Internet Economics

IS231 Guest Lecture
September 27 2002

John Chuang
chuang@sims.berkeley.edu
Outline

• Introduction
• Resource Sharing, Resource Allocation
 - Efficiency, Equity
 - Technical and economic mechanisms
 - Example: Service Differentiation
• Pricing
• Industrial Organization
Why Internet Economics?

• The Internet is a shared communication infrastructure
• When demand exceeds supply → network congestion
• We want to promote efficient and equitable use of network resources
• Technical mechanisms for resource allocation (e.g., TCP) can be augmented with economic-based mechanisms
• New network services for new network applications
Network Services

• Data transport
 - packets and flows, multicast, QoS, etc.

• Storage
 - caching, replication, hosting, backup, etc.

• Processing
 - computation, query, transaction, encryption, adaptation, presentation, etc.

• Value-added services
 - Firewalls, Spam filtering
 - Content delivery, Resource/service discovery
 - Data collection (sensing, metering, aggregating, reporting)
 - Billing and payment
 - Etc.
Resource Allocation Goals (Objective Functions)

• Technical efficiency
 - Performance (latency, throughput) vs. cost
 - Survivability (availability, redundancy) vs. cost

• Economic efficiency
 - Social surplus
 - Pareto efficiency

• Other objectives
 - Profit
 - Penetration/usage s.t. cost recovery (e.g., universal service)
 - Equity, stability, predictability, etc.
Technical Approach to Resource Allocation

• Example: TCP Congestion Control
 - All hosts reduce transmission rate when there is congestion
 - Some TCP-unfriendly implementations ignore congestion signal
Economic Approach to Resource Allocation

- makes the go round

- Network as an economic system
 - Heterogeneous ownership of resources/services
 - Distributed consumers of resources/services
 - Money is exchanged!

- Economics-based allocation model explicitly incorporates
 - Demand-side conditions: consumer behavior (important when humans are part of system)
 - Supply-side conditions: cost structures (e.g., economies, market failures)
Supply & Demand in the Network Context

• **Supply:** cost of providing network service
 - fixed cost (FC)
 - marginal cost (MC)
 - average cost (AC)

• **Demand:** how much users value (and are willing to pay for) the service
 - more difficult to quantify
 - need empirical measurement
What Makes Network Economics Interesting?

• Network services exhibit
 - High fixed cost, low marginal cost (strong economies of scale)
 • e.g., trenching cost most significant; deploy dark fiber (excess capacity); install switches when needed
 - Significant joint costs (strong economies of scope)
 - Positive/negative network externalities (demand-side economies/diseconomies of scale)

• Traditional economics not applicable
Example: Service Differentiation

- Email: Best Effort
- Video: SLA
Example: Service Differentiation

QoS Aware

email

video
Why QoS?

Different applications have different needs – let’s build a smart network that supports them all!
Why QoS? Economist’s View

1. Network congestion \rightarrow negative network externality
2. Differing willingness-to-pay (WTP) \rightarrow quality differentiation allows price discrimination
3. Economies of scope cost savings (e.g., statistical multiplexing)
Question

• How to allocate network resources to different applications and service classes?
• How to price?
Pricing: Another Religious War

• Usage-based vs. Flat-rate pricing
• Marginal cost pricing (supply-side)
 - Problem: efficient, but cannot recover fixed cost
 - Solutions: Ramsey pricing, non-linear pricing
• Marginal WTP pricing (demand-side)
 - Price discrimination or differential pricing
 - Strong motivation for service differentiation, e.g., QoS
 - e.g., Time-of-day pricing
• Market-based pricing
 - e.g., Congestion pricing
 - Auctions: when demand-curve cannot be readily determined
 - Mechanisms difficult to design; high transaction costs
The Role of Prices

• Allocate resources to maximize economic efficiency
• Serve as feedback signals
 - Help users make efficient consumption choices
 - Help provider make optimal capacity expansions
Desirable Properties of Pricing Schemes

• Delgrossi and Ferrari 1999
• Service provider’s perspective
 - Encourage efficient resource usage (incentive compatibility)
 - Low cost (implementation, metering, accounting and billing)
 - Competitive prices
 - Cost recovery
• User’s perspective
 - Fairness
 - Predictability (reproducibility)
 - Stability
 - Transparency (comprehensibility)
 - Controllability

John Chuang, School of Information Management & Systems
Beyond Pricing

• Some strategies for improving efficiency (and/or profits):
 - Service differentiation \rightarrow price discrimination
 - Service bundling
 - Horizontal mergers and vertical integration of service providers
Horizontal Mergers

• Examples:
 - Four baby bells left:
 SBC (Southwestern Bell, Pacific Bell, Ameritech), Verizon (Bell Atlantic, Nynex), BellSouth, Qwest (US West)
 - Worldcom bought MCI (UUNET), tried to buy Sprint

• Reasons for horizontal mergers:
 - Economies of scale

• Reasons against horizontal mergers:
 - no network externality benefits (all networks are interconnected anyway)
 - Industry concentration reduces competition
Vertically Related Markets

- Upstream/downstream relationship
- Examples:
 - Detroit: steel v. automobile
 - Voice: local v. long distance
 - Data: fiber v. connectivity v. data center v. content
 - Software: OS v. applications
Vertical Integration

• Good:
 - economies of scope savings (opposite of outsourcing)
 - internalize transaction costs
 - reduce prices & increase total welfare

• Bad:
 - if one component is monopolistic
 - foreclose competition in other component
Closing Remarks

• Technical and economic efficiency should be the goal of network resource allocation
• Well designed pricing schemes should align them
• Pricing is not everything
 - Service bundling and unbundling
 - Peering and interconnection architectures
 - Vertical integration and horizontal mergers
 - …