The Economics of Internet Search

Hal R. Varian
Sept 31, 2007
Search engine use

- Search engines are very popular
 - 84% of Internet users have used a search engine
 - 56% of Internet users use search engines on a given day
- They are also highly profitable
 - Revenue comes from selling ads related to queries
Search engine ads

- Ads are highly effective due to high relevance
 - But even so, advertising still requires scale
 - 2% of ads might get clicks
 - 2% of clicks might convert
 - So only .4 out a thousand who see an ad actually buy
 - Price per impression or click will not be large
 - But this performance is good compared to conventional advertising!

- Search technology exhibits increasing returns to scale
 - High fixed costs for infrastructure, low marginal costs for serving
Summary of industry economies

- Entry costs (at a profitable scale) are large due to fixed costs
- User switching costs are low
 - 56% of search engine users use more than one
- Advertisers follow the eyeballs
 - Place ads wherever there are sufficient users, no exclusivity
- Hence market is structure is likely to be
 - A few large search engines in each language/country group
 - Highly contestable market for users
 - No demand-side network effects that drive towards a single supplier so multiple players can co-exist
What services do search engines provide?

- Google as yenta (matchmaker)
 - Matches up those seeking info to those having info
 - Matches up buyers with sellers

- Relevant literature
 - Information science: information retrieval
 - Economics: assignment problem
Brief history of information retrieval

- Started in 1970s, basically matching terms in query to those in document
- Was pretty mature by 1990s
- DARPA started Text Retrieval Conference
 - Offered training set of query-relevant document pairs
 - Offered challenge set of queries and documents
 - Roughly 30 research teams participated
Example of IR algorithm

- Prob(document relevant) = some function of characteristics of document and query
 - E.g., logistic regression $p_i = X_i \beta$

- Explanatory variables
 - Terms in common
 - Query length
 - Collection size
 - Frequency of occurrence of term in document
 - Frequency of occurrence of term in collection
 - Rarity of term in collection
The advent of the web

- By mid-1990s algorithms were very mature
- Then the Web came along
 - IR researchers were slow to react
 - CS researchers were quick to react
- Link structure of Web became new explanatory variable
 - PageRank = measure of how many important sites link to a given site
 - Improved relevance of search results dramatically
Brin and Page tried to sell algorithm to Yahoo for $1 million (they wouldn’t buy)

Formed Google with no real idea of how they would make money

Put a lot of effort into improving algorithm
Why online business are different

- Online businesses (Amazon, eBay, Google...) can continually experiment
 - Japanese term: *kaizen* = “continuous improvement”
 - Hard to really do continuously for offline companies
 - Manufacturing
 - Services
 - Very easy to do online
 - Leads to very rapid (and subtle) improvement
 - Learning-by-doing leads to significant competitive advantage
Business model

- **Ad Auction**
 - GoTo’s model was to auction search results
 - Changed name to Overture, auctioned ads
 - Google liked the idea of an ad auction and set out to improve on Overture’s model

- **Original Overture model**
 - Rank ads by bids
 - Ads assigned to slots depending on bids
 - Highest bidders get better (higher up) slots
 - High bidder pays what he bid (1st price auction)
Search engine ads

- Ads are shown based on query + keywords
- Ranking of ads based on expected revenue
Google auction

- Rank ads by bid x expected clicks
 - Price per click x clicks per impression = price per impression
 - Why this makes sense: revenue = price x quantity
- Each bidder pays price determined by bidder below him
 - Price = minimum price necessary to retain position
 - Motivated by engineering, not economics
- Overture (now owned by Yahoo)
 - Adopted 2nd price model
 - Currently moving to improved ranking method
Alternative ad auction

- In current model, optimal bid depends on what others are bidding.

- Vickrey-Clarke-Groves (VCG) pricing
 - Rank ads in same way
 - Charge each advertiser cost that he imposes on other advertisers
 - Turns out that optimal bid is true value, no matter what others are bidding
Google and game theory

- It is fairly straightforward to calculate Nash equilibrium of Google auction
 - Basic principle: in equilibrium each bidder prefers the position he is in to any other position
 - Gives set of inequalities that can be analyzed to describe equilibrium
 - Inequalities can also be inverted to give values as a function of bids
Implications of analysis

- Basic result: *incremental cost per click has to be increasing in the click through rate.*

- Why? If incremental cost per click ever decreased, then someone bought expensive clicks and passed up cheap ones.

- Similar to classic competitive pricing
 - Price = marginal cost
 - Marginal cost has to be increasing
Simple example

Suppose all advertisers have same value for click \(v \)

- Case 1: Undersold auctions. There are more slots on page than bidders.
- Case 2: Oversold auctions. There are more bidders than slots on page.

Reserve price

- Case 1: The minimum price per click is (say) \(p_m \) (~ 5 cents).
- Case 2: Last bidder pays price determined by 1\(^{st}\) excluded bidder.
Undersold pages

- Bidder in each slot must be indifferent to being in last slot
 \[(v - p_s)x_s = (v - r)x_m\]

- Or
 \[p_s x_s = v(x_s - x_m) + rx_m\]

- Payment for slot \(s\) = payment for last position + value of incremental clicks
Example of undersold case

- Two slots
 - \(x_1 = 100 \) clicks
 - \(x_2 = 80 \) clicks
 - \(v = 50 \)
 - \(r = 0.05 \)

- Solve equation
 - \(p_1 \times 100 = 0.50 \times 20 + 0.05 \times 80 \)
 - \(p_1 = 14 \) cents, \(p_2 = 5 \) cents
 - Revenue = \(0.14 \times 100 + 0.05 \times 80 = 18 \)
Oversold pages

- Each bidder has to be indifferent between having his slot and not being shown:

\[(v - p_s)x_s = 0 \]

\[p_s = v \]

- For previous 2-slot example, with 3 bidders, \(p_s = 50 \) cents and revenue = \(.50 \times 180 = $90 \)

- Revenue takes big jump when advertisers have to compete for slots!
Number of ads shown

- Show more ads
 - Pushes revenue up, particularly moving from underold to oversold

- Show more ads
 - Relevancy goes down
 - Users click less in future

- Optimal choice
 - Depends on balancing short run profit against long run goals
Other form of online ads

- **Contextual ads**
 - AdSense puts relevant text ads next to content
 - Advertiser puts some Javascript on page and shares in revenue from ad clicks

- **Display ads**
 - Advertiser negotiates with publisher for CPM (price) and impressions
 - Ad server (e.g. Doubleclick) serves up ads to pub server

- **Ad effectiveness**
 - Increase reach
 - Target frequency
 - Privacy issues
Conclusion

- Marketing as the new finance
- Availability of real time data allows for fine tuning, constant improvement
- Market prices reflect value
- Quantitative methods are very valuable
- We are just at the beginning...