Needs and Usability Assessment

- Needs > requirements based on knowledge of users
- **■** Usability and usefulness
 - Usability: ease of learning, operation
 - Usefulness:
 - serves an intended purpose
 - serves an intended audience/community
 - meets people's needs

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

How It Relates to IS204

- Design and evaluation based on understanding users and their work
- Social science research methods applied to design and evaluation

12/1/200

© Prof. Nancy Van House, SIMS, UC Berkeley

Doing Needs and Usability Assessment

- **■** Why
 - Improved design
 - Better systems, more satisfied users
 - Improves the work supported
 - Cost savings-- less redesign
- **■** Why not
 - "We know what users need"
 - Time and resources
 - Lack of incentives doesn't affect ME

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Stages (not linear; iterative)

- **■** Identifying users
- **■** Identifying/understanding user needs
- Design & prototyping
 - Lo-fi, high-fi
- **■** Testing/assessing prototype
- **■** Implementation
- **■** Testing/assessing implemented system

12/1/20

© Prof. Nancy Van House, SIMS, UC Berkeley

Early Approaches to Usability Assessment

- ♣ Performed near end of development process; limited changes possible
- **■** Based on testing, experiments
- Lab studies:
 - Controlled environment
 - Pre-defined tasks
 - Observation (e.g. 1-way mirror)
 - Measurement (time; number of errors; number of operations; and the like)

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Trends in Usability Assessment

- Performed earlier in design process
- # Facilitates a variety of cooperative relationships between users and designers
 - users not simply critiquing design but engaged in co-design
- **■** Increased focus on users' work practices

12/1/20

Assessing Information-Intensive Systems

- **■** Content (Is it what people need and want? Can and will they use it?)
 - Relevance
 - Trustability
 - Level (of info), presentation
- **■** Functionality (what does the system do?)
- **♯** Information architecture
- **■** Interface

© Prof. Nancy Van House, SIMS, UC Berkeley

Methods of **Data Collection & Analysis**

- **#** Derived from social science research methods
- **■** Designed to prevent errors common to inquiry
 - Inaccurate observation
 - Overgeneralization
 - **■** Selective perception
 - Biases introduced by interests
 - Premature closure of inquiry

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Research Methods Principles

- **■** Validity measure what they purport to measure
 - relative to the goals and purpose of the evaluation
 - relative to the 'real' end-users, their tasks, uses, context
 - Ecological validity
 - ability to predict end-user problems
- - Repeated applications > similar results

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Classifying Data Collection Methods

- # According to how performed
 - Automatic (e.g. logging activity)
 - Empirical (usability testing)
 - Formal (models and formulas)
 - Informal (heuristics; walk-thrus)
- # According to who does it
 - **■** Expert
 - Simulated user
 - Representative users
 - Few or many
- **■** Setting laboratory or real world

Choosing Methods

- **■** Goals of evaluation effort
- **■** What is being evaluated
- **♯** For what purpose
- **■** At what stage in development process
- **Cost-benefit assessment of the method**

triangulation – same issues, different perspectives # cost-benefit # complementarity – new info # practicality # level of effort # resources available # what to do when different methods > different results?

© Prof. Nancy Van House, SIMS, UC Berkeley

Who are your intended users?

- **■** Purpose of system
- Identity of users
 - Captive audience, well-defined group, general...
- Relevant characteristics, behaviors, preferences
 - Experienced/inexperienced: with technology, with content area
 - W3C and disability, other relevant abilities
 - internationalization/globalization: language, icons that work x cultures

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Assessing Needs

- Directly: asking them what they want/need
 - People don't always know how they would use innovations
 - Technology and work co-evolve
- Indirectly: understanding their intentions and activities
 - Task analysis
 - Scenarios
- Assessing existing resources
 - Competitive analysis

© Prof. Nancy Van House, SIMS, UC Berkeley

Methods of getting information from users

- **■** Surveys (written questionnaires)
- **Interviews**
- **# Focus Groups**
- **Workshops**
- **Field studies**

12/1/200

© Prof. Nancy Van House, SIMS, UC Berkeley

Surveys (written questionnaires)

- Benefits: many responses, easy to analyze, low effort for respondents
- **■** Problems:
 - limited to short answer/check off questions, inability to follow up
 - Finding respondents, getting responses, especially from non-captive audiences (e.g., non-users)

12/1/2001

Survey Methods

■ Sampling

- Deciding on sample characteristics, size, sampling method
- Avoiding bias, understanding limitations (esp'ly small and/or self-selected samples)

■ Questionnaire design

- Writing questions based on your goals
- Wording questions such that users can answer, you can understand results
- Length (short)

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Survey Data Analysis

- #Knowing what conclusions you can (and cannot) draw from data
- **♯** Correlating variables, e.g. user characteristics and behavior

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Interviews (face-to-face, phone)

■ Benefits

- Complex questions and answers
- Ability to follow up

■ Difficulties

- Labor intensive for both interviewer and interviewee
- Possible interviewer effects

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Interviewing Issues

- **■** Medium: Face-to-face, phone, email...
- #Interview schedule: what to ask and how
- **■** Gaining cooperation
- **■** Avoiding bias

12/1/2001 © Prof. Nancy Van House. SIMS. UC Berkeley

Focus Groups

■ Directed group discussion

■ Benefits

- Synergy within the group
- Multiple participants simultaneously
- Complex questions and discussion

■ Difficulties

- Group interaction conditions responses
- Labor intensive
- Analyzing results can be difficult

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Focus group methods

- ☐ Choice of participants: which types, which individuals; how heterogeneous?

 ☐ Choice of participants: which types, which individuals; how heterogeneous?
- **■** Guiding the discussion
- **■** Reporting the results
 - video
 - written summaries

12/1/200

Field studies/Ethnography

- #Focus is on understanding work, practices, resources Studying people's activities in their natural setting
- ♯ Learning participants' understanding of their own activity
- #Approaching activity in context of other activities, resources

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Types of Ethnographic Studies

- ♯ Studies of work where new tech might be intro'd but w/o explicit design agenda
- Studies of technology in use situated use of specific technologies/classes of technology
- Participatory/work-oriented design people who use/are affected involved

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Ethnography / Field Observation Methods

- **■** Visit work site
- **♯** Video work in action
- **■** Photograph resources, layout
- **■** Interviews, group discussions
- #"Hiring in" becoming a part of the work group

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Ethnography – Limits

- **■** Labor intensive for all parties
- Not easy to do well requires training and practice
- # Time required − often does not match project schedule

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Contextual Inquiry/Design

- **■** Applied, structured ethnography
- **♯** Aimed at helping turn inquiry into design
- #Complex, hard to learn, time-consuming

12/1/200

EVALUATION

- **■** Who does it
 - Experts
 - Users
- #On what basis
 - Inspection
 - Empirical testing
 - Simulated/artificial use
 - Real use

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Expert-based evaluation - Inspection

- **■** Competitive analysis
- # Heuristic evaluation
- Cognitive Walkthrough
- **♯** Formal Usability Inspection
- **■** Feature Inspection
- **■** Standards Inspection
- # Guideline checklists including accessibility for the disabled

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Expert-based evaluation grounded in fieldwork

- **■** Scenarios
- **■** Task analysis
- **#** [contextual inquiry]
- Benefits:
 - Investigators trained in methods and criteria
 - Grounded in user work
- **■** Difficulties:
 - Investigators not the same as users
 - Time, effort to collect ethno data

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Formal Testing

- **■** Rooted in experiments
- #Controlled tasks and conditions > comparable data x designs, users, conditions
- **■** Where:
 - In lab
 - In user's workplace (remote testing)
- **■** Measures:
 - System performance
 - User performance

© Prof. Nancy Van House, SIMS, UC Berkeley

Testing Issues

- **■** Benefits: controls for sources of observed differences
- #Difficulty: ecological validity of artificial tasks and conditions
 - Validity of the tasks used
 - People generally use variety of resources in their work

12/1/2001

© Prof. Nancy Van House, SIMS, UC Berkeley

Testing – Thinking Aloud Protocol

- **■** Real-time
 - direct response; but may interfere
- **■** Retrospective with video
- **■** Co-discovery method 2 users

12/1/200

"Automatic" Evaluation # Methods Logs – e.g. server logs Monitoring – e.g. cookies # Advantages 100% cooperation (unless user actively resists) Unobtrusive # Disadvantages Need to understand what data you can and cannot collect, inferences can/cannot make

Design Methods Rooted in Understand Users # user-centered design # contextual design # participatory design # prototyping, co-operative prototyping # case-based prototyping – Xerox law firm ex

#To be useful and used, a system has to be rooted in users' actual work goals/intentions and practices, coordinated with the resources they use # Users are experts in what they do; designers may be experts in technology but not the users' work # Technology design is work re-design # Design continues in use – work adapts to tools, users adapt tools to the work – cannot fully anticipate