
26. Structure-Based Models [2]

INFO 202 - 26 November 2008

Bob Glushko

Plan for Today's Class

IR and the Document Type Spectrum

XPath and XML Queries

Benefits and Challenges for Structural Models

Search Engine Optimization

Why We Want Structure Based Retrieval

Documents aren't just bags of words; they can have a great deal of internal

structure and content encoding

But most IR models don't use anything other than document-level statistics

about term occurrence

The use of XML for encoding document models and instances shows where

structure can be used to great advantage in IR to add value beyond text

retrieval

The Document Type Spectrum

Document Types in the Spectrum

"Narrative" Document Types

Novels, Reports, Brochures, Academic Monographs, Textbooks, ...

"Hybrid" Document Types

Catalogs, Dictionaries, Encyclopedias, Technical Manuals, ...

"Transactional" Document Types

Orders, Invoices, Payments, Transcripts, Bill of Materials, ...

Structure in Narrative Document Types

Narrative document types have relatively little internal structure

They may have some Dublin-Core-like metadata (title, author, date, etc.)

They may have some presentational structures (chapter, section, etc)

But they rarely have internal structure that makes content-type distinctions

So while it is possible to label sections or chapters of the text with titles or

assign index terms to them, it is seldom useful to treat those parts as

specialized types of content

Put another way, the content of narrative documents is weakly datatyped –

"just text" (PCDATA in XML content models)

An Exception That Proves the Rule

There are some notable exceptions for specialized narrative document types

like "theatrical play" where there are highly conventional structural divisions

and presentation rules that can increase precision in IR

Or maybe it is more correct to say that the specialized use cases or context of

use for plays requires us to impose more structure than most narrative

document types need

<play>
<author>Shakespeare</author>
<title>Macbeth</title>
 <act number="I">
 <scene number="VII">
 <title>Macbeth's castle</title>
 <verse>Will I with wine and wassail...</verse>
 </scene>
 </act>
</play>

Hierarchical Structure

Structure in Hybrid Document Types

Hybrid document types are often called "semi-structured" because they have

more structure than narrative ones but less than the fully-structured

transactional ones

Hybrid document types exhibit more regularity in data content and structure

than pure narrative types, but some presentation structure remains important

because these documents are used by people

Key design question is how many of the content types are explicitly marked or

tagged in the document

The extent of explicit structure in semi-structured document types embodies

the IO vs IR tradeoff we've discussed all semester

In XML modeling terms, this is how much "mixed content" remains -- blocks

or paragraphs of text that isn't differentiated by content type

A Hybrid Document Instance: Directory

"Directory" Document Type with "Mixed
Content"

<Professor>
 <Name>Barto, Andrew G.</Name>
 <Phone>(413) 545-2109</Phone>
 <E-mail>barto@cd.umass.edu</E-mail>
 <Office>CS276</Office>
 <MoreInfo>
 Professor. Computational neuroscience, reinforcement learning, ...
 </MoreInfo>
</Professor>

More Structured "Directory" Document Type
With No Mixed Content

<Professor>
 <Name>
 <FirstName>Andrew</FirstName>
 <MiddleInitial>G</MiddleInitial>
 <LastName>Barto</LastName>
 </Name>
 <Phone>
 <AreaCode>413</AreaCode>
 <Number>543-2109</Number>
 </Phone>
 <E-mail>barto@cd.umass.edu</E-mail>
 <Office><Building>CS</Building><Room>276</Room></Office>
 <MoreInfo>
 <Rank>Professor</Rank>
 <Interests>
 <Interest>computational neuroscience</Interest>
 <Interest>reinforcement learning</Interest>
 ...
 </Interests>
 </MoreInfo>
</Professor>

SylViA's Choice

<reading>
 Susan Dumais. Data-driven approaches to information access.
 Cognitive Science, 27(3), 491-524, 2003.
 http://www.sims.berkeley.edu/courses/is202/f06/Readings/...
</reading>

<journalReading>
 <articleTitle>Data-driven approaches to information access</articleTitle>
 <articleAuthor>
 <givenName>Susan</givenName>
 <familyName>Dumais</familyName>
 </articleAuthor>
 <journalTitle>Cognitive Science</journalTitle>
 <volume>27(3)</volume>
 <publishDate>2003</publishDate>
 <pageSpan>491-524</pageSpan>
 <url>http://www.sims.berkeley.edu/courses/is202/f06/Readings/...</url>
</journalReading>

"Transactional" Document Types

Transactional documents are completely and regularly structured, with

prescriptive document type models in which every piece of information is

"strongly typed"

The instances are typically created by automated processes or captured in

highly-structured forms

Because every piece of information is explicitly marked up or delimited, it is

separately retrievable

A Transactional Document Instance

<DespatchLine>
<ID>1</ID>
 <DeliveredQuantity quantityUnitCode="PKG">5</DeliveredQuantity>
 <OrderLineReference>
 <BuyersLineID>1</BuyersLineID>
 </OrderLineReference>
 <Item>
 <Description>Book "Document Engineering"</Description>
 <SellersItemIdentification>
 <ID>32145-12</ID>
 </SellersItemIdentification>
 <BasePrice>
 <PriceAmount amountCurrencyCodeListVersionID="0.3"
 amountCurrencyID="USD">32.50</PriceAmount>
 <BasePrice>
 </Item>
</DespatchLine>

IR Models and the Document Type Spectrum

Storing and Retrieving XML

Highly-structured transactional information encoded in XML can be stored in a

relational database, but XML poses other problems

The content of databases is often exported or retrieved in XML for publishing

information or passing it to applications

And of course it is easy to store XML documents in a database as "text" but

then the "XML-ness" of the content is of no use in IR

So by "XML Retrieval" we generally are focusing on hybrid or semi-structured

document types that aren't the "bread and butter" of relational databases

Semi-structured document types NOT encoded in XML aren't the focus of

much attention in IR

XPath

A standard way of addressing parts of XML documents

Defines the structures and patterns used by XML transformations, queries,

and forms

Similar in concept to addressing files on the filesystem, i.e. at a UNIX shell or

MS-DOS command prompt

Key idea is to view an XML document as a tree of information items called

"nodes" - this is more abstract than thinking of it as a stream of marked-up

text

The Node Tree

XPath describes the locations of addresses of parts of XML documents by

navigating through the "node tree" along a "node axis"

There are seven types of nodes, corresponding to the different kinds of "stuff"

in XML documents (most important are "element," "attribute," and "text")

There are thirteen different axes that specify different ways of following

relationships among the nodes (the default is "child" -- meaning, look down

the tree at the nodes directly linked as children)

The Tree

The Node Axes [1]

There are thirteen different axes that define different directions of "walking the

node tree" depth-first starting from the context node;

Depth-first means visiting all the children recursively throughout the entire

document, shown using the numbering of the nodes in the following graphs

The Self Axis identifies the context node

The Child

Axis identifies the children of the context node. This is the default so if the

axis is omitted the child axis is assumed

The Attribute Axis identifies the attributes of the context node

The Parent Axis identifies the parent of the context node

The Node Axes [2]

The Following

Axis identifies all nodes after the context node in document order, excluding

its attributes and descendants

The Following-Sibling

Axis identifies all nodes that follow the context node in document order and

that have the same parent

The Preceding

Axis identifies all nodes before the context node in document order, excluding

its ancestors and any attributes

The Preceding-Sibling

Axis identifies all nodes before the context node in document order and that

have the same parent

Finding Documents With Structured Queries
(Bourret 4.2.2)

Find all books that Maria Lopez wrote:

for $b in collection("books")
where $b//Author="Maria Lopez"
return $b

Find all articles written after June 1, 2004 with the words "presidential election"

in the title:

for $a in collection("articles")
where $a//Date > 2004-06-01 and
 fn:contains($a//Title, "presidential election")
return $a

Find all procedures with more than seven steps:

for $p in collection("procedures")
let $s := $p//Step
where fn:count($s) > 7
return $p

Retrieving Information With Structured Queries
(Bourret 4.2.2)

From a procedure for synthesizing a compound, list the required chemicals:

for $p in collection("procedures")
return
 <Chemicals procedure="{$p/Title}">
 {$p//Chemical}
 </Chemicals>

Find maintenance procedures for a specific spare part of a specific airplane

with a specific effectivity:

let $today = fn:current-date()
for $proc in collection("maintenance_docs")//Procedure
let $p = $proc//Part
where $p = "AX723" and $p//AppliesTo = "Model 1023i"
 and fn:date-greater-than($today, $p//EffectivityStart)
 and fn:date-less-than($today, $p//EffectivityEnd)
return $proc

The Structured Document Retrieval Principle

But if documents have useful internal structure, you should retrieve the most

specific part of a document you can. So a query for Macbeth might retrieve

everthing after the top <title> element, but a a query for Macbeth's castle

might retrieve the document starting with the <title> element that is a child of

<scene number="VII">

<play>
<author>Shakespeare</author>
<title>Macbeth</title>
 <act number="I">
 <scene number="VII">
 <title>Macbeth's castle</title>
 <verse>Will I with wine and wassail...</verse>
 </scene>
 </act>
</play>

What's The Indexing Unit for Structured
Documents?

If we index all the components that would make sense to return as a match to

a query, we end up with overlapping units

But if we group nodes in the document tree into non-overlapping

"pseudo-documents" what gets retrieved may not make intuitive sense

Distinguish These Two Cases

The XML Content Representation

Encoding the Two "Gates" in a Vector Model

Vector models are the tried and tested framework for term-based retrieval

But if we use a single axis for "Gates" we can't do structure-based retrieval

We must separate out the two occurrences, under Author and Title

So axes must represent not only terms, but something about their position in

an XML tree

Subtrees and Structure

But how many subtrees of the document contain at least one lexicon term?

Structural Terms

In the "Gates" example there are more than 8 subtrees

We create one axis in the vector space for each distinct structural term

We'll compute weights based on frequencies for number of occurrences of

each structural term (just as we had tf)

This is getting very complicated...and to process queries, we need to factor

them into structural terms

User Interfaces for Structural Search

Models of Information Retrieval -- Concluding
Thoughts

The core problems of information retrieval are finding relevant documents and

ordering the found documents according to relevance

The IR model explains how these problems are solved:

...By specifying the representations of queries and documents in the collection

being searched

...And the information used, and the calculations performed, that order the retrieved

documents by relevance

Different IR models solve these problems in different ways; the better they

solve it, the more computationally complex they are, so there are tradeoffs.

The Motivation for "Search Engine
Optimization"

Transaction log studies show that search engine users tend to look only at

the first page of results from a query until the follow a link

And users tend to scan from top to bottom as they examine the query results

So if a site doesn't make it to the first page of search results, it might as well

not exist for most users

Search Engine Optimization Techniques

Techniques for improving the number and positioning of a site's listing in

response to a web query involve:

On page factors -- doing things to a page's content

Off-page factors -- adding links to the site from other pages

The META Tag Specification: HTML 4.01 (12/99)

<!ELEMENT META - O EMPTY -- generic metainformation -->
<!ATTLIST META
 %i18n; -- lang, dir, for use with content --
 http-equiv NAME #IMPLIED -- HTTP response header name --
 name NAME #IMPLIED -- metainformation name --
 content CDATA #REQUIRED -- associated information --
 scheme CDATA #IMPLIED -- select form of content --
 >

What the W3C imagined:

<META NAME="DESCRIPTION" CONTENT="accurate prose description">
<META NAME="KEYWORDS" CONTENT="useful comma-separated keywords">

META tag: The Reality

November 2005 advice from www.highrankings.com:

"If this META tag were a child, it would be put into a foster home due to all the

abuse it has received over the years"

... a bit disingenuous, perhaps, given that in 2000 (thanks, archive.org) this

same firm said:

Our years of experience promoting our clients' websites in the search engines

have proven that designing a website with keywords in mind, is the best way to

ensure that the website is found by highly targeted users

Readings for 12/1 -- Multimedia Search and
Retrieval

Alejandro Jaimes, Mike Christel, Sbastien Gilles, Ramesh Sarukkai, and

Wei-Ying Ma, "Multimedia Information Retrieval: What is it, and why isnt

anyone using it?"

