
A Little More XML

INFO 202 - 15 September 2008

Bob Glushko

Using XML to Encode Document Type
Models

Encoding a conceptual information model in XML means choosing

elements or attributes as the containers for information, adding

information about data types, applying naming rules, creating

structures to organize repeated content components, and so on

If you've done a careful document analysis and design, the encoding

stage is relatively simple and straight-forward and can even be

automated in some cases

Structure of an XML Document

The Document Instance

Begins with the root element

Can contain text and binary data

Text consists of markup and character data

Markup always starts with < or &

So you can never use these symbols in character data and instead you use:

< and &

Elements {and,or,vs} Attributes

Whether to use elements or attributes to contain information is often

debated

Elements and attributes differ in what they can contain and this often

guides which you should use

Elements can contain other elements while attributes can contain only

strings or lists of strings

So elements must be used for any complex components but can be

used for simple or primitive ones as well; attributes can only be used

for "atomic" items of data

Elements carry the content that would generally appear in any

presentation or rendering of the XML instance; attributes carry "strong"

metadata or information that is useful in interpreting or presenting the

element content

Elements {and,or,vs} Attributes [2]

Attributes are the only way to specify default values and can be

constrained to a predefined set of enumerated values

Attributes are also the most sensible way to encode Boolean values

Attributes are inconvenient for long text, large values, or binary entities

If information is primarily encoded as attributes the XML instance can

be significantly smaller

"Best practice" is contentious but many people use almost all elements

and very few attributes, leaving the latter for just the "purest" metadata

Elements {and,or,vs} Attributes [3]

First way is preferred, second legal but not useful, and third is illegal

<Book>
 <Title>Moby Dick</Title>
 <Author>Melville</Author>
 <PublicationYear>1851</PublicationYear>
 <Categories>
 <Category>Fiction<Category>
 <Category>Whales<Category>
 </Categories>
</Book>

<Book title="Moby Dick"
 author="Melville"
 publicationYear="1851"
 category="Fiction Whales" />

<Book title="Moby Dick"
 author="Melville"
 publicationYear="1851"
 category="Fiction"
 category="Whales" />

Names

Names of elements and attributes must begin with a letter or _

After the first character, names can contain letters, digits, ., -,_

Names can't contain whitespace

Don't use : because it has an important role in namespaces (we'll get

there in a minute)

Don't start a name with "xml" because it is reserved

Character Entities

Used for encoding "difficult" characters

Five are built-in:

& (&)

' (')

> (>)

< (<)

" (")

XML processors are required to support Unicode (65,536 possible

characters) so you can encode Unicode characters (since most aren't

on the keyboard) as numeric character entities like ç for ç

HTML has about 400 of these characters built in

CDATA (How Did The Previous Slide
Work?)

CDATA is character data passed through to an application without

being parsed

Useful for including XML and code samples in documents that contain

markup characters that parser wants to treat as special like < > [

CDATA syntax:

<![CDATA[
 your unparsed XML example goes here
]]>

This strange syntax was chosen on the assumption that <![and]]> are

unlikely to occur so they can be used as delimiters

The Previous (Previous) Slide

The Namespace Problem

Thousands of XML vocabularies

– sets of elements and attributes – have been or are being developed

by different companies, industries, vendors,...

We'd like to reuse these, since any well-designed vocabulary

represents a lot of hard work that we'd rather not re-invent

But if some of the same vocabulary terms occur in more than one

vocabulary, and they mean different things in each, how can we use

them together?

Motivating Namespaces

<EventCalendar>
 <EventCategory>
 <Title>Literary and Cultural Events </Title>
 <Event>
 <Name>Oliver Sachs Book Signing</Name>
 <Location>Cody's Bookstore</Location>
 <Time>June 25, 2003 8pm</Time>
 <Book>
 <Author>
 <Title> Dr. </Title>
 <Name> Oliver Sachs </Name>
 </Author>
 <Title> The Island of the Color-Blind </Title>
 <Price> $12.95 </Price>
 </Book>
 </Event>
 </EventCategory>
</EventCalendar>

The Namespace Solution [1]

We can avoid name "collisions" where the same name means more

than one thing by associating a vocabulary with a Namespace

The Namespace consists of a prefix

followed by a ":" and a URI (Universal Resource Identifier). This is not

used to indicate a "place" or "file" but only to ensure uniqueness

The prefix, a short name that substitutes for the namespace, only has

to be unique within the more tightly scoped context of the document

instance

When namespaces are associated with elements, the prefix and the

local name are together called the qualified name or QName

The Namespace Solution [2]

Let's define namespaces for three specialized XML vocabularies:

For calendars and events – prefix="ev" and

URI="urn:sims:doc-eng-lab:babl:events:0.01"

For books – prefix "bk" and URI="http://www.mybookstore.com"

For honorifics and insignias – prefix "hon" and

URI="http://www.softwaremarketingresource.com/internationaladdressing.html"

Using Namespaces in the Calendar
Example

In the root element of your instance you declare what namespaces it

will contain, which allows the use of the 3 <Title> and 2 <Name> tags

that mean different things

<ev:EventCalendar
 xmlns:ev="urn:sims:doc-eng-lab:babl:events:0.01"
 xmlns:hon="http://www.softwaremarketingresource.com/internationaladdressing.html"
 xmlns:bk="http://www.mybookstore.com">

 <ev:EventCategory>
 <ev:Title>Literary and Cultural Events </ev:Title>
 <ev:Event>
 <ev:Name>Oliver Sachs Book Signing</ev:Name>
 <ev:Location>Cody's Bookstore</ev:Location>
 <ev:Time>June 25, 2003 8pm</ev:Time>
 <bk:Book>
 <bk:Author>
 <hon:Title> Dr. </hon:Title>
 <bk:Name> Oliver Sachs </bk:Name>
 </bk:Author>
 <bk:Title> The Island of the Color-Blind </bk:Title>
 <bk:Price> $12.95 </bk:Price>
 </bk:Book>
 </ev:Event>
 </ev:EventCategory>
</ev:EventCalendar>

This solution enables XML processors to distinguish the tag names.

Whitespace

You can liberally use white space (space characters, newlines, tabs) to

make your XML documents more readable

That's because when an XML processor (parser, etc) passes XML on

to an application it ignores the white space (it hands off the logical tree

structure of the document instead)

You can force white space to be preserved using an xml:space

attribute added to any element

One little catch - the XML declaration must be at the exact start of the

document, with no whitespace before it, or bad things happen

Comments

You can put comments almost anywhere in an XML document

Comments begin with <!--

Comments end with -->

Comments can't contain --

You should use them liberally... or better yet, you can use an element

like <documentation> or <annotation> to convey the information and

not use the comment syntax

