Protégé Training Materials

Open Protégé and confirm that your taxonomy is in the application Look on the left hand side under Asserted Hierarchy.

Your taxonomy should be located in the under the mmmBase:taxonomyItem node. If you click the little arrow next to it, it should open your taxonomy to confirm that it is in tact.

If you taxonomy is not intact – you should email SimonPK@Sims.Berleley.edu
When you open your taxonomy, the list of items may not look like the terms chosen for your taxonomy (what you will see are uniform resource identifier (URI), to see the word for the ontology – you must look at the label), this is because the facet term is listed as the Value under the Annotations menu (located in the top right of the screen). This is how you must locate all of the taxonomy elements that will be shown in the UI.

We strongly suggest that you use a print out copy of your metadata schema to navigate the taxonomy when you are locating the facets to show in the UI.

If you click on a URI in the upper right hand corner there is a box labeled annotations and in that box is the label – and that is the label that will appear in the web UI.

To create a Sub Class for a particular Facet, click on the class (so it is highlighted) and then click on the round C button at the top of the Annotated Hierarchy.

Let’s do this with an example. You want to create a person object that will be reused in several different types of annotations. In your hypothetical world a person has a name, an age, and a role. In Protégé you’ll express this by:

1. Creating a new person object as a subclass of mmmBase

a. Click on mmmBase in the left “Subclass Relationship” pane to highlight it.

b. Click the round yellow C button to create a subclass of mmmBase

c. In the right pane (“Class Editor”) the upper left text box is the name of this new subclass – the name will never show up in the MMM2 UI, may not contain spaces, and must by unique within this Protégé project. We’ll type in “person_object_123”

d. Now we need to create a label (that need not be unique) that will show up in the MMM2 UI. In the upper right of the class editor pane click the icon that looks like “new document” – it’s mouseover tool tip says something like “create new annotation value”

e. A dialog box pops up, select “rdf:label” and click OK

f. A new line appears under the icon you just clicked. Type a label (whatever you like – “person object” in our example) in the “Value” column and hit <enter> to make sure it saves

2. Now we need to associate properties with this class (somewhat analogous to member variables in Java). We decided that these are name, role, and age.

3. For the name property:

a. Find the properties sub-pane of the class-editor pane (in the middle on the right). And find the “add object property” icon – a blue “O”. Click the blue O to open the property editor popup.

b. Like the new class this property needs a unique name and a user-friendly label – this is much like step 1. a-f. For the example we’ll call the property URI (name) “person_name_prop” and the label will be “Person Name”.

c. Now we need to set the range of the property. Range means what type of values this property takes. The Domain (what types of objects have this property) has already been set to “person_object_123” automatically. In the “Range Type” dropdown box make sure instance is selected (we almost always want instance instead of class). Now click the +C yellow icon to extend the range of this property.

d. The popup shows all available class types. As a person’s name this is a special type called personID – navigate down the class hierarchy in the popup to personID under mmmBase. Select personID and click OK. It should show up in the Range pane.

e. Finally click on the “Functional” checkbox to indicate that this is a functional (can only take a single value) property – people only have a single name

f. Close the popup. And see that the new property is listed in the properties pane (you can dblclick there to edit it)

4. For the role and age properties we’re assuming that these both draw on values from your hypothetical taxonomy, already loaded into the taxonomyItem section.

a. Go through the same steps as above, but when selecting the range of the property you want to drill down into taxonomyItem to the appropriate node. In the example taxonomy it might be something like taxonomyItem>Person>Deomographics>Role and taxonomyItem>Person>Deomographics>Age -- any taxonomy subclasses of the selected node for the range will be available as values of this property.

5. Now we need to create a class that lets the MMM2 UI know how to use this person object we just created. The UI is pretty much only aware of annotationBase classes. So we subclass that – create a new class as in step one, except here it’s a subclass of annotationBase and we’re going to call it “person_doing_annotation”, with label “Person Doing” and we intend it to represent a person doing something.

6. Now we add properties to this class.

a. We’ll have a person property that has a range of “person_object_123” – when we’re using the annotation UI we’ll create instance of the person_object_123 class from steps 1-4 in the process of creating a person_doing annotation.

b. We’ll also have a property that is a taxonomyItem from the action sub-tree. (It has a range of taxonomyItem>Action>SinglePersonAction or whatever.)

That’s it for the basics. Subclass mmmBase to make compound objects. Subclass annotationBase to create things that the UI will notice. Perhaps most of the syntax/structure should go into mmmBase objects, but some can go into annotationBase objects as well (if you look close, you’ll notice that annotationBase is itself a sub class of mmmBase, so there’s no too much difference here.) All URIs (usually called Name in Protégé) must be unique. Everything that the UI cares about – class and property names – must have an associated rdf:label.

Additional Considerations

1. There is a difference between specific named objects and classes of objects. House cats are a class of object. Weezer and Jeff are specific house cats. We only care about specific individuals for certain types of things. For trees and pens and spoons we don’t really care that much about specific ones – one spoon is as good as the next. For cats and wedding rings we do care about specific ones. We can represent caring about this distinction in Protégé with the mmmBase:Instantiable class. taxonomyItems that are subclasses of Instantiable (Protégé allows multiple inheritance – if you like Java think of Instantiable as an interface) can have specific individuals created under their taxonomy tree .

a. To express this in protégé, right click (or ctrl-click) on the Instantiable class.

b. Go down to the fourth or so menu item (+C – add subclass) and click

c. Pick the taxonomyItem subclass you want to make instantiable and click OK

2. The way the taxonomyItems are loaded from Excel, there is only one type of relationship expressed (parent-child or subclass superClass). In the real world (or the ontology world) there are a many possible relationship types: is-part-of, contained-within, is-type-of, etc.

a. First create a property to represent this relationship. Go to the properties tab and click the blue “O” to create a new object property. Name and label it. Names here would be has-part or is-part-of or whatever.

b. Assign a domain and location. They can be specific to taxonomy items or the more general owl:Class or owl:Thing.

c. It might be worth thinking about transitivity, symmetry, etc. E.g. is-related-to is a symmetric property, has-ancestor is a transitive property, and has-part and is-part-of are inverse properties.

d. Now associate this new property to two taxonomy classes via a restriction.

i. Go back to the classes tab.

ii. Pick one of the classes involves (the one having this property) – pick Alameda in the “Alameda contains Berkeley” example. Select this class with a single click

iii. Click the “create restriction” icon – a red R on the same line as “asserted condtions” and up pops the create restriction dialog

iv. Click in the “restricted property” list

v. Click the square blue P near the bottom of the popup. And select the property you want in the resulting popup

vi. Click the red backwards E looking thing at the bottom of create restriction popup (means hasValue as you can see to the upper right)

vii. Then select the class that represents the value this property is restricted to by clicking the round yellow C and selecting the class in the popup.

viii. The OK should do it.

