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A Classification of
Visval Representations

hy do we often prefer glancing at a graph to studying a table of numbers? What
might be a better graphic than either a graph or table for seeing how a biologi-
cal process unfolds with time? To begin to answer these kinds of questions we
examine the cognitive structure of graphics and report a structural classification
of visual representations.

McCormick, DeFant, and Brown [16] define visualization as “the study of
mechanisms in computers and in humans which allow them in concert to per-
ceive, use, and communicate visual information.” Thus, visualization includes
the study of both image synthesis and image understanding. Given this broad
focus, it is not surprising that visualization spans many academic disciplines,
scientific fields, and muldple domains of inquiry. However, if visualization is to
continue to advance as an interdisciplinary science, it must become more than
a grab bag of techniques for displaying data. Our research focuses on classifying
visual information. Classification lies at the heart of every scientific field.
Classifications structure domains of systematic inquiry and provide concepts for
developing theories to identify anomalies and to predict future research needs.

Extant taxonomies of graphs and images can be characterized as either func-
tional or structural. Functional taxonomies focus on the intended use and pur-
pose of the graphic material. For example, consider the functional classification
developed by Macdonald-Ross [14]. One of the main categories is technical dia-
grams used for maintaining, operating, and troubleshooting complex equip-
ment. Other examples of functional classifications can be found in Tufte [22]. A
functonal classification does not reflect the physical structure of images, nor is
it intended to correspond to an underlying representation in memory [1].

In contrast, structural categories are well learned and are derived from exem-
plar learning. They focus on the form of the image rather than its content.
Rankin [18] and Bertin [2] developed such structural categories of graphs.
Rankin used the number of dimensions and graph forms to determine his clas-
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sification of graph types. Major cate-
gories in this scheme include rectilin-
ear cartesian coordinate graphs, polar
coordinate graphs, bar graphs, line
graphs, matrix diagrams, trilinear
charts, response surfaces, topographic
charts, and conversion scales.

We adopt the view that visual rep-
resentations are data structures for
expressing knowledge [11, 19]. As
such, visual representations can facili-
tate problem-solving and discovery
by providing an efficient structure for
expressing the data. Cognitive effi-
ciency results when perceptual infer-
ences replace arduous cognitive com-
parisons and computations. Since the
primary advantage of visual informa-
tion is that the representation con-
veys the data structure directly, we
chose to develop a structural classifi-
cation.

Few previous taxonomies and clas-
sification schemes for visual represen-
tations are based on experimental
data; most rely instead simply on the
author’s intuitions. While these intui-
tions have yielded valuable insights,
empirical work is required to dis-
cover and elaborate the basis on
which people organize visual infor-
mation. Our research focuses on how
people classify visual representations
into meaningful, hierarchically struc-
tured categories.

In Lohse et al. [12], we began an
exploratory research program aimed
at classifying visual information. Our
classification was based on subjects’
ratings of the visual similarity be-
tween visual representations, and we
identified six basic categories of visual
representations:  graphs, tables,
maps, diagrams, networks, and icons.
In addition, we tentatively identified
two dimensions that distinguish these
clusters. One dimension suggested
that a graphic could express either
continuous or discrete information,
while the second dimension sug-
gested that some visual representa-
tions are more efficient than others
for conveying information.

Our second research study [13]
systematically examined the effect of
graphic arts training on the classifica-
tion of visual representations. In that
study, subjects without graphic arts
training classified graphics into the
same groups found in [12], while

those with graphics arts training clas-
sified them into slightly different
groups. This difference in classifica-
tion resulted from the influence of
the color, form, pattern, and overall
shape of the stimuli on the graphic
artists’ similarity judgments.

In the current study we confirm
the basic categories from these initial
investigations and construct a classifi-
cation of visual representations. Spe-
cifically, we identify features that
characterize high-level categories of
visual representations. For instance,
what characteristics distinguish maps
from diagrams? The results describe
the attributes that people may use to
judge similarity among visual repre-
sentations. Through an understand-
ing of the taxonomic relationships
among a broad range of graphics, we
hope to help designers decide how to
represent various kinds of informa-
tion, as well understand the limita-
tions of different visual representa-
tions for conveying certain types of
information.

First, we describe our data collec-
tion methods for ratings of graphics
on 10 scales and sortings of these
graphics. Next, we present the results
of our analysis of this data using sev-
eral multivariate analysis techniques.
Then, we discuss the 11 categories of
visual representations that emerged
from the classification, describing the
characteristics of each. After describ-
ing some anomalies that have impor-
tant implications for the design of
graphics, we propose directions for
future classification research as well
as suggestions for the human-
computer interface for visualization
tools.

Methods

Materials. The 60 graphical items
shown in Figure 1 were used in this
study. Forty of these items were those
used in our earlier work [12, 13]. The
original 40 items were selected to be
as representative as possible within
the domain of static, two-dimensional
graphic representations. To insure
adequate variation, we consulted
popular books on graphics [2, 22]. An
additional 20 items expanded under-
represented categories of graphics as
identified by our multidimensional
scaling solution [12] and by com-

ments from reviewers of our previous
studies [12, 13].

Subjects. Sixteen subjects were re-
cruited from the students and staff of
the University of Michigan. Half of
the subjects had a high degree of
knowledge about graphic design, as
these subjects either had a master’s
degree in Fine Arts or were currently
enrolled in a Master of Fine Arts pro-
gram. The remaining eight subjects
were all currently enrolled graduate
students who had no special training
in art or graphics. Subjects were paid
$20 for participating in the study.
(Due to experimenter error, the sort-
ing data for subject 12 was unusable;
this subject was removed from all sub-
sequent analyses.)

Procedures. Subjects performed three
tasks in a two-hour session. These
tasks were naming, rating, and sort-
ing the 60 items. First, subjects exam-
ined all 60 items and named each one
ta_insure that they were familiar with
the entire range of items before be-
ginning the rating task. This helped
reduce the effects of order of presen-
tation or anchoring effects on the
subjects’ subsequent ratings.

Next, subjects rated each of the 60
items on 10 nine-point Likert scales.
The 10 rating scales were derived
from a frequency analysis of key-
words used by subjects to describe
each cluster of items during the sort-
ing task of our two previous studies
[12, 13]. Each unique word was tal-
lied, and we collapsed this data across
similar word phrases, keywords, or
synonyms. The authors selected 10
scale items from the final collapsed
list of unique keywords. The 10 scales
and their anchor-point phrases were:

® spatial-nonspatial,

¢ nontemporal-temporal,

¢ hard to understand-easy to under-
stand,

® concrete-abstract,

® continuous-discrete,

® attractive-unattractive,

¢ emphasizes whole-emphasizes
parts,

& nonnumeric-numeric,

® static structure-dynamic process,

e conveys a lot of information-
conveys little information
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VISUALIZATION

Figure 1. Sixty visual representa-
tions used in the classification
study

AND DESIGN

The 60 items were presented to the
subjects in two books for rating. In
the books, each graphic and the 10
nine-point Likert scales were on fac-
ing pages. Subjects were asked to rate
each item on all 10 scales before turn-
ing the page. The order of the 60

items in the booklets was randomized
for each subject. Subjects were al-
lowed to take as much time as needed
and were allowed to take breaks dur-
ing the rating procedure.

The final procedure was a bottom-
up sorting task. For this task, the 60
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items were placed randomly on a
large table, and the subjects were
asked to sort them into groups of sim-
ilar items. Subjects were given no
explicit criteria for judging similarity
and could create any number of
groups and any number of items per

group. Once the subjects had com-
pleted their initial groupings, they
described each group and explained
why all the items in the group were
similar. After the experimenter re-
corded these descriptions, the sub-
jects grouped their initial groupings

into higher-order clusters of similar
groups. Again, the experimenter re-
corded the subjects’ explanations of
why all the items within a cluster were
similar. This process was repeated
until all 60 items were placed in a sin-

gle group.
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LIZATION

Results

We first clustered the subjects to de-
termine whether any were obvious
outliers among the subjects who
sorted the graphics. As a measure of
similarity between pairs of subject
sorts, we used the Jaccard coeflicient

| 41. nervous system

45. MFll braln images

AND DESIGN

[9], which is computed as follows: Jac-
card(i,j) = A/(N — B), where A is the
number of pairs of graphics in which
the members of the pair appear in the
same groups for the sortings of both
subjects i and j; B is the number of
pairs of graphics for which the mem-

Figure 5: Surface of Ih
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bers of the pair appear in different
groups in both subjects’ sorts; and N
is the total number of graphic pairs or
n(n-1)/2, where n is the number of
graphics.

Complete linkage cluster analysis
[10] was then applied to the matrix of
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Jaccard coefficients. The resulting
tree diagram suggested that subject
11 sorted the graphic items in a man-
ner different from the other subjects,
and therefore, the data for this sub-
ject was removed from all subsequent
analyses. The sortings of subject 11
were based almost entirely on the
subject matter of the graphics. For
example, her named categories in-
cluded “biology,” “economics,” and
“sports.” The Jaccard cluster analysis
revealed no other outliers; all the
remaining subjects based their rat-
ings -primarily on the type of knowl-
edge conveyed by the representation
(e.g., spatial, discrete, abstract, tem-
poral, etc.) rather than its functional
area. This virtual unanimity may
have been an artifact of the data col-
lection process. Since subjects rated
the items on Likert scales before sort-
ing the items into similar groups, the
Likert scale rating task may have bi-
ased the subsequent sorting task.
However, only the complete linkage
cluster analysis results would be af-
fected. All other statistical analyses
used the Likert scale data.

In order to identify groups or clus-
ters of items in the subjects’ sortings,
a matrix of similarities was con-
structed by counting the number of
times each pair of graphics was
grouped together in the subjects’ low-
est level sorts. For example, graphics
number 4 and number 30 appeared
in the same initial grouping for 11 of
the 14 subjects; therefore the corre-
sponding entry in the matrix is 11.
The entries in the matrix ranged
from 0, when two graphics never
appeared together, to 14, when the
graphics appeared together in every
subject’s lowest level sort. The simi-
larity matrix was then used as the
basis for complete linkage hierarchi-
cal clustering. The resulting tree had
nine primary classes or clusters of
graphics,] two of which had sub-
classes. These 11 classes are de-
scribed.

'Because of the large number of ties in the 60 x
60 proximity matrix, complete link clustering
can produce different solutions depending on
the order in which entries of the input similarity
matrix are considered. Therefore, we per-
formed six complete link clusterings on six dif-
ferent random orderings of the similarity ma-
trix. From these six clustering solutions we
derived the classes shown in Table |1 and the

three singleton classes corresponding to graph-
ics no. 6, no. 47, and no. hl.

We next sought to determine if the
rating scales (that were based on our
previous work [12, 13]) were predic-
tive of class membership or clusters
derived from the sorting data. To do
this, we followed a three-step proce-
dure. First, we used principle compo-
nents analysis to determine if the 10
scales could be reduced to a smaller
set of underlying dimensions. Then
we used two different methods for
classification: classification trees [3]
and discriminant analysis [7]. These
techniques were used on the average
ratings of the 10 scales for each of the
57 graphical items (i.e., with the three
singleton items removed). The items
with the highest and lowest rating for
each scale are shown in Figure 2.

A principle components analysis of

the data revealed that only one scale,
amount of information conveyed,
explained less than 9% of the total
variance (see Table 1). No single scale
explained more than 16% of the total
variance. The analysis suggests the 10
scales are relatively independent (i.e.,
nonredundant) and of approximately
equal importance (in terms of vari-
ance explanation), so we therefore
make use of all 10 in the analyses.

The Classification and Regression
Trees (CART) methodology [3] was
next used to construct a binary classi-
fication tree (Figure 3) in order to
determine if the ratings on the 10
scales were predictive of membership
in the clusters yielded by the hierar-
chical clustering analysis. Each termi-
nal node of such a tree is associated
with a single graphic class (although a
single class may label more than one

terminal node). The simplest type of

classification tree is one in which each
internal node of the tree corresponds
to a single independent variable,
called the splitting variable for that
node. Associated with the splitting
variable is a threshold value, which
determines whether a to-be-classified
item is sent left or right in the subse-
quent branching. Items are classified
by running them down the tree and
sending them right or left at each
node depending on whether or not
they exceed the threshold value for
the corresponding splitting variable
at that node. When an item reaches a
terminal node, it is assigned to the
class associated with that node.

In order to apply the CART pro-
gram, ratings on the 10 scales were
averaged across all 14 subjects. These
average ratings were then used to
predict membership for the 11
classes. The singleton classes were
excluded from the analysis.

The analysis yielded the classifica-
tion tree® shown in Figure 3. This
tree correctly classifies 48 of 57, or
84%, of the graphics. The true classifi-
cation rate is estimated at 53% using a
cross-validation estimate [3). This re-
sult strongly suggests the ratings on
the 10 scales can be used to predict
group membership derived from the
sorting data. Table 2 shows the mean
Likert scale scores for each of the 11
groups found in the CART analysis.

As an additional check on the rela-
tionship between the rating scales
and the classes derived from the sort-
ing task, we used discriminant analy-
sis. As with the CART methodology,
the purpose of the discriminant anal-
ysis was to determine the relationship
between the rating scales and the
sort-derived classes. Discriminant
analysis is a technique whereby linear
combinations of a set of independent
variables are constructed so as to
maximally discriminate among the
classes of interest. Various interpreta-
tion techniques are then used to de-
termine the discriminability of the
classes as well as the contribution of
the different variables to the discrimi-
nation. Determining the extent to
which the variables are effective in
predicting class membership is also
an integral part of the analysis.

Discriminant analysis was applied
to the same data used in the CART
analysis. In order to provide clearer
interpretation, the resulting discrimi-
nant functions were first rotated.
Based on both the rotated coefficients
for the discriminant functions and
the discriminant loadings (i.e., the
correlations between the scales and
the discriminant functions), the first
three functions correspond most
strongly to the numeric, information,
and spatial scales, respectively. Note
that these are the same scales that
comprise the first three splitting vari-

?For those familiar with the CART methodol-
ogy, the tree was constructed using the Gini
splitting criterion with prior probabilities pro-
portional to the class sizes in the data set and
11-fold cross-validation.
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ables in the classification tree.

The discriminant analysis correctly
classified 47 of 57, or 83%, of the
graphics. The true classification rate
is estimated at 56%. These classifica-
tion rates are nearly identical to those
found using the CART methodology.
These results, when combined with
those of the CART analysis, provide
confirmation for our belief that the
rating scales are predictive of class
membership in sorting and may have
served as the basis on which subjects
made their sorting decisions.

Overall, our analyses all provide
confirmatory evidence of the taxo-
nomic structure of the graphic items
presented in Figure 3. In addition,
the results of both the CART analysis
and the discriminant analysis suggest
that the 10 rating scales can be used
as predictors of class membership in
the classification.

Discussion

High-Level Descriptions of Major
Taxonomic Groups

Eleven categories of visual represen-
tations emerged from the classifica-
tion: graphs, tables, graphical tables,
ume charts, networks, structure dia-
grams, process diagrams, maps, car-
tograms, icons, and pictures. Here we
describe these major groups and the

AND DESIGN

type of knowledge conveyed by each
class of representation.

Graphs encode quantitative infor-
mation using position and magnitude
of geometric objects. One-, two-, or
three-dimensional numerical data is
plotted on a Cartesian coordinate or
polar coordinate system. Common
graph types include scatterplot, cate-
gorical, line, stacked bar, bar, pie,
box, fan, response surface, histo-
gram, star, polar coordinate, and
Chernoff face graphs. Except for the
star graph (number 56) and the gas
concentration graph (number 47), all
graphs formed a single cluster. The
gas concentration graph was a single-
ton. The novel format of the gas con-
centration graph lacked polar or rec-
tilinear axes normally associated with
graphs. This may have prevented
subjects from grouping the gas con-
centration graph with other graphs.
Star charts resemble pie charts, but
subjects did not cluster these items in
one group. Subjects grouped star
charts with cartograms perhaps be-
cause both convey information from a
spatial pattern created by the data.
Graphs emphasize the whole display
as compared with tabular data that
emphasize parts of the display.

Tables are an arrangement of
words, numbers, signs, or combina-

Table 1. Principal components analysis showing percentage
of the total explained variance for each of the ten scales
used in the ratings task

Scale Percent Scale
number variance description
1 11.3 spatial-nonspatial
2 10.1 nontemporal-temporal
3 9.6 hard to understand-easy to understand
4 9.9 concrete-abstract
5 10.5 continuous-discrete
6 10.3 attractive-unattractive
7 16.0 emphasizes whole-emphasizes parts
3 9.5 NONNUMETiC-NUIMETIic
9 10.6 static structure-dynamic process
10 2.2 conveys a lot of information-conveys litle information
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tions of them to exhibit a set of facts
or relationships in a compact format.
Tables have less abstract symbolic
notation than graphs. For example,
tables usually do not contain a legend
for mapping symbolic information to
semantic  information, whereas
graphs often contain a legend to ac-
complish this task. Two groups of ta-
bles appeared in the classification:
graphical and numerical. The pri-
mary distinction depended on how
numeric information is coded in the
table. Graphical tables, like the auto
repair records (number 7), used
shading to encode frequency of re-
pair data, whereas the statistical table
of the critical values of the t statistic
(number 21) shows only numeric
data. Numerical tables emphasize
parts of the whole representation
(e.g., individual data values). Subjects
believed numerical tables conveyed a
lot of information in an unattractive
format but that graphical tables con-
veyed a lot of information in an at-
tractive format.

Time charts display temporal data.
They differ from tables in their em-
phasis on temporal data. Examples
include the Gantt chart (number 14)
and the time schedule of Olympic
events (number 55). Both examples
include graphical objects. The Gantt
chart includes bars to indicate the
length of an event; the Olympic
schedule uses icons to identify each
type of event.

Network charts show the relation-
ships among components. Symbols
indicate the presence or absence of
components. Correspondences among
the components are shown by lines,
arrows, proximity, similarity, or con-
tainment. The planar coordinate sys-
tem of network charts is generally
void of meaning. Meaning results
from an efficient spatial arrangement
of the data that is parsimonious and
avoids intersecting lines. Examples
include flow charts, organizational
charts, decision trees, pert charts, and
data models. Subjects believed net-
work charts conveyed a lot of infor-
mation.

There are two types of diagrams,
both of which express spatial data.
Structure diagrams are a static de-
scription of a physical object. The
spatial data expresses the true coordi-



nate dimensions of the object. Exam-
ples include the cross-sectional view
of an engine (number 59) and a heart
(number 11). Process diagrams de-
scribe the interrelatgonships and pro-
cesses associated with physical oh-
jects. The data
dynamic, continuous, o1

spatial CxXpresses
temporal
relationships among the objects in
process diagrams. Examples include
the nervous system (number 41) and
the nitrogen cycle (number  27).
While the structure diagram formed
a single cluster, the process diagrams
were grouped in three clusters. The
beetle Tite cycle (number 53) and the
cockpit air conditioner flow diagram
(number 32) were grouped with car-
tograms. The nervous system (num-
ber 41} was grouped with structure
This

given the prominent visual arrows

diagrams. SCENs  SUrprising
that show connection and How; how-
ever, all diagram components appear
i their true physical locations, an
mmportant component of structure
diagrams. Structure diagrams convey
a lot of spatial, nonnumeric, concrete
information. The main difference
among similarity measures for maps,
cartograms, and structure diagrams
1s that maps and cartograms express
more than
people

numeric nformation

structure  diagrams. Thus,

might reason about qualitative rela-
tionships from structure  diagrams,
but reason
quantitative relationships from maps
and cartograms,

Maps are symbolic representations
of physical geography. Maps depict
geographic locations  of  particular
features using symbols or lettering.
Examples
highway maps, topographic maps,
land use maps, and various projec-

about  qualitative  and

mclude  marine  charts,

tions ol world maps. Maps differ from
cartograms in that cartograms super-
impose quantitative data over a base
map. Therefore, it is not surprising
that subjects felt cartograms  were
more dithcult to understand  than
true maps.

Cartograms are spatial maps that
show quantitative data. Examples in-
chloropleths, isopleths, dot
maps, and How maps. Chloropleths

clude

use color, gray scale, or texture to
code arcas of equal value. Isopleths
use lines to join points with the same
(e.g.,
maps). Dot maps ause puim.\‘. Or sym-

quantity  or  value contour
bols to show the location of individual
points on a map. Flow maps show di-
rection of movement by the number,
width, and direction of lines and ar-
Iufte [22] in-
cludes the classic example of a flow

rows. For tfx;mlplv,

map by Minard that depicts Napole-
on’s march o Moscow., Whereas all
maps formed a single category, one
chloropleth, murder rate (number
22), was grouped with graphs. This is
difficult to explain since a similar
graph of gas concentration (number
47) was a singleton.

Icons impart a single mterpreta-
ton or meaning for a picture. Each

icon provides a unique label for a vi-
sual representation. lcons are used
when the meaning of the icon is ap-
parent to the target audience. Icons
groups.

M T et . f apr b B
highway signs (number 80) and pull-

formed  two Multiple-icon
down menu (number 58) formed one
group; the 1BM
(number 4) was grouped with photo-
realistic pictures. In general, subjects
felt the cons in the sample were at-
tractive but that they conveyed very

corporate  logo

little informanon (e.g., each won 1s a
label for one item).

Photo-realistic pictures are realis-
tic images of an object or scene. All
photo-realistic pictures and images
tormed a single group. These repre-
sentations
dence between the real world and the
image. Interval properties and dis-
tance properties of real world space
between objects are preserved in im-

have a 1:1 correspon-

ages. Images also have a linite grain

Tahle 2. Mean Likert scale scores for each of the 11 types of visual representations

i W et W e 0 owaie 9t
structure diagrams 3.0 2.9 6.8 3.3 4.8 4.1 38 1.7 3.8 a7
cartograms 2.9 4.7 5.6 4.7 4.4 4.2 4.7 3.4 4.9 4.3
maps 1.9 2.0 7.5 3.6 4.3 3.9 4.5 3.8 2.4 2.7
graphic tables 6.3 4.7 6.2 4.6 5.3 4.5 3.0 3.7 4.3 25
process diagrams 4.7 5.3 5.9 4.9 4.1 4.5 4.1 2.8 6.2 39
icons 6.4 2.0 7.3 5.8 7.2 39 2.9 2.5 3.4 4.9
time charts 5.9 7.8 6.1 4.9 4.9 3.9 3.7 4.5 4.8 37
network charts 5.2 4.0 5.6 5.3 4.3 5.9 3.9 2.6 5.3 4.3
pictures 3.2 1.9 6.7 4.9 5.3 3.1 6.7 1.7 3.1 7.2
tables 7.1 1.8 5.1 5.1 5.4 5.2 2.5 8.0 2.4 2.8
graphs 4.7 4.0 6.3 4.5 4.8 4.6 4.9 7.0 3.7 4.1
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VISUALIZATION

size determined by the resolution of
the image. As the image becomes too
small, objects are more difficult to see
and images lose precision. Finally,
images have a definite size and shape
that limits the amount of the image
that can be viewed at one time. Exam-
ples include the architectural draw-
ings (number 44) and the robot
(number 49). These images were cre-
ated using state-of-the-art computer-
aided design (CAD) software and
other visualization tools. Subjects
rated photo-realistic pictures as spa-
tial, attractive, and nonnumeric, and
concluded that pictures convey very
little information. In fact, subjects felt
icons conveyed more information
than photo-realistic images.

A Closer Look at Apparent
Inconsistencies

One of the objectives for developing
our classification was to structure this
domain of inquiry. By classifying the
high-level descriptions of a broad
range of visualizations, we can iden-
tify inconsistencies. Here we examine
these apparent inconsistencies in
more detail. In general, we found
that many of the apparent inconsist-
encies have fprima facie empirical sup-
port in the literature, which lends
some external validity to our prelimi-
nary findings.

Photo-realism often serves as a
basis for evaluating the quality of the
visual representations. However, sub-
jects in our study characterized
photo-realistic images as conveying
the least amount of information of all
categories in our classification. There
are many empirical studies that sup-
port this finding. In a series of experi-
ments examining icons, Sorenson
and Webb [20] found that recognition
errors increased as the photo-realism
of icons increased. To enhance identi-
fication and memorability, Sorenson
and Webb advocate using less com-
plex, more schematic icons. Pezdek

*Graphics go to the left if the cutoff value on the
splitting variable is less than or equal to the cut-
off value; otherwise, they go to the right. The 10
scale items were (1) spatial-nonspatial, (2) non-
temporal-temporal, (3) hard to understand-easy
to understand, (4) concrete-abstract, (5) contin-
uous-discrete, (6) attractive-unattractive, (7) em-
phasizes whole-emphasizes parts, (8) nonnu-
meric-numeric, (9) static structure-dynamic
process, and (10) conveys a lot of information-
conveys little information.

AND DESIGN

et al. [17] found that irrelevant elabo-
rate details about pictures are not eas-
ily discriminated from simpler ver-
sions of the target pictures without
the elaborate details. Marks [15]
found the amount of elaborate picto-
rial detail retained by subjects is a
function of the perceptual processes
used to encode the pictures. Reten-
tion of pictorial details is enhanced
when study conditions direct atten-
tion to the visual details of the pic-

tures. Thus, pictures may contain a
great amount of information, but at-
tention must be directed to the visual
details of the picture to enable decod-
ing of this information from the picture.

Although photo-realistic images
conveyed less information than all
categories in our classification, ques-
tions regarding how expert/novice
differences influence interpretation
also need to be addressed. Certainly
the MRI brain image (number 45)

Figure 3. Binary classification tree diagram*
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would impart more meaning to a
brain surgeon than to a college soph-
omore. The surgeon may have spe-
cific schemata for processing infor-
mation from the MRI display.
Novices may not be able to identify
the specific areas of the display that
contain critical information. These
findings suggest that rather than limit
a visualization to an exact copy of a
real world object, we can enhance
photo-realistic images by enhancing

the characteristics of some pixels in
the image (smart pixels) to direct and
focus our attention to specific infor-
mation that is relevant to the current
task.

Graphs and tables are often used
interchangeably to express the same
data. The management information
systems literature is rife with empiri-
cal studies assessing the efficacy of
graphic and tabular information dis-
plays [5]. This literature is fraught

59 ‘ numeric

with conflicting results. Furthermore,
recent studies in visual psychophysics
discredit some of the sweeping guide-
lines and generalizations that have
previously been reported [21]. Given
that we found graphic and tabular
representations were more similar to
each other than to any other type of
visual representation, it would seem
more fruitful to examine how graphs
and tables express knowledge [11, 19]
rather than to identify which repre-
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sentation is better. We believe this
process could be informed by under-
standing how the symbolic elements
of graphs emphasize the whole image
and how the alphanumeric entries in
tables emphasize parts of the image.

Subjects judged cartograms as
being hard to understand relative to
either maps or graphs. For example,
it was harder to understand the tor-
nado dot map (number 3) than the
map of Crater Lake (number 9). This
finding has also been demonstrated
empirically. Cleveland and McGill [4]
found that framed rectangle charts
were easier to understand than
chloropleth maps because framed
rectangle charts facilitate graphical
perception. As companies develop
geographic information systems for
superimposing quantitative and spa-
tial information it is important that
designers recognize limitations of car-
tograms for expressing certain types
of information and examine alterna-
tive visualization tools for expressing
such data.

Two chemical notations, the DNA
double helix (number 57) and gib-
berillins (number 10), were clustered
in different categories in our classifi-
cation. Had subjects considered the
use or purpose of these two visual
representations, we would have ex-
pected them to be in the same group.
Subjects judged that the amount of
information conveyed was much
greater for the traditional chemical
notation for gibberillins than for the
three-dimensional representation of
the DNA double helix. This was sur-
prising given the importance of
three-dimensional molecular visual-
ization tools in providing insights for
new discoveries in bioengineering.
However, it seems more likely that
the three-dimensional representa-
tions convey more information only
to people with an appropriate graph
schema for processing information
from a novel display format. For ex-
ample, Winn [24] examined eye
movements of perceptual strategies
used by subjects viewing normal dia-
grams and diagrams with unantici-
pated formats. The absence of an ac-
curate diagram schema for displays
with unanticipated formats delayed
information processing and caused
more information processing errors.

AND DESIGN

Thus, expert-novice differences may
not only be a function of graphic arts
training but also be a function of hav-
ing appropriate graph schemata for a
particular functional area of exper-
tise.

An earlier study [13] found some
differences in categorization of visual
representations for subjects with and
without graphic arts training. The,
current study did not find expert-
novice differences. Several empirical
studies have found expert-novice dif-
ferences in visual information pro-
cessing. Wiley [23] found that sub-
jects with graphic arts training
remember ordinary pictures better
than subjects without graphic arts
training, but that memory for unique
pictures was consistently high for all
subjects regardless of their level of
graphic arts training. We might ex-
pect to find differences between the
memory organizations of graph sche-
mata for experts and novices, as nov-
ices often lack the necessary schemata
to understand the symbolic notation
of the graph. However, DeSanctis
and Jarvenpaa [6] have shown that
practice and training can improve the
ability to decode information from
graphs.

Our classification suggests that
network charts present nonspatial
information that is difficult to under-
stand. It is important to determine
how to present spatial information to
facilitate understanding. Egan and
Schwartz (8] replicated empirical
studies comparing memory recall of
chess masters and novices using sym-
bolic circuit diagrams. They found
that chunking of symbols by experts
facilitated their reconstruction of cir-
cuit diagrams from memory. As soft-
ware incorporates spatial displays to
facilitate information processing, it is
important to understand how chunk-
ing facilitates the processing of spatial
information.

Temporal data are more difficult
to show in static graphics than cyclic
data. Given this limitation of static
graphics, it may be important for vi-
sualization tools to use dynamic dis-
plays or animation for analyzing tem-
poral data. For example, smart pixels
that highlight key features in com-
puter-generated visual displays could
be used to help guide and focus the

“ December 1994/V0l.37, No.]2 COMMUMNICATIONS OF THE ACM

viewer’s attention to particular pat-
terns in dynamic displays.

Summary

Our exploratory research developed
a classification from similarity mea-
sures for 60 visual representations.
There were 11 major clusters of rep-
resentations: graphs, tables, graphi-
cal tables, time charts, networks,
structure diagrams, process dia-
grams, maps, cartograms, icons, and
pictures. Qur objectives for develop-
ing a classification of visual represen-
tations were fivefold:

® structure systematic inquiry;

® convey concepts for developing
theories;

¢ identify anomalies;

¢ predict future research needs;

¢ communicate knowledge.

By structuring this domain of in-
quiry at a high level, we can begin to
understand how different types of
visualizations communicate knowl-
edge. This preliminary structure en-
abled us to identify some anomalies
that suggest limitations of some cur-
rent visual representations as well as
directions for future research.

Our classification is subject to four
caveats. First, the sample of visual
representations influences how well
we can generalize our findings. Had
we developed our classification from
a larger set of items (600 instead of
60), it is not known whether the 10
Likert scales would still characterize
all of the items in the classification.
Furthermore, we have not identified
deep, hierarchical structure within a
cluster. For example, what are the
major subdivisions within graphs?

Second, the sample of people
whose judgments are used to develop
the classification must be representa-
tive of the entire range of potential
graph users. We have conducted
three different experiments using 40
different subjects with a wide range of
education, cultural, and graphic arts
backgrounds. However, this is still
only a small sample from the large
population of graph users.

Third, different classification tech-
niques for collecting and analyzing
data can and do produce different
taxonomies. However, we have used
three different techniques over three



studies, and each technique has re-
vealed a similar pattern of results.

Finally, our efforts have focused
primarily on perceived similarity. We
have not investigated whether or not
these categories apply to the inter-
pretation of graphics or to the recall
of graphical information. For a classi-
fication to be useful in both graphical
design and research formulation, the
classification must represent struc-
ture that is used by people in inter-
preting graphs. This evaluation of
our reported classification is our cur-
rent research goal.
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