Today

• Discussion
• Course Goals and Logistics
• Invited Speakers and Instructors
• How the Internet / Web Works
• How Search Engines Work
A Seminar Course

- Low-key; learn something new!
- Both undergrads and graduate students.
- Very wide-ranging backgrounds

<table>
<thead>
<tr>
<th>Undergraduates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Commun.</td>
<td>20</td>
</tr>
<tr>
<td>Declared</td>
<td>12</td>
</tr>
<tr>
<td>Double Major</td>
<td>9</td>
</tr>
<tr>
<td>Interdisc. Studies</td>
<td>3</td>
</tr>
<tr>
<td>Anth/Soc/Legal</td>
<td>3</td>
</tr>
<tr>
<td>Math/Chem/Op.Rs.</td>
<td>3</td>
</tr>
<tr>
<td>Environ. Economics</td>
<td>2</td>
</tr>
<tr>
<td>Business</td>
<td>2</td>
</tr>
<tr>
<td>Rhetoric</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grad students</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>iSchool</td>
<td>16</td>
</tr>
<tr>
<td>CS/EECS</td>
<td>2</td>
</tr>
<tr>
<td>Business</td>
<td>1</td>
</tr>
</tbody>
</table>
Course Goals

• Gain an interdisciplinary understanding of search engines and related technologies.
  - How they work
  - How they affect communication
  - How they affect business
  - How they are changing our understanding of information and knowledge.

• Make the techy parts understandable for everyone.
Class Format

• Lectures by up-to-date experts

• A few short homework assignments, turned in online

• A paper or project on a topic of your choice
  □ Topics will need to be approved by TAs/Prof
Class Attendance

- You *must* attend class.
  - We want a good audience for our fantastic speakers.
  - Counting today, there are 14 lectures.
  - You can miss only one class (not counting today). Each class missed beyond that will be a reduction of one letter grade.
  - During each class, the TAs will mark your name off a list; you must show your student ID.
Lecturers
Instructor Background

Prof. Marti Hearst

- Associate Professor in the School of Information
  - Affiliate position in the CS department
  - PhD in Computer Science from UC Berkeley

- Research areas:
  - Search, especially user interfaces for search
  - Computational linguistics
  - Information Visualization

- Industry Experience
  - Researcher at Xerox PARC for many years
  - Worked at HP, IBM
  - Was a member of the Scientific Advisory Board for Altavista and Yahoo! Search
  - Consulting at a search startup now.
TAs

- Eun Kyoung Choe
  - iSchool masters student

- Ani Sen
  - iSchool Masters Student

- Office hours TBD
What is the iSchool?

• School of Information
  ■ Used to be called SIMS

• Newest school on campus; started in 1997

• We have a PhD program and a professional masters degree
  ■ Like MBAs and Journalism school

• Faculty have diverse backgrounds
  ■ Computer science, economics, law, political science, sociology, and others.
iSchool Mission

We are developing scholars, entrepreneurs, and public leaders who can transform information into knowledge and understanding.
iSchool Courses (Sample)

- Information in Society
- Database Design
- Information Visualization and Presentation
- Open Source Software: Economic, Legal & Social Implications
- Web Services
- The Quality of Information
Master’s student placements

Representative employers:

- Google, eBay, Yahoo!, Microsoft, Oracle, HP
- UC, Kaiser, US Government, CA Digital Library
- Entrepreneurial
The Next Two Weeks

- Get the textbook, “The Search” by John Battelle
  - Read Chapters 1-2 of “The Search”

- Read this article in the NYTimes:

- No lecture next week (campus holiday)
- Monday, Sept 10: Jan Pedersen on how search engines work
How Search Engines Work
How Do Search Engines Work?

- Say a user named Oski using his computer at home (or in, say, Seoul) wants to find information about i141?
- What happens when he:
  - Brings up a search engine home page?
  - Types his query?
- First we have to understand how the network works!
- Then we can understand search engines.
Internet vs. WWW

- Internet and Web are not synonymous
- Internet is a global communication network connecting millions of computers.
- World Wide Web (WWW) is one component of the Internet, along with e-mail, chat, etc.
- Now we’ll talk about both.
How Does the WWW Work?

- Let’s say Oski received email with the address for the i141 web page, or saw it on a flyer.
- He goes to a networked computer, and launches a web browser.
- He then types the address, known as a URL, into the address bar of the browser.
- What happens next?

(URL stands for Uniform Resource Locator)
How Does the WWW Work?

- Say Prof. Hearst has written some web pages for her class on her PC.

- She copied the pages to a directory on a computer on her local network at the ischool. The computer’s name is *herald*.

- This computer is connected to the Internet and runs a program called Apache. This allows herald to act as a web server.
How Does the WWW Work?

- How does the computer at Oski’s desk figure out where the i141 web pages are?
- In order for him to use the WWW, Oski’s computer must be connected to another machine acting as a web server (via his ISP).
- This machine is in turn connected to other computers, some of which are routers.

- Routers figure out how to move information from one part of the network to another.
- There are many different possible routes.
How Does the WWW Work?

• How do Oski’s server and the routers know how to find the right server?
• First, the url has to be translated into a number known as an IP address.
• Oski’s server connects to a Domain Names Server (DNS) that knows how to do the translation.
Domain Name Syntax

• Domain names are read right to left, from general to more specific locations

• For example, www.xyz.com can be interpreted as follows:
  - com — commercial site top-level domain
  - xyz — registered company domain name
  - www — host name (it is a convention to name web server hosts “www” which stands for “world wide web”)
Typical Domain Name

www.xyz.com

- Server (host) name
- Registered company domain name
- Domain category (top-level domain)

Domain names are part of URLs, used in web pages.
Top-Level Domains

- **com, biz, cc** — commercial or company sites
- **edu** — educational institutions, typically universities
- **org** — organizations; originally meant for clubs, associations and nonprofit groups
- **mil** — U.S. military
- **gov** — U.S. civilian government
- **net** — network sites, including ISPs
- **int** — international organizations (rarely used)

Many other top level domains are available.
Converting Domain Names

- Domain names are for humans to read.
- The Internet actually uses numbers called **IP addresses** to describe network addresses.
- The Domain Name System (DNS) - resolves IP addresses into easily recognizable names.
- For example:
  - 12.42.192.73 = www.xyz.com
- A domain name and its IP address refer to the same Web server.
Internet Addresses

- The internet is a network on which each computer must have a unique address.

- The Internet uses IP addresses; for example, herald’s IP address is 128.32.226.90.

- Internet Protocol version 4 (IPv4) - supports 32-bit dotted quad IP address format
  - Four sets of numbers, each set ranging from 0 to 255
  - UC Berkeley’s LAN addresses range from 128.32.0.0 to 128.32.255.255
  - Other addresses in the iSchool LAN include 128.32.226.49

- Using this setup, there are approximately 4 billion possible unique IP addresses.

- Router software knows how to use the IP addresses to find the target computer.
How the Internet Works

• Network Protocols:
  - Protocol - an agreed-upon format for transmitting data between two devices
    - Like a secret handshake
  - The Internet protocol is TCP/IP
  - The WWW protocol is HTTP

• Network Packets:
  - Typically a message is broken up into smaller pieces and re-assembled at the receiving end.
  - These pieces of information, surrounded by address information are called **packets**.
## IP Packet Format (v4)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4 bits</td>
</tr>
<tr>
<td>Hdr Len</td>
<td>4 bits</td>
</tr>
<tr>
<td>TOS</td>
<td>8 bits</td>
</tr>
<tr>
<td>Total Length in bytes</td>
<td>16 bits</td>
</tr>
<tr>
<td>Identification</td>
<td>16 bits</td>
</tr>
<tr>
<td>Flags</td>
<td>3 bits</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>13 bits</td>
</tr>
<tr>
<td>Time to Live</td>
<td>8 bits</td>
</tr>
<tr>
<td>Protocol</td>
<td>8 bits</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>16 bits</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>32 bits</td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>32 bits</td>
</tr>
<tr>
<td>Options (if any)</td>
<td></td>
</tr>
<tr>
<td>Data (variable length)</td>
<td></td>
</tr>
</tbody>
</table>

**Table:**

- **Version** (4 bits)
- **Hdr Len** (4 bits)
- **TOS** (8 bits)
- **Total Length in bytes** (16 bits)
- **Identification** (16 bits)
- **Flags** (3 bits)
- **Fragment Offset** (13 bits)
- **Time to Live** (8 bits)
- **Protocol** (8 bits)
- **Header Checksum** (16 bits)
- **Source IP Address** (32 bits)
- **Destination IP Address** (32 bits)
- **Options (if any)**
- Data (variable length)
How Does the WWW Work?

• What happens now that the request for information from Oski’s browser has been received by the web server *herald* at [www.ischool.berkeley.edu](http://www.ischool.berkeley.edu)?

• The web server processes the url to figure out which page on the server is requested.

• It then sends all the information from that page back to the requesting address.
Reading a URL

http://courses.ischool.berkeley.edu/i141/f07/index.html

http:// = HyperText Transfer Protocol

courses = service name (often is www)
.ischool = host name
.berkeley = primary domain name
.edu/ = top level domain
i141/ = directory name
f07/ = directory names
index.html = file name of web page
Web Pages and HTML

- So what do we see at http://courses.ischool.berkeley.edu/is141/f07/index.html?
Web Pages and HTML

• So what do we see at http://courses.ischool.berkeley.edu/is141/f07/index.html?

• Right-click to see the “source” or HTML code for the web page

i141: Search Engines: Technology, Society, and Business

Course Information, Fall 2007

Search Engines: Technology, Society, and Business

(Note new time and location!) Mondays 10:00am–12:00pm, (2 units)
1.5 hour of lecture per week, 0.5 hour of discussion per week.
CCN: 42706
Prerequisites: None.
Location: 155 Krocker Hall
Open to all undergraduate students and designed for those with little technical background.

(Graduate student version of this course)

Speakers
We will schedule a set of top-notch experts to speak during Fall 2007. A speaker schedule can be found here.
You can also see the schedule from Fall 2005.

The instructor, Prof. Marti Hearst, is an Associate Professor at the School of Information.
She has done extensive research on search user interfaces, was on the Science Advisory Board of Yahoo from 2004-2005 and for AltaVista from 2002-2004. She will provide the introductions, devise the homework assignments, and create lectures for topics that are not covered by the guest lecturers.

Synopsis
The World Wide Web brings much of the world’s knowledge into the reach of nearly everyone with a computer and an internet connection. The availability of huge quantities of information at our fingertips is transforming government, business, and many other aspects of society.
Web Pages and HTML

What does HTML look like?

Source of: http://courses.ischool.berkeley.edu/i141/f07/index.html

<h2>Search Engines: Technology, Society, and Business</h2>

<p>(Note new time and location!)</p>

Mondays 10:00am-12:00pm, (2 units)

1.5 hour of lecture per week, 0.5 hour of discussion per week.

CCN: 42706

Prerequisites: None.

Location: 155 Kroeber Hall

Open to all undergraduate students and designed for those with little technical background.

<p><a href=http://courses.ischool.berkeley.edu/i290-1/f07/index.html>Graduate student version of this course</a></p>

<h3>Speakers</h3>

We will schedule a set of top-notch experts to speak during Fall 2007. A speaker schedule is now available.

You can also see the schedule from Fall 2005.
HyperText Markup Language

- Uses <tags> which mark up the text and tell the browser how to display the content.
- A backslash tag means the end of the command but is sometimes optional

Examples
- This is <b> boldface text </b>.
- <p> indicates a paragraph break
- <h1> This is a large heading </h1>
- <h3> This is a smaller heading </h3>
HTML Hyperlinks

- Hyperlink is the most important:
  `<a href=http://www.berkeley.edu/map/maps/BC23.html> 100 Genetics & Plant Biology Bldg </a>`

  - The **green** part is called **anchor text**
    - It’s the text you see on the link
  - The **pink** part is the url that the link will take you to if you click on it. The `http://` at the front indicates the http (Web) protocol.
  - The `<a href= ...> ... </a>` is the command that indicates the enclosed information is a hyperlink, and the that text between the tags is the anchor text.

- A hyperlink can be clicked on by a person OR followed by a computer program.
HTTP

- HTTP is the protocol used by the WWW.
- When a user clicks on a hyperlink in their web browser, this sends an HTTP command to the Web server named in the URL.
- This command usually is to “GET” the contents of the web page and return them to the user’s browser.
- It is a very simple protocol:
  - It relies on the TCP/IP functionality.
HTTP Request: Example

This information is received by the web server at www.ischool.berkeley.edu:

- **Request line**: GET i141/s07/index.html HTTP/1.1
- **Request header**: Host: courses.ischool.berkeley.edu
- **Blank line**:

Because HTTP is built on TCP/IP, the web server knows which IP address to send the contents of the web page back to.
How Does the WWW Work?

- When Oski typed in the url for the i141 home page, this was turned into an HTTP request and routed to the web server in Berkeley.
- The web server then decomposed the url and figured out which web page in its directories was being asked for.
- The server then sends the HTML contents of the page back to Oski’s IP address.
- Oski’s browser receives these HTML contents and renders the page in graphical form.
- If he clicks on the hyperlink to the GPB map, a similar sequence of events will happen.
How the WWW/Internet Work

• More information is available online.

• There are many good glossaries:
  - http://www.alpinetech.net/glossary.html
  - http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/Glossary.html

• There are good essays too:
  - http://computer.howstuffworks.com/web-server.htm
How Search Engines Work

• There are MANY issues
• I’m only giving the basics today
• More will come out in future lectures
How Search Engines Work

Three main parts:

i. Gather the contents of all web pages (using a program called a crawler or spider)

ii. Organize the contents of the pages in a way that allows efficient retrieval (indexing)

iii. Take in a query, determine which pages match, and show the results (ranking and display of results)
Standard Web Search Engine Architecture

Crawler machines → Crawl the web

Check for duplicates, store the documents

DocIds

Create an inverted index

Search engine servers

Inverted index
Crawler machines \rightarrow \text{crawl the web} \rightarrow \text{Check for duplicates, store the documents} \rightarrow \text{DocIds} \rightarrow \text{Create an inverted index} \rightarrow \text{Inverted index}\rightarrow \text{Search engine servers} \rightarrow \text{Show results To user} \rightarrow \text{user query} \rightarrow \text{Google search result}
i. Spiders or crawlers

- How to find web pages to visit and copy?
  - Can start with a list of domain names, visit the home pages there.
  - Look at the hyperlink on the home page, and follow those links to more pages.
    - Use HTTP commands to GET the pages
  - Keep a list of urls visited, and those still to be visited.
  - Each time the program loads in a new HTML page, add the links in that page to the list to be crawled.

Slide adapted from Lew & Davis
Spider behaviour varies

• Parts of a web page that are indexed
• How deeply a site is indexed
• Types of files indexed
• How frequently the site is spidered
Four Laws of Crawling

• A Crawler must show identification

• A Crawler must obey the robots exclusion standard
  http://www.robotstxt.org/wc/norobots.html

• A Crawler must not hog resources

• A Crawler must report errors
Lots of tricky aspects

- Servers are often down or slow
- Hyperlinks can get the crawler into cycles
- Some websites have junk in the web pages
- Now many pages have dynamic content
  - The “hidden” web
  - E.g., schedule.berkeley.edu
    - You don’t see the course schedules until you run a query.
- The web is HUGE
The Internet Is Enormous

Image from http://www.nature.com/nature/webmatters/tomog/tomfigs/fig1.html
“Freshness”

- Need to keep checking pages
  - Pages change (25%, 7% large changes)
    - At different frequencies
    - Who is the fastest changing?
    - Pages are removed
  - Many search engines cache the pages (store a copy on their own servers)
What really gets crawled?

- A small fraction of the Web that search engines know about; no search engine is exhaustive
- Not the “live” Web, but the search engine’s index
- Not the “Deep Web”
- Mostly HTML pages but other file types too: PDF, Word, PPT, etc.
ii. Index (the database)

Record information about each page

- List of words
  - In the title?
  - How far down in the page?
  - Was the word in boldface?

- URLs of pages pointing to this one

- Anchor text on pages pointing to this one
The importance of anchor text

A terrific course on search engines

The anchor text summarizes what the website is about.
Inverted Index

- How to store the words for fast lookup
- Basic steps:
  - Make a “dictionary” of all the words in all of the web pages
  - For each word, list all the documents it occurs in.
  - Often omit very common words
    - “stop words”
  - Sometimes stem the words
    - (also called morphological analysis)
    - cats -> cat
    - running -> run
Inverted Index Example

Inverted Index

- In reality, this index is HUGE
- Need to store the contents across many machines
- Need to do optimization tricks to make lookup fast.
- Index divided into segments each served by a node
- Each row of nodes replicated for query load
- Query integrator distributes query and merges results
- Front end creates a HTML page with the query results
iii. Results ranking

- Search engine receives a query, then
- Looks up the words in the index, retrieves many documents, then
- Rank orders the pages and extracts “snippets” or summaries containing query words.
  - Most web search engines assume the user wants all of the words (Boolean AND, not OR).
- These are complex and highly guarded algorithms unique to each search engine.
Some ranking criteria

- For a given candidate result page, use:
  - Number of matching query words in the page
  - Proximity of matching words to one another
  - Location of terms within the page
  - Location of terms within tags e.g. <title>, <h1>, link text, body text
  - Anchor text on pages pointing to this one
  - Frequency of terms on the page and in general
  - Link analysis of which pages point to this one
  - (Sometimes) Click-through analysis: how often the page is clicked on
  - How “fresh” is the page

- Complex formulae combine these together.
Measuring Importance of Linking

- **PageRank Algorithm**
  - *Idea*: important pages are pointed to by other important pages
  - *Method*:
    - Each link from one page to another is counted as a “vote” for the destination page
    - But the importance of the starting page also influences the importance of the destination page.
    - And those pages scores, in turn, depend on those linking to them.

Measuring Importance of Linking

- Example: each page starts with 100 points.
- Each page’s score is recalculated by adding up the score from each incoming link.
  - This is the score of the linking page divided by the number of outgoing links it has.
  - E.g., the page in green has 2 outgoing links and so its “points” are shared evenly by the 2 pages it links to.
- Keep repeating the score updates until no more changes.

Manipulating Ranking

• Motives
  ■ Commercial, political, religious
  ■ Promotion funded by advertising budget

• Operators
  ■ Search Engine Optimizers
  ■ Web masters
  ■ Hosting services

• Forum
  ■ Web master world (www.webmasterworld.com)
A few spam technologies

- **Cloaking**
  - Serve fake content to search engine robot
  - *DNS cloaking*: Switch IP address. Impersonate

- **Doorway pages**
  - Pages optimized for a single keyword that re-direct to the real target page

- **Keyword Spam**
  - Misleading meta-keywords, excessive repetition of a term, fake “anchor text”
  - Hidden text with colors, CSS tricks, etc.

- **Link spamming**
  - Mutual admiration societies, hidden links, awards
  - *Domain flooding*: numerous domains that point or re-direct to a target page

- **Robots**
  - Fake click stream
  - Fake query stream
  - Millions of submissions via Add-Url

---

**Meta-Keywords**:
“... London hotels, hotel, holiday inn, hilton, discount, booking, reservation, sex, mp3, britney spears, viagra, …”

---

*Slide adapted from Manning, Raghavan, & Schuetze*
Paid ranking

Pay-for-inclusion

- Deeper and more frequent indexing
- Sites are not distinguished in results display

Paid placement

- Keyword bidding for targeted ads
Know your search engine

- What is the default boolean operator? Are other operators supported?
- Does it index other file types like PDF?
- Is it case sensitive?
- Phrase searching?
- Proximity searching?
- Truncation?
- Advanced search features?
Keyword search tips

- There are many books and websites that give searching tips; here are a few common ones:
  - Use unusual terms and proper names
  - Put most important terms first
  - Use phrases when possible
  - Make use of slang, industry jargon, local vernacular, acronyms
  - Be aware of country spellings and common misspellings
  - Frame your search like an answer or question

- For more, see [http://www.googleguide.com/](http://www.googleguide.com/)
Search Engine Information

- www.searchengineland.com
- www.searchenginewatch.com
- www.searchenginejournal.com
- www.searchengineshowdown.com
- http://battellemedia.com
Class Attendance

- You *must* attend class.
  - We want a good audience for our fantastic speakers.
  - Counting today, there are 14 lectures.
  - You can miss only one class. Each class missed beyond that will be a reduction of one letter grade.
  - During each class, the TAs will mark your name off a list; you must show your student ID.
The Next Two Weeks

• Read Chapter 1-2 of “The Search”

• Read this article in the NYTimes:

• No lecture next week (campus holiday) but we will have discussion sections next week:

• Monday, Sept 10: Jan Pedersen