setVariable(String name, String value) Sets a variable in the calling template.

void write(String output) Outputs text back to the user.

void writeDebug(String output) Writes text output into the debug stream.

322 Developing Web Applications with ColdFusion

Sets a variable in the calling template. If the variable name specified already exists
in the template then its value is replaced. If it does not already exist then a new
variable is created.

For example, this code sets the value of a variable named ’MessageSent’ based on
the success of an operation performed by the custom tag:

 boolean bMessageSent ;

 ...attempt to send the message...

 if (bMessageSent == true)
 {
 response.setVariable("MessageSent", "Yes") ;
 }
 else
 {
 response.setVariable("MessageSent", "No") ;
 }

Parameters:

name — The name of the variable to set

value — The value to set variable to

Throws:

IllegalArgumentException — If the name parameter is not a valid CFML
variable name

addQuery

public Query addQuery(String name,
 String[] columns)
 throws IllegalArgumentException

Adds a query to the calling template. This query can then be accessed by CFML
tags within the template. Note that after calling addQuery the query exists but is
empty (i.e. it has 0 rows). To populate the query with data you should call the
Query member functions addRow and setData.

The following example adds a Query named 'People' to the calling template. The
query has two columns ('FirstName' and 'LastName') and 2 rows:

 // Create string array with column names (also track columns
indexes)
 String[] columns = { "FirstName", "LastName" } ;
 int iFirstName = 1, iLastName = 2 ;

 // Create a query which contains these columns
 Query query = response.addQuery("People", columns) ;

 // Add data to the query
 int iRow = query.addRow() ;

Chapter 18: Building Custom CFAPI Tags 323

 query.setData(iRow, iFirstName, "John") ;
 query.setData(iRow, iLastName, "Smith") ;
 iRow = query.addRow() ;
 query.setData(iRow, iFirstName, "Jane") ;
 query.setData(iRow, iLastName, "Doe") ;

Parameters:

name — The name of the query to add to the template

columns — The column names to be used in the query

Returns:

The Query that was added to the template.

Throws:

IllegalArgumentException - if the name parameter is not a valid CFML variable
name

See Also:

Query.addRow, Query.setData

writeDebug

public void writeDebug(String output)

Writes text output into the debug stream. This text is only displayed to the end-
user if the tag contains the DEBUG attribute (you can check for this attribute using
the Request.debug member function).

The following example checks to see whether the DEBUG attribute is present, and
if it is then it writes a brief debug message:

 if (request.debug())
 {
 response.writeDebug("debug info") ;
 }

Parameters:

output — The text to output

See Also:

Request.debug

324 Developing Web Applications with ColdFusion

C H A P T E R 1 9

Chapter 19 Using CFOBJECT to Invoke
Component Objects

The CFOBJECT tag is used to invoke objects created by component technologies.
This includes COM/DCOM, CORBA, Java, and EJB objects.

Contents

• Component Object Overview.. 326

• Invoking Component Objects ... 327

• Getting Started with COM/DCOM.. 328

• Creating and Using COM Objects ... 331

• Getting Started with CORBA ... 332

• Calling a CORBA Object... 333

• Calling Java Objects.. 335

326 Developing Web Applications with ColdFusion

Component Object Overview
This section gives you some basic information on objects supported in ColdFusion
and provides resources for further inquiry.

About COM

COM (Component Object Model) is a specification and a set of services defined by
Microsoft to enable component portability, reusability, and versioning. DCOM
(Distributed Component Object Model) is an implementation of COM for distributed
services, allowing access to components residing on a network.

COM objects can reside locally or on any network node. Currently, COM is supported
on Windows NT 3.51/4.0 and Windows 95/98.

Resources

To find out more about COM/DCOM, go to Microsoft’s COM site

About CORBA

CORBA (Common Object Request Broker Architecture) is a specification for a
distributed component object system defined by the Object Management Group
(OMG). In this model, an object is an encapsulated entity whose services are accessed
only through well-defined interfaces. The location and implementation of each object
is hidden from the client requesting the services. ColdFusion supports CORBA 2.0 on
both Windows and Unix.

Resources

The OMG site is the main Web repository for CORBA information.

The following are CORBA vendors:

• Inprise VisiBroker

• Iona Orbix

• ORBacus

About Java Objects

Java objects include any Java class available in the Class Path specified in the
ColdFusion Administrator.

Chapter 19: Using CFOBJECT to Invoke Component Objects 327

Invoking Component Objects
The CFOBJECT tag is used to create an instance of the object and other ColdFusion
tags, such as CFSET and CFOUTPUT, are used to invoke properties (attributes), and
methods (operations) on the object. An object created by CFOBJECT or returned by
other objects is implicitly released at the end of the template execution.

Coding guidelines

The following coding practice is required (or recommended) when accessing the
object. Assume that the NAME attribute in the CFOBJECT tag specified the value "obj",
and that the object has a property called "Property", and methods called "Method1",
"Method2", and "Method3".

To set a property:

<CFSET obj.property = "somevalue">

To get a property:
<CFSET value = obj.property>

Note that parentheses are not used on the right side of the equation for property-gets.

Calling methods

Object methods usually take zero or more arguments. Arguments can be sent by value
([in] arguments) or by reference ([out] and [in,out]). Arguments sent by reference
usually have their value changed by the object. Some methods return values while
others may not.

Methods with no arguments:

<CFSET retVal = obj.Method1()>

Note that parentheses are required for methods with no arguments.

Methods with one or more arguments:

<CFSET x = 23>
<CFSET retVal = obj.Method1(x, "a string literal")>

This method accepts one integer argument, and one string argument.

Methods with reference arguments:

<CFSET x = 23>
<CFSET retVal = obj.Method2("x", "a string literal")>
<CFOUTPUT> #x#</CFOUTPUT>

Note the use of double-quotes ("") to specify reference arguments. If the object
changes the value of "x", it will now contain a value other than 23.

328 Developing Web Applications with ColdFusion

Calling nested objects

The current release of ColdFusion does not support nested (scoped) object calls. For
example, if an object method returns another object and you would like to invoke a
property/method on that object, the following is required:

<CFSET objX = myObj.X>
<CFSET prop = objX.Property>

(That is, the syntax <CFSET prop = myObj.X.Property> will fail.)

Getting Started with COM/DCOM
ColdFusion is an automation (late-binding) COM client. This implies that the COM
object has to support the IDispacth interface, and that arguments for methods and
properties be standard automation types. Since ColdFusion is a typeless language, it
uses the object’s type information to correctly set up the arguments on call
invocations. Any ambiguity in the object’s data-types could lead to unexpected
behavior.

It is important to use server-side COM objects in ColdFusion, that is, they should not
have a graphical user interface. If you invoke an object with a graphical interface in
your ColdFusion application, a window for the component might appear on the Web
server desktop, not on the user’s desktop. This could tie up ColdFusion server threads
and result in further Web server requests not being serviced.

ColdFusion can call Inproc, Local, or remote COM objects. The attributes specified in
the CFOBJECT tag determine which type of object is called.

Requirements for COM

To make use of COM components in your ColdFusion application, you need at least
the following items:

• The Microsoft OLE/COM Object Viewer, available from Microsoft. It is a handy
tool for viewing registered COM objects.

• The COM objects you want to use in your ColdFusion application pages. These
are typically DLL or EXE files. These components should allow late binding,
that is, they implement the IDispatch interface. Object Viewer allows you to
view the object’s class information so that you can properly define the CLASS
attribute for the CFOBJECT tag. It also displays the object’s supported
interfaces, which allows you to discover the properties and methods (for the
IDispatch interface) of the object.

Registering the object

Once you’ve acquired the object you want to use, you may need to register it with
Windows in order for ColdFusion (or anything else) to find it. Some objects may be

Chapter 19: Using CFOBJECT to Invoke Component Objects 329

deployed with their own setup programs that register objects automatically, while
others may require manual registration.

Inproc object servers (*.dll, *.ocx) can be registered manually by using the
"regsvr32.exe" utility using the following form:

regsvr32 c:\path\servername.dll

Local servers (*.exe) are typically registered either by simply starting them or
specifying a command line parameters like:

C:\pathname\servername.exe -register

Finding the component ProgID and methods

Your COM object should provide documentation explaining each of the component’s
methods and the ProgID. With this information, you’re ready to work with the
CFOBJECT tag. If you don’t have documentation, use the Object Viewer to view the
component’s interface.

Using the OLE/COM Object Viewer

The OLE/COM Object Viewer installation installs the executable by default as
\mstools\bin\oleview.exe. You use the Object Viewer to retrieve a COM object’s
Program ID as well as its methods and properties.

Once you’ve installed a COM object, make sure you register it using the regsvr32.exe
utility. Otherwise you won’t find the object in the Object Viewer. The Object Viewer
retrieves all COM objects and controls from the Registry and presents the information
in a simple format, sorted into groups for easy viewing.

By selecting the category and then the component, you can see the Program ID of the
COM object you want to use. The Object Viewer also gives you access to options for the
operation of the object.

330 Developing Web Applications with ColdFusion

To view an object’s properties:

1. Open the Object Viewer and scroll to the object you want to examine.

2. Select and expand the object in the Object Viewer.

3. Right-click the object to view it. If you view the TypeInfo, you’ll see the object’s
methods and properties. Some objects will not have any access to the TypeInfo
area. This is determined when an object is built and by the language used.

Chapter 19: Using CFOBJECT to Invoke Component Objects 331

Creating and Using COM Objects
In the following example, an SMTP mail handling component is created using
CFOBJECT.

<CFOBJECT ACTION=CREATE
NAME=MAILER
CLASS=SMTP.Mailer>

The component needs to be created by ColdFusion before any methods in the
component can be invoked or properties assigned in your application pages. This
sample SMTP component includes a number of methods and properties to perform a
wide range of mail handling tasks.. In the OLE/COM Viewer, methods and properties
may be grouped together, making it a little confusing at first to determine one from the
other.

Our SMTP mail component includes properties such as:

Screen
User
FullName
FromName
FromAddress

You use these properties to define elements of the mail message you want to send. The
SMTP Mailer component also includes a number of methods, such as:

SendMail
AddRecipient
AddCC
AddAttachment

Connecting to COM objects

There are essentially two ways, specified with the ACTION attribute of CFOBJECT, to
connect to COM objects using CFOBJECT:

• The Create method (CFOBJECT ACTION="Create"), which takes a COM object,
typically a DLL, and instantiates it prior to invoking methods and assigning
properties.

• The Connect method (CFOBJECT ACTION="Connect"), which links to an
object that is already running on the server, typically an executable.

In addition to specifying which way to connect to a COM object, you also have to
specify the following with the CONTEXT attribute:

• INPROC — This means an In-Process server object (typically a DLL) that is
running in the same process space as the calling process, such as ColdFusion.

• LOCAL — This is an Out-of-Process server object (typically an EXE) that is
running outside the ColdFusion process space but running locally on the same
server.

332 Developing Web Applications with ColdFusion

• REMOTE — This is also an Out-of-Process server object (also typically an EXE)
that is running remotely on the network. Using REMOTE implies using the
SERVER attribute to identify where the object resides.

Setting properties and invoking methods

The following example, using the sample SMTPMailer COM object, shows how to
assign properties to the mail message you want to send and how to execute
component methods to handle mail messages.

In the example, form variables are used to provide method parameters and properties,
such as the name of the recipient, the desired email address, and so on.

<!--- First, create the object --->

<CFOBJECT ACTION="Create"
NAME="Mailer"
CLASS="SMTPsvg.Mailer">

<!--- Then, use the form variables from the
user entry form to populate a number of properties
necessary to create and send the message. --->

<CFSET Mailer.FromName = #form.fromname#>
<CFSET Mailer.RemoteHost = #RemoteHost#>
<CFSET Mailer.FromAddress = #form.fromemail#>
<CFSET Mailer.Subject = "Testing CFOBJECT">
<CFSET Mailer.BodyText = "#form.msgbody#">
<CFSET Mailer.SMTPLog = "#logfile#">

<!--- Last, use the AddRecipient and SendMail
methods to finish and send the message along --->

<CFSET Mailer.AddRecipient("#form.fromname#","#form.fromemail#")>
<CFSET success=Mailer.SendMail()>

Getting Started with CORBA
ColdFusion supports CORBA through the Dynamic Invocation Interface (DII). As with
COM, the object's type information has to be available to ColdFusion. This implies
that an IIOP compliant Interface Repository (IR) should be running on the network,
and that the object's IDL is registered in the IR.

ColdFusion Enterprise version 4.0 is bundled with deployment software from Inprise
VisiBroker for C++ 3.2. These runtime DLLs are used to invoke operations on object
references made available using the CFOBJECT tag.

A directory for logging output from VisiBroker is created when you first start
ColdFusion Enterprise. This directory is called vbroker\log and its location is
determined as follows:

Chapter 19: Using CFOBJECT to Invoke Component Objects 333

• If VisiBroker is already installed on the server, the log directory is the directory
pointed to by the VBROKER_ADM environment variable.

• If this is a new VisiBroker installation, the log directory is created on the root of
the drive from which ColdFusion Server is started. For example, if ColdFusion is
installed in c:\cfusion or opt/coldfusion (UNIX), then the log directory will
be c:\vbroker\log or /vbroker (UNIX).

• If the creation of the log directory on the root fails, then the directory is created
in the ColdFusion installation directory.

Calling a CORBA Object
In the CFOBJECT tag, several key attributes are required for calling CORBA objects:

• Set the TYPE attribute to CORBA. If no TYPE is specified, COM is assumed.

• The CONTEXT attribute shows how the object reference is obtained. Set the
CONTEXT either to "IOR" for a file containing the object’s unique
Interoperable Object Reference or to "NameService".

• If the CONTEXT attribute is set to IOR, set the CLASS attribute to the file
containing the stringified version of the IOR. ColdFusion must be able to read
this IOR file at all times, so it should be local to the server or on the network in
an accessible location.

• If the CONTEXT attribute is set to a NameService, the CLASS attribute must
include a period-delimited name such as Allaire.Department.Dev. Currently
ColdFusion can only resolve objects registered in VisiBrokers’s Naming Service.
This will change when ORB vendors implement the CORBA 3.0 specification.
Make sure that the NamingService (NS) is brought-up with a default
NamingContext. The server implementing the object should bind to the default
context, and register the appropriate name. ColdFusion also binds to the
default context to resolve the name.

• Set the NAME attribute to the name your application uses to call the object’s
operations and attributes.

See the CFML Language Reference for the complete CFOBJECT syntax.

Declaring structures and sequences

Once the object is created, attributes and operations on the object can be invoked
using the syntax outlined in the above sections. In addition, ColdFusion also supports
the use of complex types such as structures and sequences. For structures, use
ColdFusion structures. For sequences, use ColdFusion arrays.

Example

The IDL for an object

struct SimpleStruct

334 Developing Web Applications with ColdFusion

{
 short s;
 long l;
 float d;
};

struct NestedStruct
{
 SimpleStruct f;
 char c;
 string s;
};

typedef sequence<long, 5> BLongSequence;

interface SomeObject {
 short SomeMethod(in NestedStruct inStruct, in BlongSequence inSeq);

};

The applicable ColdFusion code

<!—Declare a couple of structures -‡
<CFSET x = StructNew()>
<CFIF IsStruct(x)>

<CFSET temp=StructInsert(x,"s",3)>
<CFSET temp=StructInsert(x,"l", 256)>
<CFSET temp=StructInsert(x,"d", 93.45)>

</CFIF>

<CFSET NestedStruct = StructNew()>
<CFIF IsStruct(xx)>

<CFSET temp=StructInsert(NestedStruct,"f",x)>
<CFSET temp=StructInsert(NestedStruct,"c", 'b')>
<CFSET temp=StructInsert(NestedStruct,"s", " bu-bu")>

</CFIF>

<!—Declare a sequence -‡
<CFSET FixedSeq = ArrayNew(1)>

<CFLOOP INDEX="LoopCount" FROM="1" TO="5">
<CFSET FixedSeq [LoopCount] = #LoopCount#>

</CFLOOP>

<CFSET retA=obj.SomeMethod(NestedStruct, FixedSeq)>

Exception handling

Exceptions thrown by the CORBA object methods can be caught with the CFTRY and
CFCATCH tags. However, no information can be extracted from the exception object in
this release.

Chapter 19: Using CFOBJECT to Invoke Component Objects 335

Calling Java Objects
The CFOBJECT tag can call any Java class that’s available on the Class Path specified in
the ColdFusion Administrator. For example:

<CFOBJECT Type="Java" Class="MyClass" Name = "myObj">

Although this loads the class, it doesn’t create an instance object. Static methods and
fields are accessible after the call to CFOBJECT.

To call the constructors explicitly, use the init method with the appropriate
arguments. For example:

<CFSET ret=myObj.init(arg1, arg2)>

If you call a public method on the object without first calling the init method, the
result will be an implicit call to the default constructor. Arguments and return values
can be any valid Java type, for example simple arrays and objects. ColdFusion does the
appropriate conversions when strings are passed as arguments, but not when they are
received as return values.

Calling EJBs

To call an EJB, you use CFOBJECT to create and call all the appropriate objects. In the
following example, it is assumed that the Weblogic JNDI is used to register and find
EJBHome instances:

<CFOBJECT ACTION="Create"
TYPE="Java"
CLASS="weblogic/jndi/Environment"
NAME="wlEnv">

<CFSET ctx=wlEnv.getInitialContext()>
<CFSET ejbHome=ctx.lookup("statelessSession.TraderHome")>
<CFSET trader=ejbHome.Create()>
<CFSET value=trader.shareValue(20,55.45)>
<CFOUTPUT>

Share value=#value#
</CFOUTPUT>

<CFSET value=trader.remove()>

In this example, the CFOBJECT tag creates the Weblogic Environment object, which is
then used to get the InitialContext. The context object is used to look up the EJBHome
interface. The call to create() results in getting an instance of stateless session EJB.

Exception handling

Exceptions thrown by Java object methods can be caught by the CFTRY and CFCATCH
tags. ColdFusion checks to see if the exceptin thrown is the method exception and
stores the class name of the eception in the message field of the CFCATCH variable.

336 Developing Web Applications with ColdFusion

C H A P T E R 2 0

Chapter 20 Extending ColdFusion Pages
with CFML Scripting

ColdFusion offers a server-side scripting language, CFScript, that provides
ColdFusion functionality in script syntax. This JavaScript-like language gives
developers the same control flow, but without tags.

This chapter describes the CFScript language’s functionality and syntax.

Contents

• About CFScript ... 338

• The CFScript Language.. 339

• Interaction of CFScript with CFML... 343

338 Developing Web Applications with ColdFusion

About CFScript
The ColdFusion server-side scripting language, CFScript, offers ColdFusion
functionality in script syntax.

This JavaScript-like language offers the same control flow, but without tags. CFScript
regions are bounded by <CFSCRIPT> and </CFSCRIPT>. You can use ColdFusion
expressions, but not CFML tags, inside a CFScript region.

See the CFML Language Reference for more information about CFML expressions.

CFScript example

The following example shows how a block of CFSET tags can be rewritten in CFScript:

Using CFML tags

<CFSET employee=StructNew()>
<CFSET employee.firstname=FORM.firstname>
<CFSET employee.lastname=FORM.lastname>
<CFSET employee.email=FORM.email>
<CFSET employee.phone=FORM.phone>
<CFSET employee.department=FORM.department>

<CFOUTPUT>About to add #FORM.firstname# #FORM.lastname#
</CFOUTPUT>

Using CFScript

<CFSCRIPT>
employee=StructNew();
employee.firstname=FORM.firstname;
employee.lastname=FORM.lastname;
employee.email=FORM.email;
employee.phone=FORM.phone;
employee.department=FORM.department;
WriteOutput("About to add " & FORM.firstname & " " &

FORM.lastname);
</CFSCRIPT>

The WriteOutput function appends text to the page output stream. Although you can
call this function anywhere within a page, it is most useful inside a CFSCRIPT block.
See the CFML Language Reference for information on the WriteOutput function.

Supported statements

CFScript supports the following statements:

• if-else

• while

• do-while

Chapter 20: Extending ColdFusion Pages with CFML Scripting 339

• for

• break

• continue

• for-in

• switch-case

For more information

The following JavaScript references may be useful in understanding the concepts and
control flow statements in CFScript:

• Netscape’s JavaScript Guide

• Netscape’s JavaScript Reference

• David Flanagan’s JavaScript: The Definitive Guide, published by O’Reilly &
Associates, 1996, 1998, http://www.oreilly.com.

The CFScript Language
This section explains the syntax of the CFScript language.

Statements

Note that in CFScript, semicolons define the end of a statement. Line breaks in your
source are insignificant. You can enclose multiple statements in curly braces:

{ statement; statement; statement; }

The following statements are supported in CFScript:

Assignment: lval = expr ;

Note that lval can be a simple variable, an array reference, or a member of a structure.

x = "positive"; /y = x; a[3]=5;/ structure.member=10;

CFML expression: expr ;

StructInsert(employee,"lastname",FORM.lastname);

For more information on ColdFusion expressions see the CFML Language Reference .

if-else: if(expr) statement [else statement] ;

if(score GT 1)
result = "positive";

else
result = "negative";

340 Developing Web Applications with ColdFusion

for loop: for (init-expr ; test-expr ; final-expr) statement ;

Note that init-expr and final-expr can be one of the following:

• a single assignment expression, for example, x=5 or loop=loop+1

• any ColdFusion expression, for example, SetVariable("a",a+1)

• empty

The test-expr can be one of the following:

• any ColdFusion expression, for example, A LT 5, loop LE x, or Y EQ "not found"
AND loop LT end

• empty

Here are some examples of for loops:

// Multiline for statement
for(Loop1=1;

Loop1 LT 10;
Loop1 = Loop1 + 1);
a[loop1]=loop1;

// Complete for loop in a single line.
for(loop=0; loop LT 10; loop=loop+1)arr[loop]=loop;

// Uses braces to note the code to loop over
for(; ;)
{

indx=indx+1;
if(Find("key",strings[indx],1))

break;
}

while loop: while (expr) statement ;

// Use braces to note the code to loop over
a = ArrayNew(1);
while (loop1 LT 10)
{
 a[loop1] = loop1 + 5;
 loop1 = loop1 + 1;
}

a = ArrayNew(1);
while (loop1 LT 10)
{

a[loop1] = loop1 + 5;
loop1 = loop1 +1;

}

Chapter 20: Extending ColdFusion Pages with CFML Scripting 341

do-while loop: do statement while (expr) ;

// Complete do-while loop on a single line
a = ArrayNew(1);
do {a[loop1] = loop1 + 5; loop1 = loop1 + 1;} while (loop1 LT 10);

// Multiline do-while loop
a = ArrayNew(1);
do
{
 a[loop1] = loop1 + 5;
 loop1 = loop1 + 1;
}
while (loop1 LT 10);

switch-case: switch (expr) {case const-expr : statement break ; default : statement }

In this syntax, const-expr must be a constant (i.e., not a variable, a function, or other
expression). Only one default statement is allowed. There can be multiple case
statements. You cannot mix Boolean and numeric case values in a switch statement.

No two constants may be the same inside a switch statement.

switch(name)
{

case "John":
{

male=true;
found=true;
break;

}
case "Mary":
{

male=false;
found=true;
break;

}
default:
{

found=false;
break;

}
} //end switch

for-in loop: for (variable in collection) statement ;

Note that variable can be any ColdFusion identifier, and collection must be the name
of an existing ColdFusion structure.

for (x in mystruct) mystruct[x]=0;

342 Developing Web Applications with ColdFusion

continue: skip to next loop iteration

for (loop=1; loop LT 10; loop = loop+1)
{

if(a[loop]=0) continue;
a[loop]=1;

}

break: break out of the current switch statement or loop

for(; ;)
{

indx=indx+1;
if(Find("key",strings[indx],1))

break;
}

Expressions

CFScript supports all CFML expressions. CFML expressions include operators (such as
+, -, EQ, etc.) as well as all CFML functions.

See the CFML Language Reference for information about CFML operators and
functions.

Note You cannot use CFML tags in CFScript.

Variables

Variables can be of any ColdFusion type, such as numbers, strings, arrays, queries, and
COM objects. You can read and write variables within the script region.

Comments

Comments in CFScript blocks begin with two forward slashes (//) and end at the line
end. You can also enclose CFScript comments between /* and */. Note that you cannot
nest /* and */ inside other comment lines.

Differences from JavaScript

While CFScript is based on JavaScript, there are some key differences you’ll want to
note:

• CFScript uses ColdFusion expressions, which are neither a subset nor a
superset of JavaScript expressions. For example, there is no < operator in
CFScript.

• No user-defined functions or variable declarations are available.

Chapter 20: Extending ColdFusion Pages with CFML Scripting 343

• CFScript is case-insensitive.

• All statements end in a semi-colon, and line breaks in your code are
insignificant.

• In CFScript, assignments are statements, not expressions.

• Some implicit objects are not available, such as Window and Document.

Note CFScript is not directly exportable to JavaScript. Only a limited subset of
JavaScript can run inside CFScript.

Reserved words

In addition to the names of ColdFusion functions and words reserved by ColdFusion
expressions (such as NOT, AND, IS, and so on), the following words are reserved in
CFScript. Do not use these words as variables or identifiers in your scripting code:

• for

• while

• do

• if

• else

• switch

• case

• break

• default

• in

• continue

Interaction of CFScript with CFML
You enclose CFScript regions inside <CFSCRIPT> and </CFSCRIPT> tags. No other
CFML tags are allowed inside a CFSCRIPT region.

A CFSCRIPT tag block must contain at least one CFScript statement, and comments
are not considered statements. If there are no statements, you should comment out
the entire CFSCRIPT block (including its enclosing <CFSCRIPT> and </CFSCRIPT>
blocks) with CFML comment tags.

You can read and write ColdFusion variables inside CFScript, as shown in this
example:

344 Developing Web Applications with ColdFusion

<CFOUTPUT QUERY="employees">

<CFSCRIPT>
//‘testres' is a column in the "employees" query

if(testres EQ 1)
result="positive";

else
result="negative";

</CFSCRIPT>

<!--- The variable result takes its
value from the script region --->

Test for #name# is #result#.

</CFOUTPUT>

C H A P T E R 2 1

Chapter 21 Accessing the Windows NT
Registry

The CFREGISTRY tag gives you programmatic access to the Windows Registry.

Contents

• Overview of Registry Access in ColdFusion ... 346

• Getting Registry Values .. 346

• Setting Registry Values... 347

• Deleting Registry Values .. 348

346 Developing Web Applications with ColdFusion

Overview of Registry Access in ColdFusion
ColdFusion includes the CFREGISTRY tag, which allows you to get, set, and delete
registry values. The registry is a database that Windows uses to maintain hierarchical
information about users, hardware, and software. Under UNIX, ColdFusion includes
functionality that emulates the registry. It includes keys and values:

• Keys can contain either values or other keys. A key and the keys/values below it
are referred to as a branch.

• Values are conceptually split into two parts: value name and value data.

The registry contains information critical to your system. Be very careful when
modifying and deleting registry values. Depending on expected usage, you might
consider using the Basic Security tab of the ColdFusion Administrator to restrict the
CFREGISTRY tag (this is especially true for ISPs, whose server may host a large and
diverse set of developers).

Getting Registry Values
You can use CFREGISTRY with the GETaction to retrieve one entry, or the GETALL
action to retrieve multiple keys and values from the registry.

Getting all keys and values

Use CFREGISTRY with the GETALL action to return all registry keys and values defined
in a branch. You can access these values as follows:

• CFREGISTRY creates a record set that contains Entry, Type, and Value, which
you can access through tags such as CFOUTPUT. To fully qualify these variables
use the record set name, as specified in the NAME attribute of the CFREGISTRY
tag.

• If #Type# is a key, #Value# is an empty string.

• If you specify Any for TYPE, GetAll also returns any binary registry values. For
binary values, the #Type# variable contains UNSUPPORTED and #Value# is
blank.

You can optionally specify the SORT attribute to sort the record set based on the
contents of the Entry, Type, and Value columns. Specify any combination of
columns in a comma separated list. ASC (ascending) or DESC (descending) can
be specified as qualifiers for column names. ASC is the default. For example:

Sort="type ASC, entry ASC"

To get all values for a specified registry key:

1. Code a CFREGISTRY tag with the GETALL action, specifying the branch, type, and
record set name.

Chapter 21: Accessing the Windows NT Registry 347

<CFREGISTRY ACTION="GetAll"
BRANCH="HKEY_LOCAL_MACHINE\Software\Microsoft\Java VM"
TYPE="Any" NAME="RegQuery">

2. Access the record set (this example uses the CFTABLE tag):

<H1>CFREGISTRY ACTION="GetAll"</H1>
<CFTABLE QUERY="RegQuery" COLHEADERS

HTMLTABLE BORDER="Yes">
<CFCOL HEADER="Entry" WIDTH="35"

TEXT="#RegQuery.Entry#">
<CFCOL HEADER="Type" WIDTH="10"

TEXT="#RegQuery.Type#">
<CFCOL HEADER="Value" WIDTH="35"

TEXT="#RegQuery.Value#">
</CFTABLE>

Getting a specific value

Use CFREGISTRY with the GET action to access a single registry value and store it in a
ColdFusion variable.

To get a specific registry value:

1. Code a CFREGISTRY tag with the GET action, specifying the branch, the entry to
be accessed, the type (optional), and a variable in which to return the value.

<CFREGISTRY ACTION="Get"
BRANCH="HKEY_LOCAL_MACHINE\Software\Microsoft\Java VM"
ENTRY="ClassPath" TYPE="String" Variable="RegValue">

2. Access the variable:

<H1>CFREGISTRY ACTION="Get"</H1>
<CFOUTPUT>
<P>
Java ClassPath value is #RegValue#
</CFOUTPUT>

Setting Registry Values
Use CFREGISTRY with the SET action to add a registry key, add a new value, or update
value data. CFREGISTRY creates the key or value if it does not exist.

To set a registry value:

Call the CFREGISTRY tag with the SET action, specifying the branch, the entry to set,
the type of data contained in the value, and the value data. This example assumes a
session variable named LastFileName:

<CFREGISTRY ACTION="Set"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref"
ENTRY="LastCFM01" TYPE="String"
VALUE="#SESSION.LastFileName#">

348 Developing Web Applications with ColdFusion

If the specified value does not exist, ColdFusion creates it. If the value already exists,
ColdFusion updates the value data.

To create a registry key:

Call the CFREGISTRY tag with the SET action, specifying the branch, the entry to set,
specifying KEY for the TYPE attribute:

<CFREGISTRY ACTION="Set"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref"
ENTRY="Temp" TYPE="Key">

Deleting Registry Values
You can use CFREGISTRY with the DELETE action to delete registry keys and values.

Note Be careful when using the DELETE action; if you delete a key,
CFREGISTRY also deletes all values and subkeys defined beneath the key.

To delete a registry value:

Call the CFREGISTRY tag with the DELETE action, specifying the branch and value
name:

<CFREGISTRY ACTION="Delete"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref"
ENTRY="LastCFM01">

To delete a registry key:

Call the CFREGISTRY tag with the DELETE action, specifying the branch of the key to
be deleted (including the key name):

<CFREGISTRY ACTION="Delete"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref">

Index

A
Accessing

collections 181
Action pages 34
Active Server Pages 242
Advanced security

implementing 265
Allaire xxiv

contacting xxiv
headquarters xxiv
sales xxv
technical support xxiv

Ancestor tags 77
AND operator 23, 40
Application Framework, Web

custom error pages 93
Application Framwork 184
Application pages 6

creating 10
description of 6
errors 93
naming 3, 14
processing of 7
saving 11
viewing 11
viewing source code of 11

Application servers
data exchange across 243

Application variables
lifetime of 196
using 196

Application.cfm file 184
application security 271
application-level settings 187
creating 187

Application-level settings 184
Applications

directory structure of 185
error handling in 185
naming 188
root directory of 185

storing variables 196
Arrays 104

2-dimensional 104
3-dimensional 104
adding data to 106
adding elements to 106, 107
associative 113
creating 105
dimensions 105
elements 105
functions 111
index of 105
multidimensional 106
populating 108
referencing elements in 107
resizing 106

Attaching
MIME files 210

Attribute values
passing 74

Attributes
checking 91
custom tags 74

Authentication
example 271

B
Binary files

saving 233
Borland

dBase 18
Browsers 11

email 212
Building

search interfaces 159

C
C++ CFXs

implementing 289
importing 292

C++ development
environment 276

Caching
FTP connections 241

Catching security
exceptions 268

CCFXException class 294
CCFXQuery

AddRow 296
GetColumns 296
GetData 297
GetName 297
GetRowCount 297
SetData 298
SetQueryString 299
SetTotalTime 299

CCFXRequest
AddQuery 300
AttributeExists 301
CreateStringSet 301
Debug 302
GetAttribute 302
GetAttributeList 302
GetCustomData 303
GetQuery 303
GetSetting 304
ReThrowException 304
SetCustomData 305
SetVariable 306
ThrowException 306
Write 307
WriteDebug 307

CCFXStringSet
AddString 308
GetCount 309
GetIndexForString 309
GetString 310

CFABORT tag 185
CFAPPLET tag 125, 144
CFAPPLICATION tag 191
CFASSOCIATE tag 78

350 Developing Web Applications with ColdFusion

CFAUTHENTICATE tag 185, 266
example 270
syntax 266
using SETCOOKIE 266

CFCATCH tag 95
CFCONTENT tag 239
CFDIRECTORY tag 239
CFELSE tag 42, 53
CFELSEIF tag 53
CFERROR page 93
CFERROR tag 185
CFEXIT tag 84, 185
CFFILE tag 220, 237
CFFORM tag 124
CFFTP tag 239
CFGRID tag 135
CFHTTP tag 78, 232
CFHTTPPARAM tag 78, 236
CFID 191
CFIF tag 40, 53
CFINCLUDE 187
CFINCLUDE tag 72
CFINDEX tag 157
CFINPUT tag 127
CFINSERT tag 60
CFLDAP tag 162, 252
CFLOCATION tag 192
CFLOCK tag 198, 200

nesting 199
CFLOOP tag 84
CFMAIL tag 211
CFMAILPARAM tag 210
CFML 6, 10

extending 276
CFMODULE tag 73
CFOBJECT tag 239
CFOUTPUT tag 12, 20, 46, 237, 327
CFPARAM tag 51, 191
CFPOP tag 162, 211

query results 164
CFQUERY tag 19, 46, 162
CFQUERYPARAM tag 52
CFRETHROW tag 95
CFSEARCH tag 150
CFSELECT tag 124
CFSET tag 12, 327
CFSLIDER tag 124
CFTEXTINPUT tag 127
CFTOKEN 191
CFTREE tag 78, 125

URLs in 134
CFTREEITEM tag 78, 129
CFTRY tag 100
CFUPDATE tag 65

CFWDDX tag 241
CFX tags 276
CFXs 199, 276

calling 284
compiling 277
creating in C++ 277
creating in Java 279
debugging 277, 286
distributing 291
Java 278
registering 289
samples 276, 278
tag wizard 277
testing 284

CGI 232
results 237

Checkboxes
creating dynamic 47
errors 36

Checking syntax 91
Class loading 282
Class path 326

configuring 279
Classes

debugging 286
Client state management 184

clustering 190
enabling 188
using 190

Client variables 191
creating 191
deleting 192
lists of 192
storage 189
using 191

Clustering
client state management 190

Code
maintaing 72
protecting 198
validating 91

ColdFusion
application pages 6
as desktop application 238
components of 5
description of 3
developer community xxi
developer resources xxi
development environment 6
documentation, about xxii
editions of 3
features 3
support for LDAP 252

ColdFusion Administrator 6, 18, 19

ColdFusion Markup Language See
CFML

ColdFusion Server 6
configuring 6
description of 7
installing 6

ColdFusion site
searching 150

ColdFusion Studio 6, 10, 159
Collection

creating 153
Collections

access to 181
creating 154
indexing 157
managing 180
populating 157, 162
searching 150

Columns in tables 16
COM 242, 326
Comments

CFML 14
HTML 14

Common problems 91
Component objects

invoking 327
Conditions in queries 39
Cookies 184, 189, 190, 191, 236
CORBA 326
Creating

Application.cfm 187
arrays 105
error application pages 93
Java CFXs 279
queries 234

Creating collections
Administrator 154
CFCOLLECTION 154

Criteria 40
for searching 39
multiple 39
multiple tables 40

Custom C++ tags
CCFXException class 294
CCFXQuery class 295
CCFXRequest class 299

Custom error page 93
Custom exception types 102
Custom tags 73, 199, 276

ancestor 77
attributes 74
calling 73
children 77
creating 73

Index 351

descendants 77
distributing 291
downloading 73
encrypting 86
executing 82
execution modes 83
installing 85
local 85
location of 73
managing 85
naming 73
nesting 77
parent 77
restricting access to 86
shared 85
using existing 73

D
Data

converting to JavaScript
Object 245

exchanging 241
passing 78
selecting 30
transferring from browser to

server 246
Data sources 2, 7, 18

adding 19
connecting to 20
LDAP 7
naming 19
native database drivers 7
ODBC 7
OLE-DB 7
types of 16

Database design 2
Database exceptions 99
Database Management System See

DBMS 17
Databases

about 16
deleting data from 66
inserting data into 61
retrieving data from 20
updating 62

DATASOURCE attribute 21
DBMS 17
Deadlocks 199
Debug information

for a query 90
outputting 286
per page 90

Debug settings 90
Debugging

custom pages and tags 93
Java CFXs 286

Declaring arrays 105
Default values

of variables 52
DELETE statement 2, 22
Deleting

data 66
email 216
LDAP entries 261
registry values 348

Delimiters 234
Development environment

C++ 276
Java 279

Directories
indexing 150
information about 229

Directory structures 185
Displaying

query results 25, 37
text 12
variables 12

Distinguished name 251
Distributing CFXs 291
Documentation

conventions xxiv
Double quotes 51
Drop-down list boxes 143

populating 144
Dynamic parameters

SQL 53
Dynamic SQL 53

E
Editing

tools 10
Email

attachments 215
customizing 209
deleting 216
error logging 211
form-based 208
handling POP 213
headers 213
indexing 150, 164
multiple recipients 209
query-based 208
receiving 211
sending 206
undelivered 211

Embedding
Java applets 146

Common Object Request Broker
Architecture 326

Component Object Model 326
Custom tags 276
Lightweight Directory Access

Protocol 250
Encrypting

application pages 266
Error messages 90, 93
Error pages

customizing 93
Errors

creating application pages 93
custom pages 93
input validation 93, 94

Exception handling 94
strategies 100

Exception information 97
Exception types 102
Exceptions

database 99
expressions 99
locking 99
missing files 100
recoverable 95

Exclusive locking
avoiding deadlocks 199
examples 200

Existence of variables 51
Expression exceptions 99
Expression syntax 166
Extending CFML 276

F
Fields 16
File

uploading 220
Files

copying 226
deleting 226
moving 226
naming 14, 222
on server 220
reading 227
renaming 226
types 223
updating 198, 199
uploading 220
writing 227

Finding
similar query results 39

Footers
including 72

Form controls

352 Developing Web Applications with ColdFusion

CFFORM 124
Form fields

required 68
Form variables

in queries 35
naming 34
processing 34
referring to 34
testing 36

Formatting
data items 38
query results 38

Forms 30
checkboxes 47
creating 55, 61
creating with CFFORM 124
deleting data 66
designing 34
drop-down list boxes 143
dynamically populating 46
HTML 30
inserting data 60
Java applets in 144
multiple select lists 49
slider bars 142
text entry boxes 142
tree controls 129
updating data 63
validating data in 68

FROM clause 21, 22
FTP 239
Functions

structures 120

G
Generated content

accessing 84
Generating custom error messages

(CFERROR) 93
Get method 232
Getting registry values 346
GIF format 223
Grids 135
GROUP BY clause 22

H
Headers

including 72
Hidden fields 68
HTML 2, 10

I
Implementing

C++ CFXs 289

Java CFXs 289
Importing

C++ CFXs 292
Java CFXs 292

Indexing
directories 150
email 150, 164
methods 157
query results 150
summary of 159
Web sites 150

Indexing collections 157
Administrator 157
CFINDEX 158

Input validation
errors 93

INSERT statement 2, 22, 60
Inserting data 61
Invoking

component objects 327
methods in CFOBJECT 332

IsAuthenticated function 267
IsAuthorized function 267
IsDefined 51

J
Java 242
Java applets 125

embedding 146
embedding in forms 144
form variables 147
registering 145

Java CFXs
class loading 282
implementing 289
importing 292
life cycle of 283

Java objects 326
JavaScript 242

object 245
Joining tables 40
JPEG format 223

L
LDAP 250

attributes 251
copying ODBC data 252
deleting entries 261
description of 250
directory schema 253
distinguished name 251
entry 251
key terms 252
query results 163

querying directories 254
scope 251
search filters 254
updating directories 256
viewing directory schema 253

LIKE operator 39
Lists of values 47
Locking exceptions 99

M
Managing

collections 150, 180
custom tags 85

Microsoft
Access 18
Excel 18
SQL Server 18

Missing files
exceptions 100

Modifiers 178
Modifying

shared data 199
Moving

data across the Web 241
Multiple tables

searching 40

N
NAME attribute 21
Naming variables 76
Nesting

CFLOCK 199
custom tags 77

NOT operator 23

O
Objects

COM 326
Java 326
query 282
Request 280
Response 280

ODBC 7
drivers 18

OLE-DB 7
OnRequestEnd.cfm 185
Open Database Connectivity See

ODBC 18
Operataors

evidence 172
Operators

concept 177
modifiers of 178
proximity 172

Index 353

relational 173
score 177
searching 171
SQL 23

OR operator 23
ORDER BY clause 22

P
Parameters

dynamic SQL 53
Parent tags 77
Pattern matching 39
Perl 242
POP 7
Populating arrays 108

ArraySet 108
CFLOOP 108
from queries 110
nested loops 109

Populating collections 157
Post method 232, 236
Pound signs

using 13
Protecting

code 198
data 198

Punctuation
searching 170

Python 242

Q
Queries

building 21, 24
building graphically 21
creating 234
joining tables 40
multiple conditions 39
using form variables 35

Query expressions 165
explicit 166
simple 166

Query object 282
Query parameters

testing 52
Query results 42

about 27
CFPOP 164
columns in 27
current row 27
displaying 25
indexing 150, 162
layout 37
LDAP 163
no records 42

records returned 27
Querying

LDAP directories 254
Quotes

using 21, 51

R
RDN (Relative Distinguished

Names) 251
Receiving

email 211
Records 16
Records returned 42
Referencing elements in arrays 107
Referrals

LDAP 251
Registering

CFXs 289
COM objects 328

Registry 189
client variables 193
values 346

Relational databases 2
Remote Development Services (RDS)

Security 264
Request object 280
Request scope 76
Reset buttons 31
Response object 280
Retrieving

binary files 232
files 239
text 232

Reusing code 72
custom tags 73

Rows in tables 16

S
Sample CFXs 276, 278
Saving

binary files 233
Web pages 233

Schema
LDAP directory 253
viewing 253

Scope 74
application 184
LDAP 251

Search criteria 39, 55
multiple 40

Search engines
creating 151

Search expressions
composing 168

Search interfaces
building 159

Search modifiers 179
Searching

collections 150
file types 151
full-text 150
international languages 152
multiple tables 40
numeric values 48, 50
operators 171
punctuation 170
results of 162
special characters 168, 170
string values 48, 50
Web sites 150
wildcards 170

Security 238, 263
application security 263
authenticating users 267
authentication example 270
authorization example 270
authorizing users 267
catching exceptions 268
CFAUTHENTICATE tag 267
CFIMPERSONATE Tag 269
encrypting strings 266
example 271
example of IsAuthorized 272
getting started 265
implementing 265
IsAuthenticated function 267
IsAuthorized function 267
overview 265

SELECT statement 2, 21, 22
Sending

email 206
HTML 211
SMTP mail 207

Serialization 244
Server

uploading files 220
Servers

remote 232, 239
retrieving from 232

Session
definition of 194

Session variables 195
using 194

SETCOOKIE in CFAUTHENTICATE 266
Setting

properties 332
registry values 347

Settings

354 Developing Web Applications with ColdFusion

application-level 184
Shared data

modifying 199
Single quotes 21, 51

in form field values 49
using 21

Slider bar controls 142
SMTP 206
Special characters

searching 170
SQL 2, 20, 21

clauses 22
dynamic 53, 56
dynamic parameters 53
INSERT statement 61
non-standard 23
operators 23
single quotes in 49, 51
statements 22
syntax elements 22
text literals in 21
UPDATE statement 62
WHERE clause 35

SQL Server 18
SSL 238

export laws 238
standard 191
Structured Query Language See SQL
Structures 113

adding data to 114
copying 116
creating 114
deleting 116
finding information in 115
functions 120
information about 115
looping through 119
passing tag arguments 81

Submit buttons 31
Summary

indexing 161

Syntax
checking 91
errors 92
expressions 166

T
Tag context information 98
TCP network directory services 252
Technical support, contacting xxiv
Testing

query parameters 52

Text
displaying 12

Text control 31
Text files

column headings 234
creating queries from 234
delimiters 234

Time zone processing 243
Transactions, secure 238
Transferring data

from browser to server 246
Tree controls

structuring 132
Troubleshooting 91

U
UPDATE statement 2, 22
Updating

LDAP directories 256
Updating data 62
Updating files 198, 199
Uploading files 220
User authentication

CFAUTHENTICATE tag 266, 269
example 271
IsAuthenticated function 267

Users
keeping track of 184

V
Validating

code 91
form attributes 126
form input 132
JavaScript functions 127
user input 68

Validation
error handling 127

Variables
application 184, 187, 193, 196
caching 193
client 184, 189
default 51, 52, 197
defining 12
displaying 12, 13
formatting 38
forms 30
naming 76
passing 232, 237
processing 30
scope 13, 194
sending 236
session 193, 195
testing 52, 68

testing for existence 51
types of 13

Verity 150
Viewing directory schema, LDAP 253

W
WDDX 241, 244
Web Distributed Data Exchange 241
Web pages

dynamic 16
saving 233
static 16

Web root
directory 11
IP address of 11
localhost 11

Web server
security 185

Web site
Allaire xxi
searching 150

Web sites
indexing 150

WHERE clause 2, 22, 35
Wildcards 170

in searching 39

X
XML 241

deserialized 245

